
From Non-Clausal to Clausal MinSAT

Chu-Min LI, aFelip MANYÀ, b Joan Ramon SOLER, b and Amanda VIDAL b

a MIS, Université de Picardie, France
b Artificial Intelligence Research Institute, IIIA-CSIC, Spain

Abstract. We tackle the problem of solving MinSAT for multisets of propositional
formulas that are not necessarily in clausal form. Our approach reduces non-clausal
to clausal MinSAT, since this allows us to rely on the much developed clause-based
MinSAT solvers. The main contribution of this paper is the definition of several
transformations of multisets of propositional formulas into multisets of clauses so
that the maximum number of unsatisfied clauses in both multisets is preserved.

Keywords. Minimum satisfiability, clausal form, cost-preserving transformation.

1. Introduction

SAT is the problem of deciding whether there exists an assignment that satisfies a given
(multi)set of propositional formulas. On the other hand, MaxSAT and MinSAT are op-
timization versions of SAT whose goal is to find an assignment that minimizes or max-
imizes the number of unsatisfied formulas, respectively. These problems are signifi-
cant because many practical questions can be solved by first encoding them as a SAT,
MaxSAT or MinSAT problems, and then finding a solution by solving the resulting en-
coding with a SAT, MaxSAT or MinSAT solver. While SAT is used to solve decision
problems, MaxSAT and MinSAT are used to solve optimization problems [2,5].

We can distinguish between clausal SAT, MaxSAT, and MinSAT and non-clausal
SAT, MaxSAT, and MinSAT, respectively. In the clausal case, the input multiset only
contains clauses (i.e., disjunctions of literals). In the non-clausal case, the input multiset
contains propositional formulas that are not necessarily in clausal form.

Many combinatorial problems admit more natural and compact encodings
when represented in non-clausal form. However, the fastest and most robust
SAT/MaxSAT/MinSAT solvers require their input in clausal form. Thus, some kind of
clausal form transformation is needed to solve them. In SAT, there are several algorithms
that transform a multiset of arbitrary propositional formulas into a satisfiability equiv-
alent multiset of clauses [7,9]. Unfortunately, usual clausal form transformations used
in SAT are not valid neither in MaxSAT nor MinSAT. The reason is that they are not
cost-preserving; i.e., they do not preserve the minimum/maximum number of unsatis-
fied formulas between the input and the transformed multiset. It is therefore important
to analyze how the existing SAT clausal form transformations behave for MaxSAT and
MinSAT, as well as to investigate new cost-preserving transformations.

A few approaches to solve the non-clausal MaxSAT problem have been reported
in [1,3,4], including one based on clausal form transformations [3]. To the best of
our knowledge, no clausal form transformations have been defined for MinSAT. The

Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210113

27

only existing approach to solve Non-clausal MinSAT is via its reduction to Non-clausal
MaxSAT [8]. Thus, in this paper, we focus on cost-preserving transformations from non-
clausal to clausal MinSAT. More specifically, we define four transformations that, in
practice, might produce different computational behavior.

2. Preliminaries

Given a set of propositional variables {x1, . . . ,xn}, a literal � is a variable xi or its negation
¬xi, and a clause is a disjunction of literals. A weighted clause is a pair (c,w), where c
is a clause and w, its weight, is a positive integer or infinity. If its weight is infinity, it
is called a hard clause (we omit infinity weights for simplicity); otherwise, it is a soft
clause. A Weighted Partial MinSAT instance is a finite multiset of weighted clauses.
We represent MinSAT instances using multisets instead of sets because repeated clauses
cannot be collapsed into one of such clauses as in SAT. Considering sets might affect the
preservation of the minimum number of unsatisfied clauses.

Let the binary operations ∧,∨ be defined between (multi) sets of formulas as usual,
namely for two multisets A,B and operation � either ∨ or ∧, we let A�B := {a�b : a ∈
A,b ∈ B}. This naturally implies that the operations are associative and distributive over
multisets. Moreover, for a multiset A and a single formula ϕ , we will use the convention
that A �ϕ := A � {ϕ}. Lastly, ∪ or

⋃
will denote the union of sets while � and

⊔
will

denote the union of multisets, so that {a}∪{a}= {a} and {a}�{a}= {a,a}.
A truth assignment or evaluation is a mapping from the variables into {0,1}. We say

it satisfies literal x (¬x) if x evaluates to 1 (0), weighted clause (c,w) if it satisfies a literal
of c, and a multiset of clauses if it satisfies all its clauses. The weight w is interpreted as
the penalty of violating clause c. When all clauses have the same weight, their weights
will be omitted.

