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Abstract. Retrieval of structured cases using similarity has been stud-
ied in CBR but there has been less activity on defining similarity on de-
scription logics (DL). In this paper we present an approach that allows
us to present two similarity measures for feature logics, a subfamily of
DLs, based on the concept of refinement lattice. The first one is based on
computing the anti-unification (AU) of two cases to assess the amount
of shared information. The second measure decomposes the cases into
a set of independent properties, and then assesses how many of these
properties are shared between the two cases. Moreover, we show that
the defined measures are applicable to any representation language for
which a refinement lattice can be defined. We empirically evaluate our
measures comparing them to other measures in the literature in a variety
of relational data sets showing very good results.

1 Introduction

Knowledge intensive case-based reasoning (CBR) has traditionally used struc-
tured representation of cases and in the recent past it has moved more close to
ontology engineering and knowledge representation formalisms like description
logics. Retrieval of structured cases using similarity has been studied in CBR
(see section 6) but there has been less activity on defining similarity on descrip-
tion logics (DL) for CBR. Part of the problem is that one can define a variety
DLs: should we define a different similarity measure for each DL?

In this paper we present an approach that allows us to present two similar-
ity measures for feature logics [8], a subfamily of DLs, based on the concept of
refinement lattice. The concept of refinement lattice is taken from the general-
ization space notion of inductive learning [16], and as such is general: it is the
lattice generated by a collection of refinement operators that relate two general-
izations. Since any specific DL formalism can be, in principle, equipped with its
own refinement operators (that induce a refinement lattice) the two similarity
measures we present here can also be applied to them.

Specifically, we present two similarity measures based on a refinement lattice
for feature logics. The first one computes the anti-unification (AU) of two cases,
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Fig. 1. Trains data set as introduced by Michalski [15].

representing all the information common to these two cases; then it assesses how
much information is contained in the AU with respect to the total amount of
information in the two cases. We will call it AU-based similarity (Sy). The second
measure is called property-based similarity (Sy); Sr decomposes the cases into
a set of independent properties, and then assesses how many of these properties
are shared between the two cases.

The remainder of this paper is organized as follows. In Section 2 we will
briefly introduce some notions of relational machine learning required to define
our measures. Sections 3 and 4 present the anti-unification-based measure and
the property-based measure respectively. In Section 5 we describe our empirical
evaluation of the measures, comparing them to other measures in the literature
in a variety of relational data sets. Section 6 presents related work on relational
similarity measures. Section 7 summarizes the contributions of this paper and
outlines future lines of research.

2 A refinement lattice for feature logics

Feature logics [8] (also called feature terms, feature structures or W-terms) are
a generalization of first-order terms that have been introduced in theoretical
computer science in order to formalize object-centered capabilities of declarative
languages. In this paper we use a concrete formalization (that may differ from
that of [8] or [3]), used in the language NOOS [1].

As an example, consider the apparently simple trains data set introduced
by Michalski [15], and shown in Figure 1. The original task is to find the rule
that discriminates from east-bound and west-bound trains. Notice, however, that
not all the trains have the same number of cars, and that, in principle, a train
can have an unbounded number of cars. Thus, it is unclear how to represent
this data using a feature vector without losing information. Using a relational
representation, we can just represent each car as a term, and define that a
train is a set of cars, without restricting the number of cars of the train or the
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Fig. 2. A train represented using the feature terms representation formalism.
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Fig. 3. a) Example of a refinement lattice defined by the subsumption relation, where
each node represents a term, and the most general node is L. b) Example of two terms
11 and 12 in the refinement lattice with their unification v, and anti-unification, .

complexity of the load each train is carrying. For instance, Figure 2 represents
the first west-bound train using feature terms.

Feature terms can be defined by its signature: X = (S, F,<,V). Where S
is a set of sorts symbols (including L, which represents both the most general
sort and term), < is a partial order among the sorts in S (representing the is-a
relation common to object oriented languages)), F is a set of feature symbols,
and V is a set of variable names. We can define a feature term 1 as:

Yu=Xs[fi =W, ., [ = W)

where 1 points to the root variable X (that we will note as root(v)), X € V,
s €8, f; € F, and ¥; might be either another feature term 1;, an already defined
variable Y € V or a set of feature terms {11, ..., ¢, }. Finally, we also consider
the basic data types (numbers and symbols) to be feature terms.

