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Abstract. Following the guidelines proposed by Hájek in [1], some pro-
posals of research on Fuzzy Description Logics (FDLs) were given in
[2]. One of them consists in the definition and development of a family
of description languages, each one having as underlying fuzzy logic the
expansion with an involutive negation and truth constants of the logic
defined by a divisible finite t-norm. A general framework for finitely va-
lued FDLs was presented in [3]. In the present paper we study the family
of languages ALC �Lc

n
based on the finitely valued �Lukasiewicz logics with

truth constants. In addition, we provide an interpretation of these FDLs
into fuzzy multi-modal systems. We also deal with the corresponding
reasoning tasks and their relationships, and we report some results on
decidability and computational complexity.

Keywords: Description Logics, Finitely Valued Description Logics,
n-graded �Lukasiewicz Description Logics.

1 Introduction

Description Logics (DLs) are knowledge representation languages particularly
suited to specify ontologies, to create knowledge bases and to reason with them.
A full reference manual of the field is [4]. The vocabulary of DLs consists of
symbols for individuals, concepts, which denote sets of individuals, and roles,
which denote binary relations among individuals. From atomic concepts and roles
and by means of constructors, DL systems allow to build complex descriptions
of both concepts and roles. These complex descriptions are used to describe a
domain through a knowledge base (KB) containing the definitions of relevant
domain concepts or some hierarchical relationships among them (Terminological
Box or TBox) and a specification of properties of the domain instances (Asser-
tional Box or ABox). One of the main issues of DLs is the fact that the semantics
is given in a Tarski-style presentation and the statements in both TBox and
ABox can be identified with formulas in first-order logic, and hence we can use
reasoning to obtain implicit knowledge from the explicit knowledge in the KB.
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Nevertheless, the knowledge used in real applications is commonly imperfect
and has to address situations of uncertainty, imprecision and vagueness. From
a real world viewpoint, vague concepts like “patient with a high fever” and
“person living near Paris” have to be considered. A natural generalization to
cope with vague concepts and relations consists in interpreting DL concepts and
roles as fuzzy sets and fuzzy relations, respectively. The initial proposals for
Fuzzy Description Logics (FDLs) have been made (see [5,6,7]) mainly based on
the earlier approaches to fuzzy logic. In recent times, fuzzy logics has evolved
into what is known as Mathematical Fuzzy Logic (as a general reference for
the field see [8]). The starting point is the book Metamathematics of Fuzzy
Logics [9] where Hájek shows the connection between fuzzy logic systems and
many-valued residuated logics based on continuous t-norms. Later on, in the
paper Making fuzzy description logic more general [1], Hájek proposes to deal
with FDLs taking as basis t-norm based fuzzy logics with the aim of enriching
the expressive possibilities in FDLs. Following this line, we have developed the
topic in [2,3]. Since real applications are mainly made using a finite number
of values, we are interested in FDLs over finitely valued fuzzy logics. In the
present paper we study FDLs based on finitely valued �Lukasiewiz logics. In our
proposal, description languages are restricted to constructors defined from logical
connectives and the fuzzy versions of universal and existential quantifiers. We
study the languages, reasoning tasks and their relationships, and decidability
and complexity. Special mention is due to the modal translation section that, as
far as we know, it is not already considered in the literature for the fuzzy case.
Finally, let us mention the recent papers [10,11], which contain results related
to our work.

2 The Finitely Valued �Lukasiewicz Logic with Truth
Constants

Given a positive integer n ≥ 2, the algebra �Ln is the structure 〈Ln,⊗, N, 0〉,
where Ln = {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}, ⊗ is the �Lukasiewicz t-norm defined as

a⊗ b := max{0, a+ b− 1}, for each a, b ∈ Ln, and N is the negation associated
to �Lukasiewicz t-norm, defined as N(a) = 1 − a, for each a ∈ Ln.1 Further
operations are defined as follows:

a⇒ b := N(a⊗N(b)) min{0, 1 − a+ b}
a ∧ b := a⊗ (a⇒ b) min{a, b}
a ∨ b := (a ⇒ b) ⇒ b max{a, b}
a⊕ b := N(N(a) ⊗N(b)) min{1, a+ b}

1 := N(0) 1

Let us consider the set of formulas built from a countable set of proposi-
tional variables Φ = {pj : j ∈ J} using the connectives & (strong conjunction),
∼ (involutive negation) and 0̄ (falsity truth constant). A propositional evalua-
tion is a map e : Φ → Ln which is extended to all 〈&,∼, 0̄〉-formulas by set-
ting e(ϕ&ψ) = e(ϕ) ⊗ e(ψ), e(∼ϕ) = N(e(ϕ)), and e(0̄) = 0. The n-valued