The Weighted Partial MaxSAT problem, or WPMaxSAT, for an instance φ , con-
sists in finding an assignment that satisfies the hard clauses and minimizes the sum of
the weights of the unsatisfied soft clauses. The Weighted Partial MinSAT problem, or
WPMinSAT, is to find an assignment that satisfies the hard clauses and maximizes the
sum of the weights of the unsatisfied soft clauses. The most common subproblems of
WPMaxSAT are the following: Weighted MaxSAT (WMaxSAT), which is WPMaxSAT
without hard clauses; Partial MaxSAT (PMaxSAT), which is WPMaxSAT when all the
soft clauses have the same weight, and MaxSAT, which is PMaxSAT without hard
clauses. Similarly, WMinSAT is WPMinSAT without hard clauses; PMinSAT is WPMin-
SAT when all the soft clauses have the same weight, and MinSAT is PMinSAT without
hard clauses.

On the other hand, arbitrary propositional formulas are built in the usual way from
a set of variables by using the binary connectives ∧,∨ and the unary connective ¬. Im-
plication and bi-implication are binary connectives defined from the previous ones, by
letting ϕ → ψ :=¬ϕ ∨ψ and ϕ ↔ ψ := (ϕ → ψ)∧(ψ → ϕ). Propositional formulas are
evaluated by considering the standard semantics of the connectives. When WPMaxSAT
(WPMinSAT), as well as its simpler cases, take as input a multiset of propositional for-
mulas, we refer to this problem as Non-clausal WPMaxSAT (WPMinSAT).

For what concerns this work, given a multiset of formulas A, MinSAT (A) will for-
mally denote the maximum number of unsatisfiable formulas in A.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT28

Any propositional formula can be translated into Conjunctive Normal Form (CNF)
through the following rules, which preserve logical equivalence: double negation elim-
ination, De Morgan’s laws and distributivity of ∨ over ∧. Further simplifications1 are
also applied. This produces a formula in CNF, namely, a conjunction of clauses. In the
sequel, CNF(ϕ) denotes the formula equivalent to ϕ in CNF resulting from the previous
equivalences, so naturally, for any truth-assignment e it holds that e(ϕ) = e(CNF(ϕ)).

When inquiring about the satisfiability of a set of propositional formulas A =
{ϕ1, . . . ,ϕn}, each of the CNF(ϕi) formulas can be split into a set of clauses (simply
removing the conjunctions) to get a set of clauses that will serve as input to a SAT solver.
We will refer to the union of these sets by CNFSAT (A). The satisfiability of CNFSAT (A)
coincides with that of A, i.e., SAT (A) if and only if SAT (CNFSAT (A)). As we show below,
this approach does not serve to solve non-clausal MinSAT or MaxSAT.

Example 2.1. Let A= {(¬x↔ x)∧(¬y↔ y),x∨y} be a multiset of propositional formu-
las. Applying the transformation defined above, we get CNFSAT (A) = {x,¬x,y,¬y,x∨y}.
The evaluation e(x) = e(y) = 0 violates two formulas of A and three clauses of
CNFSAT (A), despite being an optimal MinSAT solution for both A and CNFSAT (A). Thus,
that transformation is not cost preserving and MinSAT (A) 	=MinSAT (CNFSAT (A)). Sim-
ilarly, the evaluation e(x) = e(y) = 1 is an optimal MaxSAT solution for both A and
CNFSAT (A), but violates one formula of A and two clauses of CNFSAT (A).

Example 2.1 shows that the main problem arises when the CNF is split into clauses.
This operation can generate additional clauses that violate the preservation of the max-
imum number of unsatisfied formulas. To overcome this drawback, we propose several
new cost-preserving transformations for MinSAT in the next two sections.

3. Transformation CNFminSATd

We first define a cost-preserving transformation for MinSAT, called CNFminSATd , which
does not add new variables. It has the advantage that it does not expand the solution
space.

We define the partial mapping ∗ : Fm→MS, where Fm stands for arbitrary formulas
(but, as seen below, ∗ will be defined only over two particular families of formulas) and
MS denotes the set of all multisets of clauses, as follows:

(c1 ∧ c2 ∧ . . .∧ cn)
∗ :={c1,(¬c1)

∗ ∨ c2, . . . ,(¬c1)
∗ ∨ (¬c2)

∗ ∨ ...∨ (¬cn−1)
∗ ∨ cn}

(¬(�1 ∨ �2 ∨ . . . �n))
∗ :={¬�1, �1 ∨¬�2, . . . , �1 ∨ �2 ∨ . . .∨ �n−1 ∨¬�n}

for ci denoting clauses and �i denoting literals.