The basic operation between feature terms is subsumption, formally defined
for feature terms in [1]. We say that a term ¢ subsumes another term o when



11 is more general than ¥y and we denote that as ¥ C 5. The subsumption
relation allows us to structure the space of possible feature terms in a semi lattice,
that we will call the refinement lattice, where the root node is 1, also called
any. Figure 3.a shows an illustration of the refinement lattice, where each node
represents a term, and arrows represent subsumption. Another interpretation of
subsumption is that if a term 7 subsumes another term 15, all the information
in 1) is also contained in 5. Typically, such space is only considered relevant for
inductive learners since it defines the search space for hypothesis [17]. However,
in this paper we are going to make use of the structure in such space in order to
define similarity measures.

One way to build the refinement lattice is by defining refinement operators.
A refinement operator p maps a feature term to a set of feature terms that
are either generalizations of specializations depending if it is a specialization re-
finement operator or a generalization refinement operator. Refinement operators
for subsets of first order logic have been defined in the literature [16, 21]. Such
refinement operators can be used in the definition of inductive systems that
systematically or heuristically explore the hypothesis space.

Given the subsumption relation, and any two terms ¥ and 1, we can define
the anti-unification of two terms as the least general generalization [19]. The
anti-unification of two terms is relevant for defining similarity measures, since it
contains all the information that is common to both 17 and 5, thus, it encap-
sulates in a single description all that is common to two given terms. Moreover,
depending on the representation language being used, it might not be unique
(it is not in the case of feature terms). A complementary operation to the anti-
unification is that of wnification, which is the most general specialization of a
given set of terms. Figure 3.b graphically illustrates both concepts. Notice that
both unification and anti-unification are operations over the refinement lattice:
anti-unification corresponds to find the most specific common “parent”, where
as unification corresponds to find the most general common “descendant”.

A fast algorithm to compute one of the anti-unifications of a set of terms T’
can be informally defined using a systematic search process over the refinement
lattice in the following way. The search starts by having an initial candidate to
be the anti-unification ¢y = L. At each step t of the algorithm, we will generate
specialization refinements of the current candidate ¢;. If any of those refinements
subsumes all the terms in 7', then that term will be taken as c;4;. When in one
cycle t none of the refinements subsume all of the terms in 7', we will know that
¢t is an anti-unification of 7. Notice that this algorithm only finds one anti-
unification out of all the possible ones. Moreover, the specialization refinement
operator used for this algorithm must be complete, i.e. it has to be able to
generate all the immediate successors of any term in the refinement lattice. It
is also interesting to know the number of iterations required to find the anti-
unification of two terms (since the larger the number of steps, the larger the
anti-unification, and thus the more information shared among the terms).

Notice that the previous algorithm for computing the anti-unification, al-
though defined here for feature terms, is independent of the representation lan-



guage used as long as a suitable refinement operator and subsumption operation
are available. However, for completeness, next section very quickly presents a re-
finement operator for feature terms that can be proven to be complete (although
the proof is not included in this paper for the sake of space).

2.1 Refinement Operators for Feature Terms

The specialization refinement operation p(1)) for feature terms will be defined by

five simpler refinement operators: p(¢) = p[s](v) U p[f](¥) U p[v](¥) U ple] () U
plc](v), as follows:

1. p[s] generates all the possible specializations by specializing sorts in a term.
2. p[f] generates specializations by taking each undefined feature in a term and
adding them a variable with the most general sort that feature can take.

3. p[v] generates specializations by adding “variable equalities”, i.e. for any
two variables X,Y in a feature term that can be unified, this operator will
generate refinements where X =Y.

4. ple] generates all the possible specializations by expanding any set in a fea-
ture term (including converting single values into a set of two values). The
value added is the most general value allowed in that set.

5. plc] generates refinements by replacing variables by constants.

Notice that in general there are an infinite number of possible refinements of
a feature term (just imagine that we have a variable representing a real number,
the p[c] operator can refine that term by substituting the variable by any concrete
real number). In order to make the operator tractable, it is possible to define
an alternative definition p(¢), O), where O is a set of feature terms, and only
terms that subsume at least a term in O are generated. This makes the number
of refinements generated always finite (e.g. the set of constants to substitute
variables for can be taken from the set of constants used in O).