1 In fact this is the unique involutive negation definable in Ln.
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�Lukasiewicz logic, which we denote by Λ(�Ln) is obtained by putting for all sets
Γ ∪ {ϕ} of 〈&,∼, 0̄〉-formulas, Γ |=�Ln

ϕ if, and only if, for every evaluation e,
if e[Γ ] ⊆ {1}, then e(ϕ) = 1. As defined connectives we have implication, bi-
conditional, additive conjunction, additive disjunction, strong disjunction, and
true truth constant : ϕ → ψ := ∼(ϕ&∼ψ), ϕ ↔ ψ := (ϕ → ψ)&(ψ → ϕ),
ϕ ∧ ψ := ϕ&(ϕ→ ψ), ϕ ∨ ψ := ∼(∼ϕ ∧ ∼ψ), ϕ � ψ := ∼(∼ϕ&∼ψ), 1̄ := ∼ 0̄.
It is well known that this logic is finitely axiomatizable having Modus Ponens
as the unique inference rule (cf. [12, p.171]; see also [13]). The logic Λ(�Lc

n) is
the expansion of Λ(�Ln) with truth constants. It is obtained by adding to the
language n canonical constants: one truth constant r̄ for each r ∈ Ln\{0}; the
semantics of the constant r̄ is its canonical value r. Λ(�Lc

n) is finitely axioma-
tizable from an axiomatization of Λ(�Ln) by adding the so-called book-keeping
axioms:

(bk1) r̄&s̄↔ r ⊗ s

(bk2) ∼ r̄ ↔ N(r)

The predicate logic Λ(�Lc
n)∀ is defined from Λ(�Lc

n) as it is done for the fuzzy
predicate logics introduced in [9, Chapter 5]. Let Σ = 〈C,P〉 be a first order
signature (without functional symbols), C being a countable set of object cons-
tants and P a countable set of predicate symbols, each one with arity k ≥ 1.
An �Lc

n-interpretation for Σ is a tuple M = 〈M, {aM : a ∈ C}, {PM : P ∈ P} 〉,
where 1) M is a non-empty set; 2) for each object constant a ∈ C, aM is an
element of M ; and 3) for each k-ary predicate symbol P , PM is an n-graded
k-ary relation defined on M , that is, a function PM : Mk → Ln. Given an
interpretation M, a map v assigning an element v(x) ∈ M to each variable x
is called an assignation of the variables in M. Given M and v, the value of a
term t in M, denoted by ‖t‖M,v, is defined as v(x) when t is a variable x, and

as aM when t is a constant a. In order to emphasize that a formula α has its
free variables in {x1, . . . , xn}, we will denote it by α(x1, . . . , xn). Let v be an
assignation such that v(x1) = b1, . . . , v(xn) = bn. The truth value in M over �Lc

n

of the predicate formula ϕ(x1, . . . , xn) for the assignation v, denoted by ‖ϕ‖M,v

or by ‖ϕ(b1, . . . , bn)‖M, is a value in Ln defined inductively as follows:

PM(‖t1‖M,v, . . . , ‖tk‖M,v), if ϕ = P (t1, . . . , tk);

r, if ϕ = r̄ ∈ {0̄, r̄1, . . . , r̄n−1};
1 − ‖α‖M,v, if ϕ = ∼α;

‖α‖M,v ⊗ ‖β‖M,v, if ϕ = α&β;

inf {‖α(a, b1, . . . , bn)‖M : a ∈M}, if ϕ = (∀x)α(x, x1 , . . . , xn).

A �Lc
n-interpretation M is an �Lc

n-model, or simply a model, of a set of formulas
Γ if, for each ϕ ∈ Γ , and each assignation v, ‖ϕ‖M,v = 1. The logic Λ(�Lc

n)∀ is

defined by a finite set of axioms. Moreover, we have the following result:2

Theorem 1. The logic Λ(�Lc
n)∀ is strongly complete with respect to interpreta-

tions over �Lc
n.