Definition 3.1 (Transformation CNFminSATd). Let A = ANC �AC be a multiset of formulas
of which ANC are not clauses and AC are clauses. CNFminSATd (A) is the multiset of clauses

⊔

ϕ∈ANC

CNF(ϕ)∗ �AC.

1e.g., removing clauses with a literal and its negation, or repeated clauses.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT 29

Example 3.2. Given the multiset A = {¬(¬x1 ∧¬x2)∧ (x3 ∨ x4)} formed by a single
formula ϕ = ¬(¬x1 ∧¬x2)∧ (x3 ∨ x4), we have that CNF(ϕ) = (x1 ∨ x2)∧ (x3 ∨ x4). We
convert it to a cost-preserving multiset of clauses for MinSAT as follows:

CNFminSATd (A) = ((x1 ∨ x2)∧ (x3 ∨ x4))
∗ = {x1 ∨ x2,(¬(x1 ∨ x2))

∗ ∨ (x3 ∨ x4)}=
{x1 ∨ x2,{¬x1,x1 ∨¬x2}∨ (x3 ∨ x4)}=
{x1 ∨ x2,¬x1 ∨ x3 ∨ x4,¬x2 ∨ x3 ∨ x4}.

To prove that transformation CNFminSATd is cost-preserving for MinSAT, we first
study how translation ∗ behaves. Since it is, in an intuitive way, working from the inner-
most level to the outer-most, let us first show the most internal level, and later, how the
full translation works.

Lemma 3.3. For a clause c = �1 ∨ . . .∨�n and a truth assignment e, e(c) = 1 if and only
if all clauses d ∈ (¬c)∗ are evaluated to 1 except for one.

Proof. Since e(c) = 1 there is a minimum index 1 ≤ i0 ≤ n for which e(�i0) = 1. For any
j < i0, since e(� j) = 0, we have that e(�1 ∨ �2 ∨ . . .∨¬� j) ≥ e(¬� j) = 1. Similarly, for
any j > i0, e(�1 ∨ �2 ∨ . . .∨¬� j)≥ e(�i0) = 1.

Lemma 3.4. For any formula φ and any truth-assignment e, it holds that e(CNF(φ))= 0
if and only if there is exactly one clause c in CNF(φ)∗ such that e(c) = 0. Moreover, for
any e, either e satisfies all clauses from CNF(φ)∗ or it satisfies all but one clause.

Proof. Let CNF(φ) = c1 ∧ . . .∧ cn. First, assume that e(CNF(φ)) = 0, and we will see
there is exactly one falsified clause in CNF(φ)∗. e(c1∧ . . .∧cn) = 0 implies i0 = min{i ∈
{1, . . . ,n} : e(ci) = 0} exists. Then, clearly for any j < i0 and any c ∈ (¬c1)

∗ ∨ ...∨
(¬c j−1)

∗ ∨ c j, it holds that e(c) = 1, since by definition of disjuntion of multisets, any
such c is of the form . . .∨ c j.

On the other hand, for j > i0, any clause c ∈ (¬c1)
∗ ∨ ...∨ (¬c j−1)

∗ ∨ c j has a sub-
clause that belongs to (¬ci0)

∗. We prove now that for any such d ∈ (¬ci0)
∗ it also holds

that e(d) = 1, thus implying e(c) = 1 too. Indeed, ci0 = l1∨ . . .∨ ls for some s, so e(ci0) =
0 implies that e(li) = 0 for all 1 ≤ i ≤ s. Since every clause d in ¬(ci0)

∗ is by definition
of the form . . .∨¬l j for 1 ≤ j ≤ s, necessarily e(d)≥ e(¬l j) = 1.

Now, from Lemma 3.3, we know that all clauses from (¬c1)
∗ ∨ ...∨ (¬ci0−1)

∗ ∨ ci0
are satisfied by e except for d1 ∨ . . .∨di0−1 ∨ ci0 from CNF(φ)∗, which is falsified.