Given this refinement operator, it is easy to define the opposite operator
~(). The purpose of defining refinement operators is to navigate through the
refinement graph. Intuitively, p() is an operator that maps a term to its imme-
diate successors in the refinement lattice, and ~y(v) is an operator that maps a
term to its immediate ancestors in the lattice.

3 Anti-Unification-based Similarity

The anti-unification of two feature terms v, and ¥, naturally introduces a simi-
larity measure between any two terms. The anti-unification of two terms contains
all the shared information of two terms. Thus, based on that, the anti-unification
based similarity (Sy) can de defined as: the ratio of shared information divided
by the total amount of information. If two terms are very similar, the amount
of common information will be very similar to the total information contained
in both terms, and thus the similarity will approach 1.
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Fig. 4. Illustration of the anti-unification based similarity, between two feature terms

11, and 12, whose anti-unification is .

We need a way to count the amount of information contained in a feature
term. Using the refinement lattice, we can define the amount of information in
a feature term 1) as the distance in the refinement lattice from ) to the object
L (the most general feature term). In other words, the number of times that
a refinement operator has to be applied to L to generate the feature term .
Figure 4 illustrates this idea, where a is the number of refinement steps from L
to the anti-unification of 1; and )5, b is the number of refinement steps from
the anti-unification v to 11, and c is the number of refinement steps from the
anti-unification to 9. Thus, we can define the similarity as:

Sx(h1,v2) =

a
at+b+e

Notice that by using the anti-unification algorithm outlined in Section 2, it
is easy to compute a as the number of iterations required to compute the anti-
unification. Moreover, in order to compute b, the same algorithm can be used,
but using the anti-unification as a starting point, and using 7' = {1} (¢ can be
computed analogously).

The resulting similarity is a simple measure that can be used to compare
any two cases represented using feature terms. This measure has, however, two
main issues. First of all is its computational complexity. Although computing the
anti-unification of two terms requires (using the algorithm mentioned in Section
2) a linear number of calls to the subsumption operator in function of the size
of the terms, the subsumption operation might have an exponential complexity
depending on the representation language used. Thus, in domains where the cases
in the case base are large structures, this similarity measure might not be feasible.
A second problem is that this similarity measure considers each refinement in
the refinement lattice as equally important, it is like an edit distance where each
operation has the same weight. Weights could be defined for each refinement
operation, but it is not obvious how to generate them automatically. Next section
presents another similarity measure which addresses these two problems.



4 Property-based Similarity

To address the problems introduced by the anti-unification-based similarity, we
developed the property-based similarity. In our framework, A property is some
condition that a term might satisfy or not. For example, in the trains domain
introduced before, a property might be that “a train has at least 3 cars”, and
some trains might satisfy it and some might not. The main idea of the property-
based similarity is to count, out of the set of properties that two cases satisfy,
how many do they share.

In a feature-value representation it is easy to define the set of properties
that a case satisfies: the set of features by which it is defined. However, in a
complex relational representation such as feature terms, it is not obvious. In our
framework, we will define a property as a pattern v, and given a term 5, we
say that 1o satisfies the property if: ¢; C 15. Therefore, the set of properties
that a term satisfies is the set of all the patterns that subsume it. Notice that
that set might be very large (or even infinite). Therefore, we will rely again in the
notion of refinement operators to define the set of properties that a term satisfies.
Each time a refinement operator is applied to a term to make it more specific,
information is added to the term, and thus the term “gains a new property”. If
we take the path in the refinement lattice from L to a particular term ), each
one of the refinement operators in that path defines a property, for which an
appropriate pattern can be constructed as explained below.

4.1 An Illustrative Example

Before formally explaining the process of constructing the property patterns, let
us illustrate it with an example. Imagine that we have a description 1 of a train,
as shown on the top of Figure 5. The train contains two cars, one of them is a
long engine, and the other one is a short open rectangle car with two circles on
it. Moreover, we know that the engine is in front of the open rectangle car.