2 A direct proof of this theorem is easy since the unique subdirectly irreducible algebra
of the variety corresponding to Λ(�Lc

n) is �Lc
n.
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3 The n-Valued �Lukasiewicz Description Logics ALC �Lc
n

Description Logics based on finitely valued �Lukasiewicz logics are built in the
same way as in the classical case, but now we need a set of constructors that
corresponds to the logical symbols existing in the setting of the first order logics
Λ(�Lc

n)∀ (cf. [3]).3 To do so we introduce some symbols for new propositional
constructors: � for strong intersection; � for strong union; � for residuated
implication, and a constant r for every r ∈ Ln. Moreover, in our setting, we
have the classical � and � as defined constructors. It is worth pointing out that
ALC-like DLs based on n-valued �Lukasiewicz logics are analogous to the classical
ALC in the sense that the basic relations between connectives remain true:

– complementation is involutive,
– both pairs of weak and strong intersection and union are dual w.r.t. comple-

mentation,
– the universal and the existential quantifications are inter-definable by means

of complementation,
– implication is definable from complementation and strong intersection or

from complementation and strong union.

Notice that the above relations are not satisfied in other finitely valued t-norm
based predicate fuzzy logics.

Definition 1 (The attributive languages ALC �Lc
n
). Let us fix a description

signature D = 〈NI , NA, NR〉, that is, a set of individual names NI, a set NA of
concept names (the atomic concepts), and a set NR of role names (the atomic
roles). An 〈ALC �Lc

n
,D〉-description, or simply an ALC �Lc

n
-description, is induc-

tively defined in accordance with the following syntactic rules (we use the symbols
C,C1, C2 as meta-variables for descriptions of concepts):

C,C1, C2 � A | (atomic concept)
⊥ | (empty description)
� | (universal description)
r | (constant description)

¬C | (strong complementary concept) (C)
C1 � C2 | (concept strong union) (U)
C1 � C2 | (concept strong intersection)

∀R.C | (universal quantification)
∃R.C | (existential quantification) (E)

R | (atomic role)

Further constructors are defined as follows:

C1 � C2 := ¬(C1 � ¬C2) (residuated implication)
C1 � C2 := C1 � (C1 � C2) (weak intersection)
C1 � C2 := ¬(¬C1 � ¬C2) (weak union)

3 In [3] a new hierarchy of attributive languages adapted to the behavior of the con-
nectives in the fuzzy setting is proposed.
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The notion of instance of a description allows us to read description formulas
of a given description signature D as predicate formulas of Λ(�Lc

n)∀ as it is done
in Definition 2 following Hajék’s paper [1]. From this notion, we can define the
truth value of a description formula as the truth value of a first order formula.

Definition 2 (Instance of a description). Given a description signature D =
〈NI , NA, NR〉, we define the first order signature ΣD = 〈CD,PD〉, where CD = NI

and PD = NA ∪NR. We read each individual name in NI as an object constant,
each atomic concept in NA as a unary predicate symbol, and each atomic role
in NR as a binary predicate symbol. We define as instances of an 〈ALC �Ln

,D〉-
description the following formulas of Λ(�Lc

n)∀:

– The instance of a truth constant is defined as 0̄ for ⊥; 1̄ for �; and r̄ for r.
– Given a term t and a concept D, the instance D(t) of D is defined as

A(t) if D is an atomic concept A,
∼C(t) if D = ¬C,
C1(t) � C2(t) if D = C1 � C2,
C1(t)&C2(t) if D = C1 � C2,
(∀y)(R(t, y) → C(y)) if D = ∀R.C,
(∃y)(R(t, y)&C(y)) if D = ∃R.C.

– An instance of an atomic role R is any atomic first order formula R(t1, t2),
where t1 and t2 are terms.

We can define the consequence relation |=ALC �Lc
n

as the restriction of the conse-

quence relation of the logic Λ(�Lc
n)∀ to instances of ALC �Lc

n
-descriptions.

4 ALC �Lc
n

and Modal Finite-Valued �Lukasiewicz Logics

It is known that there is a translation between classical ALC and multi-modal
logical systems (cf. [4, Chapter 4]). In this section we show that a similar transla-
tion is also possible between ALC �Lc

n
and multi-modal finite-valued �Lukasiewicz

logics with truth constants.4 The language of each one of these multi-modal
systems, denoted by μm, is obtained by fixing a natural number m and expan-
ding the language of Λ(�Lc

n) with m unary connectives �1, . . . ,�m (m necessity
operators).

