
A Testbed for Multiagent Systems
Technical Report IIIA-TR-2009-09

Angela Fabregues and Carles Sierra

October 19, 2009

IIIA: Institut d’Investigaci en Intel·ligncia Artificial
CSIC: Spanish Scientific Research Council, UAB

08193 Bellaterra, Catalonia, Spain
{fabregues,sierra}@iiia.csic.es

Abstract

There is a chronic lack of shared application domains to test the re-
search models and agent architectures on areas like negotiation, argumen-
tation, trust and reputation. In this paper we introduce such a friendly
testbed that we used for all such purposes. The testbed is based on the
Diplomacy Game due to its lack of random moves and because of the
essential role that negotiation and the relationships between the players
play in the game. The testbed may also profit from the existence of a
community of bot developers and a large number of human players that
would provide data for our experiments. We offer the infrastructure and
make it freely available to the MAS community.

Keywords: application, testbed, diplomacy game

1 Introduction

Current research trends in multiagent systems include models of trust [6],
reputation [14], and argumentation [5, 4] to improve negotiating strategies
[7, 8, 10]. Research progress in the development of these theoretical mod-
els has made them very sophisticated (based on cognitive, information
or game theoretical grounds) and has enabled software agents to interact
with and help humans in a more efficient and believable way. Agents are
being endowed with techniques to decide how and when to interact, argue
and negotiate, as well as whom to trust and why. Unfortunately, the prac-
tical application of the models has been less than expected. This is partly
due to the fact that researchers lack shared use cases for comparing the
models, the use cases they design tend to be rather artificial and usually
biased to a particular model and therefore with little reuse. As a result,
most experiments suffer from an insufficiency of both data and computa-
tional resources for model validation. Environments are urgently needed

1

that are rich enough to test simulations without having to oversimplify
the models on which they are based. In particular, software agents must
be able to interact not just with humans but also with other software
agents. We argue that the popular strategy board game Diplomacy pro-
vides just such a testbed. We are building the necessary infrastructure to
use Diplomacy as an environment for a testbed for MAS and in this paper
we report our results on that.

We start this paper introducing the Diplomacy game and its player
community, sections 2 and 3, to then focus on the agents that already
play diplomacy and their valuable use for research in MAS, sections 4
and 5. Then we present the formal languages that we propose to use
among the agents in our testbed as a tower of increasingly expressive
languages, section 6. Section 7 illustrates the communication protocols.
And finally, in section 8 the testbed architecture is described in detail
with some results on the validation of the system and its use for research
purposes. The paper ends with the Related Work and Discussion sections.

2 Diplomacy

In Diplomacy, players negotiate with the aim of conquering Europe. The
rules of the game are unambiguous and the available information about
the game is rather rich as it is a quite old game being enjoyed by several
generations of players. The game appeared in the 1954s. The game is sit-
uated on the Continent at the beginning of the 20th century, before World
War I. Each player is in charge of the armed forces, organised in units, of
a major European power and must decide, in each turn, which movements
the various units should execute. The game ends when someone has an
army powerful enough to control half of the European ‘provinces’. This
is achieved by defeating other players’ units, conquering their provinces
and controlling the supply centres that allow armies to build new units.

One of the most interesting features of Diplomacy is the absence of
random movements: there are no cards and no dices. Also, this is not a
turn-taking game. That is, all players move their units simultaneously:
there is no advantage in a player being the first or last to move. Moreover,
all units are equally strong. Consequently, when one attacks another, the
winner of the battle is decided by taking into account only the number
of units helping one another. This feature is what makes Diplomacy so
compelling for our purposes. Accordingly, the most relevant skills for a
player are the negotiating ability, the intuition (knowing whom to trust)
and the persuasive power.

The game is not difficult. Indeed, the individual plays are quite sim-
ple. What is difficult is to resolve the conflicts that crop up owing to
the simultaneous public announcement of the movements. Expert play-
ers, or masters, usually perform this task. Recently, however, software
programs have replaced the masters. From a player’s point of view, the
most important aspect of the game is the negotiation process: deciding
allies, selecting whom to ask for help, arguing with other players to get
information about their objectives or to find out what they know, building
trust and reputation, maintaining relationships, and so on.