On the other hand, to check that if one clause from CNF(φ)∗ is falsified under e then
also CNF(φ) is falsified, we can reason by contraposition. Assume e(CNF(φ)) = 1, so
e(ci) = 1 for each 1 ≤ i ≤ n. Since any clause d from CNF(φ)∗ is of the form . . .∨c j for
some 1 ≤ j ≤ n, it is immediate that all clauses from CNF(φ)∗ are satisfied.

Now, since any evaluation e can either satisfy or falsify CNF(φ), from the cases
above we know e can either satisfy all clauses in CNF(φ)∗, or satisfy all but one clause
from CNF(φ)∗. This concludes the proof.

The previous lemma directly implies that, for any set of formulas A and truth assign-
ment e, it holds that |{φ ∈ A : e(φ) = 0}|= |{φ ∈CNFminSATd (A) : e(φ) = 0}|.

Corollary 3.5. MinSAT (A) = MinSAT (CNFminSATd (A)).

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT30

Proof. To check that MinSAT (A) ≤ MinSAT (CNFminSATd (A)), suppose that
MinSAT (A) = n. Then, there is some truth assignment e such that |{φ ∈ A : e(φ) =
0}| = n. Thus, also |{φ ∈ CNFminSATd (A) : e(φ) = 0}| = n, so the maximum number of
unsatisfied formulas in CNFminSATd (A) is necessarily greater or equal than n.

The analogous reasoning in the other direction proofs MinSAT (CNFminSATd (A)) ≤
MinSAT (A).

Example 3.6. Transformation CNFminSATd , applied to the multiset of formulas A =
{¬(¬x1 ∧ ¬x2) ∧ (x3 ∨ x4)} from Example 3.2, derived the multiset of clauses Φ =
{x1 ∨ x2,¬x1 ∨ x3 ∨ x4,x1 ∨¬x2 ∨ x3 ∨ x4}. Corollary 3.5 guarantees that the maximum
number of unsatisfied formulas in A and Φ is preserved. In fact, for every evaluation e,
the number of formulas unsatisfied by e in A and Φ is the same.

4. Extending the Language and Relying on Partial MinSAT

We now define three cost-preservation transformations for MinSAT that add fresh vari-
ables to the language and rely on the partial MinSAT formalism to express some hard
equivalences between the new variables and the non-clausal formulas of the input mul-
tiset A. We add the new variables yψ for some (sub)formulas ψ appearing in A or in
CNFSAT (A), which will be specified for each translation. The difference among the three
transformations lies in the formulas that receive a new variable and the way we encode
the hard and soft constraints. For a given non-clausal MinSAT problem, the proposed
transformations can generate multisets of clauses whose size ranges from polynomial to
exponential in the length of the input formula. Moreover, the number of fresh variables
can also be substantially different.

In what follows, we will use the following convention. For a set of formulas A and
an arbitrary truth assignment e, we will let e′ to be the modified truth assignment defined
by letting e′(p) = e(p) for all variables p in A, and e′(yψ) = e(ψ) in all other cases.

4.1. Transformation CNFminSATe

Definition 4.1 (Transformation CNFminSATe). Let A = ANC �AC be a multiset of formulas
of which ANC are not a clauses and AC are clauses. Let {yϕ : ϕ ∈ ANC} be a set of fresh
variables not appearing in A. We call CNFminSATe(A) to the partial MinSAT instance
given by

Hard clauses (HC) :=
⋃

ϕ∈ANC

CNFSAT (¬ϕ ∨ yϕ), Soft clauses (SC) :=
⊔

ϕ∈ANC

{yϕ}∪AC

Notice that the formulas ϕ ∈ ANC occur negated in CNFSAT (¬ϕ ∨ yϕ). This is rele-
vant because the formulas ϕ occur with positive polarity in transformation CNFminSATd .
This implies that we could avoid the combinatorial explosion due to the application of
distributivity of ∨ over ∧ if the most appropriate transformation is chosen for each for-
mula.

Example 4.2. For the multiset A = {¬(¬x1 ∧¬x2)∧ (x3 ∨ x4)} of Example 3.2, we have
that ¬ϕ ∨ yϕ = ¬(¬(¬x1 ∧¬x2)∧ (x3 ∨ x4))∨ yϕ . The application of Transformation
CNFminSATe derives the following partial MinSAT instance:

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT 31

Hard clauses: ¬x1 ∨¬x3 ∨ yϕ ¬x1 ∨¬x4 ∨ yϕ ¬x2 ∨¬x3 ∨ yϕ ¬x2 ∨¬x4 ∨ yϕ
Soft clauses: yϕ

In the proofs below for checking that the previous translation is cost preserving, with
the objective of lightening the notation, we will assume AC is empty, since it is clear it
does not affect the calculations.