If we compute the path in the refinement lattice required to reach L from
1 by using the (1)) generalization refinement operator, we will see that we
need 17 refinements to reach it. Each one of those 17 generalization refinements
removes a piece of information from the term, and thus “removes a property”.
For instance, let’s say that the first generalization takes the value long of the
feature In in the car represented by variable X2 and generalizes it to a variable
of type length. The property that the train has lost is that one of the cars is long.
Thus, the first property ¥; can be generated, as shown in Figure 5. The next
generalization might generalize the value engine to a more general value shape.
Leading to the second property -, that states that one of the cars of the train
has shape engine. This process can go on until we reach L. Figure 5 shows all
the different properties that will get created in the process. Notice that there are
only 14 properties in this example, but 17 refinement steps. This is because some
of the properties generated result in the same pattern, and thus we have removed
duplicates. Once we have the set of properties, we can use them to approximate
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the amount of shared information in between two cases by counting how many
properties do they share.

At this point we can already see that a property associated with a general-
ization refinement captures exactly that piece of information that was removed
from the term when generalizing. The intuition is that if we compute the uni-
fication of all the properties generated we should obtain the original term. In
the case of feature terms, since unification is not unique, we can only say that
one of the possible unifications of all the properties results in the original ob-
ject. Therefore, the intuitive definition of a property pattern is that a pattern
associated with a generalization refinement should be the smallest feature term
that if unified with the generalization allows us to reconstruct the original term.
Although computing such patterns can be also done in a domain independent
way using the refinement lattice, next section presents a fast way to compute
them when feature terms are used as the representation language.



4.2 Constructing the Properties

Given a term 1), it is possible to use the generalization refinement operator ~y(v))
to generalize the term step by step until L is reached and construct properties
along the way. Notice that in order to generate the generalization refinements,
subsumption is not required, and thus the process of generalizing a term until L
is reached is not computationally expensive?. Notice that computing the shortest
path from v to L might be computationally expensive, but for our similarity
purposes, it is enough with finding one path (not necessarily the shortest).

Each refinement will generate a property. The generalization operator (1))
manipulates a set of variables in a feature term in order to construct the gener-
alizations. For instance, it might “change the sort s of a variable X to a more
general sort 5’7, or “remove an element X from the feature f of another variable
Y”. In order to generate the pattern that corresponds to a property. It is neces-
sary to obtain the minimum set V of variables that constitute a path from the
root of a feature term to all the variables that the generalization operator ma-
nipulated. For example, in the example shown in Figure 5, a generalization step
might take the value engine of the feature cshape of variable X2 and generalize
it by changing it to Y : shape. For simplicity, engine did not have any variable
name associated with it in the figure, but let us assume that its variable name
is X4 Notice that the set of variables manipulated are {Xs, X4}. Since the root
variable is X7, the minimum set is V = {X1, X, X4 }.

Once V has been computed, we have to compute which is the minimum set of
features that each one of the variables in V require. For instance, X7 requires cars
(since it’s the only way to reach X5), and X5 requires cshape. These variables and
features will be the ones appearing in the pattern associated with the property.

4.3 Property-based Similarity Definition

Given a set of properties P (that can be generate by extracting them from all
the cases in the case base and from the problem at hand), the first step is to
compute a weight w; for each property p; € P. Since each property divides the set
of cases in two subsets, those which satisfy them and those which don’t, a simple
measure such as Quinlan’s Information Gain [20] can be used to compute feature
weights, where the weight of each feature is directly the normalized information
gain (which is the method used in our experiments to compute weights). Let
us define as P(t) the set of properties that a particular term ¢ satisfies, the
similarity between two terms can be computed as:

> w;
S (W1, 1hy) = SEEEInTles) —

2 pieP(41)UP () Wi

3 One consideration has to be made when using feature terms: It is possible to con-
struct infinite generalization chains when terms have cycles. However, by carefully
selecting which generalizations to generate (basically, forbidding generalizations that
increase the number of variables in a term, which are never necessary to reach 1),
it can be proved that this problem can be completely avoided.