Definition 3 (Kripke m-frames and m-models). An n-valued Kripke m-
frame is a tuple F = 〈W,R1, . . . , Rm〉, where W is a non-empty set (the set of
worlds) and R1, . . . , Rm are binary relations (the accessibility relations) valued
in Ln. The Kripke frame is said to be crisp if the range of the relations Rk

is included in {0, 1}. The class of all n-valued m-frames will be denoted by Fr
and the class of crisp m-frames by CFr. A Kripke 〈�Lc

n,m〉-model is a pair M =
〈F, V 〉, where F is an n-valued Kripke m-frame and V is a valuation assigning

4 Modal finite-valued �Lukasiewicz logics –with and without truth constants– have been
studied in [14].
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to each variable in Φ = {pj : j ∈ J} and each world in W a value in Ln. The
map V can be uniquely extended to a map, which we also denote by V , assigning
an element of Ln to each pair formed by a μm-formula ϕ and a world w in such
a way that:

– V (ϕ&ψ,w) = V (ϕ,w) ⊗ V (ψ,w), V (∼ϕ,w) = 1 − V (ϕ,w), V (0̄, w) = 0;
– for each canonical constant āi, i ∈ {1, . . . , n− 1}, V (āi, w) = ai;
– for each k, 1 ≤ k ≤ m, V (�kϕ,w) = inf {Rk(w,w′) ⇒ V (ϕ,w′) : w′ ∈W}.

Note that since the algebra of values is finite, we have that this infimum is always
a minimum. Therefore, we are sure that we can compute the value of formulas
with �k. For each operator �k, an operator of possibility is defined as follows:
♦kϕ := ∼�k ∼ϕ. According with this definition it is easy to see that:

V (♦kϕ,w) = sup {Rk(w,w′) ⊗ V (ϕ,w′) : w′ ∈ W}.

Definition 4 (Validity, the set Λ(K, �Lc
n)). Let M = 〈W, r1, . . . , rm, V 〉 be a

〈�Lc
n,m〉-model. We will say that w ∈ W satisfies a formula ϕ in M whenever

V (ϕ,w) = 1; then we write M, w |=1 ϕ. And we write M |=1 ϕ whenever
M, w |=1 ϕ for every w ∈W . Then we say that ϕ is valid in M. We say that ϕ
is valid in the frame F when ϕ is valid in any Kripke model based on F. Then
we write F |=1 ϕ. Given a class K of frames, we write K |=1 ϕ to mean that ϕ is
valid in all frames in this class. The set of all the formulas that are valid in all
the frames of a class K will be denoted by Λ(K, �Lc

n).5

Definition 5 (The standard translation in the �Lc
n-valued framework).

Fix a positive natural number m and let us consider the propositional multi-
modal language with constants μm. Let Φ = {pj : j ∈ J} be a countable set of
propositional letters. Let Lµm(Φ) be the first order language which has a unary
predicate Pj for each propositional letter pj ∈ Φ, and a binary relation symbol
Rk for every necessity operator �k from μm. Let x be a first order variable.
We define the standard translation τx from μm-formulas to Lµm(Φ)-formulas as
follows:

τx(pj) = Pj(x), for each j ∈ J ,
τx(ϕ&ψ) = τx(ϕ) & τx(ψ),
τx(∼ϕ) = ∼ τx(ϕ),
τx(�kϕ) = (∀y)(Rk(x, y) → τy(ϕ)), 1 ≤ k ≤ m,

τx(0̄) = 0̄,
τx(āi) = āi, 1 ≤ i ≤ n− 1.

Proposition 1. Let M = 〈W, r1, . . . , rm, V 〉 be a 〈�Lc
n,m〉-model. From M we

define the Lµm(Φ)-interpretation IM = 〈W, (P IM
j )j∈J , R

IM
1 , . . . , RIM

m 〉, where

P IM
j : W → Ln such that P IM

j (w) = V (pj , w), and RIM

k = rk. Then:

1. For every μm-formula ϕ and w ∈W , ‖τx(ϕ)(w)‖IM
= V (ϕ,w).

2. For every w ∈ W , M, w |=1 ϕ iff ‖τx(ϕ)(w)‖IM
= 1.

3. M |=1 ϕ iff ‖(∀x) τx(ϕ)‖IM
= 1.

5 In [14, Section 4.2] finite axiomatizations for Λ(K, �Lc
n) are given when K ∈ {Fr,CFr}.
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Given a description signature D with NA = {A1, A2, . . .} as the set of atomic
concepts, and NR = {R1, . . . , Rm} as the set of atomic roles, the corresponding
language ALC �Lc