Lemma 4.3. Let A be a multiset of formulas and let e be a truth assignment such that
e(c) = 1 for all c ∈ HC(CNFminSATe(A)). Then,

|{c ∈ SC(CNFminSATe(A)) : e(c) = 0}| ≤ |{ϕ ∈ A : e(ϕ) = 0}|.

Proof. By assumption e(c) = 1 for all c ∈CNFSAT (¬ϕ ∨yϕ) for each ϕ ∈ A. Since for an
arbitrary formula ψ the conjunction of all clauses CNFSAT (ψ) equals ψ , it is clear that
e(¬ϕ ∨ yϕ) = 1 for all ϕ ∈ A, implying that e(ϕ) ≤ e(yϕ). Then, for each ϕ ∈ A such
that e(yϕ) = 0, necessarily e(ϕ) = 0.

On the other hand, for any set of formulas A and evaluation e, we can prove that the
evaluation e′ defined at the start of Section 4 is such that the number of falsified formulas
of A under e and that of falsified soft clauses in CNFminSATe(A) under e′ is the same.

Lemma 4.4. Let A be a multiset of formulas and let e be an arbitrary truth assignment.
Then, e′ satisfies all hard clauses in CNFminSATe(A) and

|{φ ∈ A : e(φ) = 0}|= |{c ∈ SC(CNFminSATe(A)) : e′(c) = 0}|.

Proof. Observe that the truth assignment e′ is defined in such a way that it preserves
evaluation for all variables in A (and so, for all formulas in A), and where e′(yϕ) = e(ϕ).
Then, for any ϕ ∈ A we have that e′(¬ϕ ∨ yϕ) = e′(¬ϕ)∨ e′(yϕ) = e(¬ϕ)∨ e(ϕ) = 1.
Thus, all hard clauses in CNFminSATe(A) hold.

For what concerns the second statement of the lemma, we only need to check that
|{φ ∈ A : e(φ) = 0}| = |{yφ ∈ SC(CNFminSATe(A)) : e′(yφ) = 0}|. This is immediate,
since e′(yφ) = e(φ) by definition.

Corollary 4.5. MinSAT (A) = MinSAT (CNFminSATe(A)).

Proof. To prove ≤ observe that MinSAT (A) = n implies there is some truth assign-
ment e for which |{φ ∈ A : e(φ) = 0}| = n. Then, Lemma 4.4 implies that |{c ∈
SC(CNFminSATe(A)) : e′(c) = 0}| = n too. Since MinSAT (CNFminSATe(A)) is the maxi-
mum number of falsifiable clauses, we get that, in particular, MinSAT (CNFminSATe(A))≥
n too, so MinSAT (A)≤ MinSAT (CNFminSATe(A)).

Symmetrically, to prove ≥ observe that, by definition, MinSAT (CNFminSATe(A)) =
|{c ∈ SC(CNFminSATe(A)) : g(c) = 0}| for a certain truth assignment g that moreover
satisfies all hard clauses in CNFminSATe(A). Applying Lemma 4.3 we know that, for
such g, it holds that |{c ∈ SC(CNFminSATe(A)) : g(c) = 0}| ≤ |{ϕ ∈ A : g(ϕ) = 0}|.
Thus, |{ϕ ∈ A : g(ϕ) = 0}| ≥ n. Again, since MinSAT (A) is the maximum of falsifi-
able formulas from A, in particular MinSAT (A) ≥ n too, meaning that MinSAT (A) ≥
MinSAT (CNFminSATe(A)), concluding the proof.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT32

4.2. Transformation CNFminSATi

Definition 4.6 (Transformation CNFminSATi). Let A = ANC �AC be a multiset of formulas
of which ANC are not clauses and AC are clauses. Let {yc : ϕ ∈ ANC,c ∈CNFSAT (ϕ)} be
a set of fresh variables not appearing in A.