In other words, it is the sum of the weights of those properties shared by
the two terms, divided by the sum of the weights of all the properties that at
least one of the term satisfies. Notice, moreover, that even if the definition of the
measure involves subsumption, it is actually subsumption between a property
and a full term, and subsumption when one of the terms is a property is not
an expensive operation. Section 5 shows comparison in execution time between
both measures, showing that the property-based measure is very efficient.

One of the main advantages of having a list of properties is that a weight
can be assigned for each property. Thus, once we have two terms that we want
to compare and we have extracted a set of properties, we can use information
theoretical measures such as Information Gain [20], or the RLDM distance [9)]
to automatically assign a weight to each property.

Another interesting fact about properties, is that, under certain assumptions,
if we compute the unification of all the properties that define a term, we obtain
the original term?. In the same way, if we compute the unification of all the
shared properties among a set of terms, we obtain the anti-unification of that
set of terms. For that reason, if there is a single path in the refinement lattice
from L to the anti-unification, S should provide the exact same results as S,
(if uniform weights are used for the properties).

Another advantage of the property-based similarity is that its computational
requirements are lower, as we will see in our experimental results section. For
data sets with complex cases, computation of the anti-unification of two terms
might be prohibitive, however, properties can still be extracted. The only down-
side of the property-based similarity, is that the anti-unification between two
terms is not explicitly computed. However, it can be computed by unifying all
the shared properties (at an additional computational cost). A formal evaluation
of the computational complexity of both similarity measures is subject to our
future work. An explicit anti-unification can be used for explanation purposes
[18], as well as for adaptation purposes (since it makes explicit the similarities
between a problem and the retrieved case) [7].

Finally, notice that since each property is a pattern, any other pattern gener-
ation method can be used. For instance, any relational inductive learning method
that could learn descriptions that distinguish among cases in the case base could
be used to generate additional patterns.

5 Experimental Results

In order to evaluate our similarity measures, we used three different data sets:
sponges, trains, and kinship. Trains is the data set shown in Figure 1, as presented
by Michalski [15]. Kinship is a small but complex relational data set consisting
of two families, each one with 12 members (thus 24 persons in total), proposed
originally by [11], and used to evaluate several relational learning algorithms.
The goal is to learn family relations. In our experiments the target relation to

4 This only happens when there are no sets in the term.
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Sx Sx SHAUD RIBL
1-NN |3-NN|| 1I-NN | 3-NN||1-NN|3-NN|/1-NN| 3-NN
Sponges-280(| 95.00 |94.29|| 96.43 |96.43|/95.71(95.00{/91.67|91.67
Sponges-503|| 89.66 (88.27|| 92.25 |90.46 ||88.27|87.08(/88.93| 86.43

Trains-10 50.00 |60.00|| 60.00 {70.00{/40.00|30.00{/50.00|70.00
Kinship-24 {|{100.00{91.67{/100.00| 75.00 - - 83.33|83.33
Table 1. Classification accuracy in percentage measured using a leave one out method
for different similarity measures.

learn was “uncle”. The representation is purely relational, and each family is
a graph (there are 4 positive examples and 20 negative examples). Finally, the
sponges data set is a relational data set composed of 503 sponges belonging to 8
different solution classes. For the sponges data set, we report results both using
the complete data set as well as using a subset of it (consisting of 280 sponges
and 3 solution classes). We used the trains and uncle data sets as examples of
data sets that are highly relational and where the value of features is not as
important as the structure of the terms, and the sponges data set is a complex
relational data set where both structure and feature values are important.

Table 1 shows the classification accuracy for several similarity measures in
the data sets used for our evaluation. We report results for the two similarity
measures presented in this paper, as well as two other relational similarity metrics
for comparison purposes. For each similarity metric we measured classification
accuracy using both a nearest neighbor as well as a 3-nearest neighbor by means
of a leave-one-out method. We used SHAUD [2] and RIBL [10] (explained in
detail in the next section) to compare our measures. SHAUD is a relational
similarity metric defined for feature terms that has been shown to obtain very
good results in complex relational data sets, and RIBL is a well known similarity
measure for first order logic (FOL). RIBL requires examples to be represented
in FOL and not as feature terms, but feature terms can be actually converted to
FOL predicates without losing information. We used such conversion to evaluate
RIBL. Moreover, RIBL and SHAUD require to know the ranges of each numeric
feature before hand in order to compute similarity. We used the minimum and
maximum values observed in the data set to define such ranges. Finally, RIBL
requires a maximum depth parameter which was set to 10 in our experiments
(large enough, since the deepest of the data sets is the Kinship data set where
depth 5 is enough to capture each example). Finally, SHAUD only works for
acyclic graphs, and thus could not be applied to the Kinship data set.