n
can be seen as a propositional language built from the concept

names A ∈ NA (seen as propositional letters) using � as binary connective,
the unary connective ¬, a unary connective denoted by ∀R. for every R ∈ NR,
and the constants ⊥, r1, . . . , rn−1. We have an isomorphism f between the set
of ALC �Lc

n
-formulas built from the generators {A1, A2, . . .} and the set of μm-

formulas generated by a set of propositional letters {pj : j ∈ J} with the same
cardinality as NA:

f(Aj) = pj , for each j ∈ J ,
f(C �D) = f(C)&f(D),

f(¬C) = ∼ f(C),
f(∀Rk.C) = �kf(C), 1 ≤ k ≤ m,

f(⊥) = 0̄,
f(ri) = āi, 1 ≤ i ≤ n− 1.

This isomorphism is a preserving translation in the sense stated in the following
proposition.

Proposition 2. Let f be as above and let us consider the first order signature
L(D) = 〈(Aj)j∈J , R1, . . . , Rm〉 given by the description signature D = 〈NA, NR〉.
Let I = 〈W, (AI

j )j∈J , R
I
1 , . . . , R

I
m〉 be an L(D)-interpretation. From I we define

a Kripke 〈�Lc
n,m〉-model MI = 〈W, rMI

1 , . . . , rMI
m , VMI 〉, where rMI

j = RI
j , and

VMI : Φ×W → Ln such that VMI (pj , w) = AI
j (w). Then:

1. For every concept C and every w ∈W , ‖C(w)‖I = VMI (f(C), w).
2. For every instance C(x) and every w ∈W , ‖C(w)‖I = 1 iff MI , w |=1 f(C).
3. ‖(∀x)C(x)‖I = 1 iff MI , |=1 f(C).

5 Reasoning

In this section we define firstly the graded axioms used to define knowledge
bases for our n-graded DLs and after the equivalences between the corresponding
reasoning tasks. Finally we report the state of the art of the research on the
computational complexity of these reasoning tasks.

5.1 Knowledge Bases for ALC �Lc
n

To define knowledge bases (KBs) for the description logics ALC �Lc
n
, we need the

notion of evaluated formula. Given r ∈ Ln, an evaluated formula of the logic
Λ(�Lc

n)∀ is a formula of one of the forms r̄ → ϕ, ϕ → r̄, or r̄ ↔ ϕ, where ϕ
does not contain any occurrence of truth constants other than 0̄ or 1̄. In our
framework, since we are interested in reasoning on partial truth of formulas,
it seems reasonable to restrict ourselves to evaluated formulas for representing
the knowledge contained in a knowledge base. Having truth constants in the
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language, we can handle graded inclusion axioms in addition to graded assertion
axioms (see [2]), as usually done in FDLs (see [7,15]). Next we define these graded
notions.

Let C,D be concepts without occurrences of any truth constant other than
⊥ or �, R be an atomic role and a, b be constant objects. Finally let r ∈ Ln.

A graded concept inclusion axiom is an expression of the form 〈C � D, r̄〉,
whose corresponding evaluated first order sentence is r̄ → (∀x)(C(x) → D(x)).

An graded equivalence axiom is an expression of the form 〈C ≡ D, r̄〉, whose
corresponding evaluated first order sentence is r̄ → (∀x)(C(x) ↔ D(x)).

A graded concept assertion axiom (or graded assertion) is an expression of the
form 〈C(a), r̄〉, whose corresponding evaluated first order sentence is r̄ → C(a).

Finally, graded role assertion axioms is an expression of the form 〈R(a, b), r̄〉.
Its corresponding evaluated first order sentence is r̄ → R(a, b).

A TBox for a graded DL language is a finite set of graded concept inclusion
axioms. An ABox is a finite set of graded concept and role assertion axioms. A
knowledge base (KB) is a pair K = 〈T ,A〉, where the first component is a TBox
and the second one is an ABox.

5.2 Reasoning Tasks in ALC �Lc
n

Among the reasoning tasks that can be defined in a multi-valued framework
we can find the usual ones, i.e, KB consistency, concept satisfiability and sub-
sumption with respect to a (possibly empty) KB and entailment of an assertion
axiom from a (possibly empty) KB (see [16]). In this framework we can define
the following graded notions:

Definition 1 (Satisfiability). A concept C is satisfiable w.r.t. a knowledge
base K in a degree greater or equal than r iff there is an �Lc

n-model M of K,
and an individual a ∈M such that ‖C(a)‖M ≥ r. In particular, C is positively
satisfiable when r = 1

n (strictly greater than 0) and 1-satisfiable when r = 1.