We call CNFminSATi(A) to the partial MinSAT instance given by

Hard clauses (HC) :=
⋃

ϕ∈ANC

⋃

c∈CNFSAT (ϕ)
{¬c∨ yc}

Soft clauses (SC) :=
⊔

ϕ∈ANC

(
∧

c∈CNFSAT (ϕ)
yc)

∗

Example 4.7. For the multiset A = {(¬x1 → x2) ∧ (x1 → ¬x2)}, transformation
CNFminSATi(A) derives the following partial MinSAT instance:

Hard clauses: ¬x1 ∨ yc1 ¬x2 ∨ yc1 x1 ∨ yc2 x2 ∨ yc2
Soft clauses: yc1 ¬yc1 ∨ yc2

Observe that CNFminSATi(A) associates one fresh variable with every clause of
CNFSAT (ϕ). If only one fresh variable is associated with each CNF, we would have as
hard clauses ¬x1∨yc1 ,¬x2∨yc1 ,x1∨yc1 ,x2∨yc1 , and we would get an infeasible solution
if yc1 is unsatisfied because we would detect a contradiction in the hard part.

If we consider the multiset A′ = {(¬x1 → x2),(x1 →¬x2)} containing two formulas,
transformation CNFminSATi(A) derives the following partial MinSAT instance:

Hard clauses: ¬x1 ∨ yc1 ¬x2 ∨ yc1 x1 ∨ yc2 x2 ∨ yc2
Soft clauses: yc1 yc2

Despite the similarity between A and A′, the maximum number of unsatisfied clauses is 1
in A and 2 in A′. They have the same hard part, but the soft clauses are different.

Similarly to what we did in the previous subsection, we will prove the cost preser-
vation assuming AC = /0. We prove an analogous version of Lemma 4.3, but resorting to
Lemma 3.4 to keep track of the behavior of the new soft clauses.

Lemma 4.8. Let A be a multiset of formulas and let e be a truth assignment such that
e(c) = 1 for all c ∈ HC(CNFminSATi(A)). Then,

|{c ∈ SC(CNFminSATi(A)) : e(c) = 0}| ≤ |{ϕ ∈ A : e(ϕ) = 0}|.

Proof. By assumption e(¬c∨ yc) for all c ∈CNFSAT (ϕ) with ϕ ∈ A. Thus, e(c)≤ e(yc)
for all such c and yc. Moreover, observe that each formula of the form

∧
c∈CNFSAT (ϕ) yc is

already in conjunctive normal form. Thus, by Lemma 3.4, e(
∧

c∈CNFSAT (ϕ) yc) = 0 if and
only if exactly one clause from (

∧
c∈CNFSAT (ϕ) yc)

∗ is falsified, and otherwise all clauses
in (

∧
c∈CNFSAT (ϕ) yc)

∗ are satisfied by e.
By definition,

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT 33

|{c ∈ SC(CNFminSATi(A)) : e(c) = 0}|= ∑
ϕ∈A

|{d ∈ (
∧

c∈CNFSAT (ϕ)
yc)

∗ : e(d) = 0}|.

The previous observation implies that |{d ∈ (
∧

c∈CNFSAT (ϕ) yc)
∗ : e(d) = 0}| ≤ 1. More-

over, |{d ∈ (
∧

c∈CNFSAT (ϕ) yc)
∗ : e(d) = 0}|= 1 if and only if e(

∧
c∈CNFSAT (ϕ) yc) = 0, and

so, there is at least some c ∈ CNFSAT (ϕ) for which e(yc) = 0 too. Since we saw above
that e(c)≤ e(yc), we have that e(c) = 0, making e(ϕ) = 0 too.

We will see in the next lemma the analogous to Lemma 4.4. Indeed, we can easily
check that the number of unsatisfied formulas of A under e coincides with the number of
unsatisfied soft clauses in CNFminSATi(A) under e′ (for e′ as defined in the beginning of
Section 4). It will only be necessary to rely on Lemma 3.4 when necessary.

Lemma 4.9. Let A be a multiset of formulas and let e be a truth assignment.
Then, e′ satisfies all hard clauses in CNFminSATi(A) and |{φ ∈ A : e(φ) = 0}| = |{c ∈
SC(CNFminSATi(A)) : e′(c) = 0}|.

Proof. Observe that the truth assignment e′ is defined in such a way that it preserves
evaluation for all variables in A (and so, for all formulas in A), and where e′(yc) = e(c)
for all c∈CNFSAT (ϕ) for ϕ ∈A. Then, for any ϕ ∈A we have that e′(¬c∨yϕ) = e′(¬c)∨
e′(yc) = e(¬c)∨ e(c) = 1. Thus, all hard clauses in CNFminSATi(A) hold.

For what concerns the second statement of the lemma, we only need to check that

|{φ ∈ A : e(φ) = 0}|= |{d ∈ (
∧

c∈CNFSAT (φ)
yc)

∗ : φ ∈ A,e′(d) = 0}|.