The first thing that we can observe in Table 1 is that the property-based
similarity, S, achieves the highest classification accuracy in all data sets. In the
Kinship data set, the only important thing is the structure. SHAUD cannot
handle it since cases are cyclic graphs, and RIBL concludes that all cases have
similarity 0, since they have no values in any feature (there are no numerical
or symbolic values in any of the terms in Kinhip, only a graph relating each
member of the family to each other). Notice that RIBL achieves an accuracy of
83.33% only because it always predicts “negative”, and there are only 4 positive
examples out of 24. Both S, and S, are able to capture the structure of the
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cases, and achieve an accuracy of 100.00%. Trains is an apparently simple but
complicated data set, since there are lots of features in each train, but only
two are key to determine the class. Sy does not compute weights for any of the
differences it finds, so it cannot distinguish from differences that matter from
the ones that do not matter. S and RIBL perform the best in this data set.

Finally, in the sponges data set S; achieves the best results. SHAUD and
S\ achieve also good results but not as good, and finally RIBL gets the lowest
accuracy. The problem for RIBL is that it does not exploit completely the infor-
mation in the sort hierarchy, and that is important in this data set. Moreover,
we would like to remark that RIBL can accept weights in both predicates and
attributes, but there is no simple way to compute them directly (like with the
properties in S;), and thus we used uniform weights. Thus, the results reported
here for RIBL might be suboptimal, although weights won’t be able to help at all
in the uncle data set. Finally, we would like to note that the accuracy achieved
by S is the highest reported to date in the sponges data set.

In terms of execution time, S takes 13.98 seconds per problem in the Sponges
503 data set, S, takes 1.54 (including the time to learn the weights), SHAUD
takes 4.09 seconds per problem, and RIBL is the fastest with 1.05 seconds per
problem. Those times correspond to computing 502 similarities (since there are
503 examples in that data set). Time differences are similar for other data sets.
We see that Sy and SHAUD are the slowest since they require computing the
anti-unification, and RIBL is the fastest. S, is also very fast, since extracting
properties does not rely on anti-unification.

We can conclude that S, is the most balanced similarity overall, achieving
the highest classification accuracy in most data sets while being computation-
ally efficient. Moreover, both Sy and S, are conceptually very simple, and it is
easy to understand what is being measured, whereas in more complex measures
such as SHAUD and RIBL, it is hard to conceptually understand what exactly
is being measured. Comparing Sy to Sy, Sx has the advantage of computing
an explicit symbolic similarity and of being conceptually very simple, however
it is computationally expensive. S; on the other hand is computationally less
expensive and it is more accurate but has the disadvantages of not computing
an explicit symbolic similarity term and of being conceptually more complicated
(it requires the property generation step).

6 Related Work

Hutchinson [12] presented a distance metric based on the anti-unification of two
terms. Given the anti-unification of two terms, Hutchinson measures the size of a
variable substitution required to unify the anti-unification with each of the terms.
The distance becomes the addition of the size of the two substitution required
(for each one of the two terms we are comparing). This measure is very related
to our anti-unification-based measure, but it fails to take into account some of
the information, since it only counts the number of variable substitutions. For
example, substituting a term number by integer or substituting it by the number

12



45, will count as a single substitution in Hutchinson’s formalism, however, in our
measure changing number to integer counts as one refinement, where as number
to 45 requires two refinements. Thus, our measure is a more fine-grained one than
the one presented by Hutchinson.

Borgida, Walsh and Hirsh [6] differentiate three generic classes of similarity
measures for description logics. Our two measures fall into two of their categories.
S\ is what they call an information-content based model, and Sy is a feature-
based model. They already point out that the main problem of feature-based
models is identifying what constitutes a feature (a property). In this paper we
have given a particular answer to that question based on refinement operators.