Definition 2 (Subsumption). A concept C is subsumed by a concept D in a
degree greater or equal than r w.r.t. a KB K iff, for every �Lc

n-model M of K, it
holds that ‖(∀x)(C(x) → D(x))‖M ≥ r. In case C is subsumed by D in a degree
greater or equal than 1, we will simply say that C is subsumed by D.

In our language we only need the notions of 1 and positive satisfiability since,
thanks to the expressive power given by the presence of the truth constants in
the language, all other graded notions can be reduced to them in ALC �Lc

n
.

Proposition 1. Let K be a (possibly empty) knowledge base, C,D be ALC �Lc
n

-
concepts and r ∈ Ln, then the following equivalences hold:

1. C is satisfiable w.r.t. K in a degree greater or equal than r iff the concept
r̄ � C is 1-satisfiable w.r.t. K.

2. C is subsumed by D w.r.t. K in a degree greater or equal than r iff concept
r̄ � C is subsumed by D in degree 1.
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3. A concept C is subsumed in degree 1 by a concept D w.r.t. a knowledge base
K iff K ∪ {C �∼D} is not positively satisfiable.

Notice that this last result is true only for the �Lukasiewicz case and it is not
achievable in the general framework of (finite) t-norm based FDLs presented in
[2,3], where negation is not necessarily involutive.

5.3 Decidability and Complexity Issues

From results in [1] it is easy to prove that concept satisfiability for ALC-like FDLs
based on finite t-norms is a decidable problem. The method used in that paper,
based on a recursive reduction to propositional satisfiability, can be also used to
obtain decidability for the ABox consistency and the concept satisfiability w.r.t.
an ABox. Moreover, in [11] it has been proved that concept satisfiability w.r.t.
a general TBox for FDLs over finite lattices is EXPTIME-complete. From these
results, we can easily obtain the following decidability results and complexity
bounds for our finite-valued �Lukasiewicz FDLs:

– TBox consistency is EXPTIME-complete.
– Entailment of an assertion from an ABox is decidable.
– Entailment of an inclusion axiom from a TBox is EXPTIME-complete.

Concept satisfiability can be seen as concept satisfiability w.r.t. the empty TBox,
thus obtaining EXPTIME upper bound for this problem. Nevertheless, in [17]
has been proved that finite-valued �Lukasiewicz modal logic is PSPACE-complete
and, since this logic can be seen as a notational variant of ALC �Lc

n
, we obtain

PSPACE-completeness of the concept satisfiability problem in ALC �Lc
n
.

Another remarkable result is the one reported in [18], where a reduction from
finitely valued fuzzy ALCH to classical ALCH is provided. Since, however, the
reduction is not polynomial, it can only be used to obtain decidability of its
reasoning tasks, but not to obtain their computational complexity. Finally, let
us mention [10] where the authors show how to reason with a fuzzy extension
of the description language SROIQ under finitely valued �Lukasiewicz logics.
They show that it is decidable by presenting a reasoning preserving procedure
to obtain a crisp representation of the logics.
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14. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the Minimum Many-Valued Modal
Logic over a Finite Residuated Lattice. Journal of Logic and Computation 21(5),
739–790 (2011)

15. Straccia, U., Bobillo, F.: Mixed Integer Programming, General Concept Inclu-
sions and Fuzzy Description Logics. Mathware and Soft Computing 14(3), 247–259
(2007)

16. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelin, F., Lif-
shitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 135–179.
Elsevier (2008)

17. Bou, F., Cerami, M., Esteva, F.: Finite-valued �Lukasiewicz Modal Logic is
PSPACE-complete. In: Proceedings of the IJCAI 2011, pp. 774–779 (2011)

18. Bobillo, F., Straccia, U.: Finite fuzzy description logics: A crisp representation
for finite fuzzy ALCH. In: Bobillo, F., et al. (eds.) Proceedings of the 6th ISWC
Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2010). CEUR
Workshop Proceedings, vol. 654, pp. 61–72 (November 2010)


	On finitely valued Fuzzy Description Logics: The ukasiewicz case
	Introduction
	The Finitely Valued Łukasiewicz Logic with Truth Constants
	The n-Valued Łukasiewicz Description Logics ALCŁnc
	ALCŁnc and Modal Finite-Valued Łukasiewicz Logics
	Reasoning
	Knowledge Bases for ALCŁnc
	Reasoning Tasks in ALCŁnc
	Decidability and Complexity Issues