By Lemma 3.4, for each φ ∈ A there are two cases:

• |{d ∈ (
∧

c∈CNFSAT (φ) yc)
∗ : e′(d) = 0}| = 1, which happens if and only if

e′(
∧

c∈CNFSAT (φ) yc) = 0, and so, since e′(yc) = e(c) for each such c, if and only if
e(φ) = 0 too, or

• |{d ∈ (
∧

c∈CNFSAT (φ) yc)
∗ : e′(d) = 0}|= 0, which implies, following the same rea-

soning, that e(φ) = 1.

Corollary 4.10. MinSAT (A) = MinSAT (CNFminSATe(A))

Proof. To prove ≤ observe that MinSAT (A) = n implies there is some truth assign-
ment e for which |{φ ∈ A : e(φ) = 0}| = n. Then Lemma 4.4 implies that |{c ∈
SC(CNFminSATe(A)) : e′(c) = 0}| = n too. Since MinSAT (CNFminSATe(A)) is the maxi-
mum number of falsifiable clauses, we get that, in particular, MinSAT (CNFminSATe(A))≥
n too, so MinSAT (A)≤ MinSAT (CNFminSATe(A)).

Symmetrically, to prove ≥ observe that, by definition, MinSAT (CNFminSATe(A)) =
|{c ∈ SC(CNFminSATe(A)) : e(c) = 0}| for a certain truth assignment e that moreover
satisfies all hard clauses in CNFminSATe(A). Applying Lemma 4.3 we know that, for
such g, it holds that |{c ∈ SC(CNFminSATe(A)) : g(c) = 0}| ≤ |{ϕ ∈ A : g(ϕ) = 0}|.
Thus, |{ϕ ∈ A : g(ϕ) = 0}| ≥ n. Again, since MinSAT (A) is the maximum of falsifi-
able formulas from A, in particular MinSAT (A) ≥ n too, meaning that MinSAT (A) ≥
MinSAT (CNFminSATe(A)), concluding the proof.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT34

4.3. Transformation CNFminSATt

To avoid the generation of a number of clauses that can be exponential in the number
of input formulas due to the application of distributivity when deriving the CNF, we can
adapt the Tseitin transformation to MinSAT. We begin by recalling the Tseitin transfor-
mation for SAT, and then point out how it is adapted to MinSAT.

For each formula ϕ , let us denote by SFm(ϕ) the set of subformulas of ϕ . Then, for
each ψ ∈ SFm(ϕ) consider a new variable yψ , and for each such formula ψ we define
the set of clauses De f (ψ) by2

De f (p) := /0 for p propositonal variable,

De f (ψ �χ) :=CNFSAT (yψ�χ ↔ yψ � yχ) for � ∈ {∨,∧},
De f (¬ψ) :=CNFSAT (y¬ψ ↔¬yψ)

Recall that all connectives different from ∧,∨,¬ are simply wrapping some expression
involving these three, so any formula ϕ is written in fact in the previous language and so,
De f is correctly defined for all formulas. It is clear that the above definitions generate
clauses with at most 3 literals each. Then, for a formula ϕ , its Tseitin SAT transformation
T (ϕ) is the set of clauses T (ϕ) := {yϕ}∪⋃

ψ∈SFm(ϕ) De f (ψ).
It is rather standard to check that SAT (ϕ) if and only if SAT (T (ϕ)), and thus, also

for a set of formulas A, we have that SAT (A) if and only if SAT (T (A)), where, as usual,
by T (A) we denote the set

⋃
ϕ∈A T (ϕ).

To use this transformation in order to preserve MinSAT , it is only necessary to do
a slight modification to the previous transformation and rely on partial MinSAT . Let us
consider the transformation T−(ϕ) given by

T−(ϕ) :=
⋃

ψ∈SFm(ϕ)
De f (ψ)

Observe this is simply removing from the resulting set of clauses the outermost variable,
which is the one that, at SAT, is imposing that the corresponding formula is satisfied.
Similarly to CNFminSATe , we define the transformation CNFminSATt .