RIBL (Relational Instance-Based Learning) was presented by Emde and
Wettschereck [10] as an approach to apply lazy learning techniques based on
the nearest neighbor algorithm using first-order logic as the representation for-
malism. The similarity measure of RIBL uses the intuition that the similarity
among two terms is the average of the similarity of the value of their features
(calling this function recursively if the values are terms, thus being better suited
for acyclic graphs). Moreover, they define special similarity measures if the val-
ues are numeric or symbolic. Compared to our anti-unification-based measures,
RIBL has the strong point of handling naturally numerical values. However, our
similarity measures are more general in the sense that we do not make any as-
sumption about the representation language being used, but only rely on the
existence of a subsumption operation and refinement operators. The fact that
terms are trees, graphs or lists is irrelevant to our similarity measures. Moreover,
because of the recursive way that RIBL computes similarity, values deep in the
tree are bound to have less importance in the computation, where as in our
property-based measure, it is left to the weight computation heuristic to decide
which properties are important and which ones are not. An earlier similarity
measure related to RIBL was that of Bisson [5].

An extension of the RIBL similarity measure was presented by Horvath et
al [22] in order to let RIBL handle lists and terms. The extension consists of
a specialized routine that uses an edit-distance to compute similarities among
lists and terms added to the basic similarity measure of RIBL. The downside of
the similarity metric of RIBL (including this improvement) is that specialized
measures have to be defined for different type of data, where as our similarity
measures can handle any kind of data uniformly.

Another approach to similarity among structured terms is that of Bergmann
and Stahl [4]. They present a similarity metric specific for object oriented repre-
sentations based on the concepts of intra-class similarity (measuring similarity
among all the common features of two objects) and inter-class similarity (pro-
viding a maximum similarity given to object classes). The similarity is defined
in a recursive way, thus limiting the approach to tree representations.

SHAUD, presented by Armengol and Plaza [2] is another similarity metric
related to RIBL but designed for feature terms. SHAUD also assumes that the
terms are acyclic graphs, and in the same way as RIBL and Bergmann and Stalh’s
it can handle numerical values in a natural way by using specialized similarity
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measures for different data types. Another benefit of our similarity measures
with respect to RIBL and SHAUD is that it can handle comparisons among
generalizations (i.e. terms that have unbound variables). Hutchinson distance
can handle generalizations by using a language change representation trick map-
ping variables to constants, and Bergmann and Stahl define some special cases
to handle this situation. Notice that this is because both similarity measures
presented in this paper do not make any assumptions about the data other than
assuming a subsumption relation and refinement operators.

Concerning the applicability of our measures to other formalisms, other au-
thors have proposed refinement operators for different subsets of first-order log-
ics or other description logics, such as Laag and Nienhuys-Cheng [14] or Shapiro
[21]. Thus, making our similarity measures applicable to those representation for-
malisms. Moreover, feature terms can represent naturally object oriented data,
making our approach applicable to those representations.

Finally, extracting properties of a term is related to the propositionalization
operation that can map relational terms to flat feature vectors, see [13] for an
overview.

7 Conclusions

In this paper we have presented two similarity measures for relational cases that
can be used for case-based reasoning systems with complex case representations.
Both similarity measures have been presented and evaluated for the feature-term
representation formalism, but can be easily applied to other representation for-
malisms by defining an appropriate subsumption relation and refinement opera-
tors. Moreover, we have evaluated our measures with several relational data-sets
showing very good results.

Compared to other similarity measures, our measures have the advantage
of being independent on the representational formalism of the cases (they can
work with flat feature vectors, trees, graphs, or any other if adequate refinement
operators are available). The down side of the measures presented is that, due
to their generality, might be computationally more expensive than other ad-hoc
similarity measures, and that due to their symbolic nature, they cannot naturally
handle proper comparisons among real numbers.

As part of our future work, we plan to formally evaluate the computational
complexity of the measures and study ways to incorporate natural comparisons
for real-number valued data and evaluate the similarity for other representation
formalisms. Other interesting lines of future work are the combination of induc-
tive learning techniques for generating more informative patterns for a property-
based similarity, and the use of the symbolic similarity and dissimilarity terms
that can be computed by unifying the shared and not shared properties among
two cases for different purposes such as explanation generation and adaptation.
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