Definition 4.11 (Transformation CNFminSATt). Let A = ANC �AC be a multiset of formu-
las of which ANC are not clauses and AC are clauses. We call CNFminSATt (A) to the partial
MinSAT instance given by

Hard clauses (HC) :=
⋃

ϕ∈ANC

T−(ϕ), Soft clauses (SC) :=
⊔

ϕ∈ANC

{yϕ}�AC

Example 4.12. Given the multiset of formulas A = {x1 ∧ x2,x3 ∧ x4}, CNFminSATt (A)
derives the following partial MinSAT instance:

Hard clauses: ¬y1 ∨ x1 ¬y1 ∨ x2 y1 ∨¬x1 ∨¬x2 ¬y2 ∨ x3 ¬y2 ∨ x4 y2 ∨¬x3 ∨¬x4
Soft clauses: y1 y2

2To simplify the notation, we do not distinguish between propositional variables and more complex formulas.
Thus, a variable p will receive a fresh variable yp in the new language, and p will no longer appear in the
translation. The definition of De f over propositional variables is also included to lighten notation later on.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT 35

Lemma 4.13. MinSAT (A) = MinSAT (CNFminSATt (A))

Proof. To prove ≤ observe that MinSAT (A) = n implies there is some truth assignment
e for which |{φ ∈ A : e(φ) = 0}| = n. As we did in Lemma 4.4 for CNFminSATe , we can
easily check that |{c ∈ SC(CNFminSATt (A)) : e′(c) = 0}|= n too. Indeed, since e′(yψ) =
e(ψ) for all subformula ψ of formulas in A, clearly all hard clauses are satisfied under
e′. Moreover, since the multiset of soft clauses is formed exactly by the singletons yφ for
each φ ∈ A (as a multiset), then necessarily |{c ∈ SC(CNFminSATt (A)) : e′(c) = 0}|= n ≤
MinSAT (CNFminSATt (A)), since MinSAT is the maximum number of falsifiable formulas.
Thus, MinSAT (A)≤ MinSAT (CNFminSATt (A)).

On the other hand, similarly again to the case for CNFminSATe , to prove ≥ observe
that, by definition, MinSAT (CNFminSATt (A)) = |{c ∈ SC(CNFminSATt (A)) : g(c) = 0}| for
a certain truth assignment g that moreover satisfies all hard clauses in CNFminSATt (A).
Let us modify g to cope with the original variables in A, simply by letting g′(p) = g(yp)
for all propositional variables p appearing in A. Then, as it happens in the usual Tseitin
transformation, is immediate that g′(φ) = g(yφ) for all φ ∈ A. Thus, we have that |{c ∈
SC(CNFminSATt (A)) : g(c) = 0}|= |{φ ∈ A : g′(φ) = 0}| ≤ MinSAT (A).

5. Conclusions and Future Work

We proposed the first approach to solve non-clausal MinSAT via its reduction to clausal
MinSAT. We defined four clausal transformations (CNFminSATd , CNFminSATe , CNFminSATi

and CNFminSATt) and proved its correctness. The most immediate future work is to
conduct an empirical comparison and extend the results to finite-domain variables [6].

Acknowledgements: Research partially supported by the Spanish State Research Agency
(AEI) project PID2019-111544GB-C2, and CSIC’s i-Link project LINKC20018.

References

[1] G. Fiorino. New tableau characterizations for non-clausal MaxSAT problem. Logic Journal of the IGPL,
2021.

[2] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints. In A. Biere, H. van Maaren, and T. Walsh,
editors, Handbook of Satisfiability, pages 613–631. IOS Press, 2009.

[3] C. M. Li, F. Manyà, and J. R. Soler. Clausal form transformation in MaxSAT. In Proceedings of the 49th
IEEE International Symposium on Multiple-Valued Logic, ISMVL, pages 132–137, 2019.

[4] C. M. Li, F. Manyà, and J. R. Soler. A tableau calculus for non-clausal maximum satisfiability. In
Proceedings of the 28th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX, pages 58–73, 2019.

[5] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Optimizing with minimum satisfiability. Artificial Intelligence,
190:32–44, 2012.

[6] F. Manyà. The 2-SAT problem in signed CNF formulas. Multiple-Valued Logic. An International Journal,
5(4):307–325, 2000.

[7] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of Symbolic
Computation, 2:293–304, 1986.

[8] J. R. Soler. New Solving Techniques for Maximum and Minimum Satisfiability. PhD thesis, UAB, 2021.
[9] G. Tseitin. Studies in Constructive Mathematics and Mathematical Logic, Part II, chapter On the Com-

plexity of Derivations in the Propositional Calculus, pages 115–125. Steklov Mathematical Inst., 1968.

C.-M. Li et al. / From Non-Clausal to Clausal MinSAT36