2

3 Player Community

Diplomacy is often played on the Internet. Interestingly, playing online
makes it easier to secretly meet with other players to negotiate and keep
conspiracies under wraps.

The larger online community of players meets around The Diplomatic
Pounch, [2]. People there uses nJudge, a software developed in 1987 by
Ken Lowe that allows players to play Diplomacy by e-mail and provides
an automatic order resolution.1 This community has an online magazine
and a wiki.

A frequent option is to use a web application with a friendly interface
for playing Diplomacy online. There are basically two sites: webDiplo-
macy and playDiplomacy. Both sites allow playing online and sharing
information with other members of the community. The community of
webDiplomacy play with phpDiplomacy, an opensource project that makes
internal use of nJudge. Although playDiplomacy does not even explain
how it works, it has a larger social network.

Other software projects can be found on the net that try to help in
either resolving the orders (adjudicators) or providing a nice interface for
playing (mappers), for example: jDip [3].

Besides all the games played on the net using the mentioned soft-
ware tools, a lot of tournaments of Diplomacy are being organized to play
face-to-face.2 Note that sometimes two players have no common natural
language. In that case, they use ‘translator sheets’ to support communi-
cation.3

4 Agents playing Diplomacy

The idea of creating a Diplomacy software player (bot) was first suggested
by Sarit Kraus 20 years ago [9]. Since then, several other researchers have
also tried to build bots but without much impact [13, 15]. Despite this
little success, we think that now is the moment to continue this work.
We believe this due to the fact that computer and network technologies
have evolved so much in the interim that many people now accept enter-
tainment online from their homes as a matter of course. In fact, there is
a community around the Diplomacy Artificial Intelligence Development
Environment (DAIDE, [1]) that has defined a communication protocol
[12] and a message syntax [11] that can be considered a standard for bot
communication, specially the level 0 syntax, as the other levels are almost
never used. They built an infrastructure to develop bots and compare
their performance. Many developers have joined the DAIDE community
and develop their own bots to compete.

1The resolution of orders (i.e. actions performed by units) in Diplomacy is often called the
adjudication process.

2The Diplomatic Pounch maintains the list of Diplomacy face to face tournaments at
http://www.diplom.org/Face/cons.

3Some examples of these sheets can be found in http://www.ellought.demon.co.uk/
dip_translator/.

3

Up to now, the bot development efforts have focused mostly on the
strategy and tactics of the no-press variant of the game (i.e., without
dialectic communication between players). The work that the members
of DAIDE have done is relevant, although the next natural step would be
to enrich the bots by adding negotiation capabilities. Currently, our work
concentrates in creating the testbed itself, making the best use of existing
resources insofar as possible and providing tools for analyzing how bots
(and humans) behave during a game. The development of our own bots
to compete with other bots and human players is ongoing work.

5 Diplomacy for research

Diplomacy is, however, strategically simple for a human to play in com-
parison to other classic games like Chess and Go. This is because the
true complexity of the game lies in the relationships among its players.
Those are constantly changing and difficult to analyze but humans nego-
tiate constantly in their every day life. They are used to do it, therefore
Diplomacy does not seem really difficult to play. On the other hand, it
is difficult for a computer as it cannot take advantage from massive com-
putations because the search space in Diplomacy is huge and because the
key for success relies on the information obtained from negotiation and
the persuasive capability of the player.

Focusing only on the possible moves that the units can perform on
the board, the numbers are very large. There is an average of 30 units
on the board during a game. An order has to be assigned to each one
of these units per turn. The movements that a unit can perform depend
on the number of direct neighbours and neighbour units.4 Assuming an
adjacency factor of 4 and a neighbourhood factor5 of 2, we obtain that
the number of possible movements per unit and phase is 30 · 15.6 Overall,
a branching factor of 450.

The branching factor of the search is thus so high that even a no-press
game cannot be treated by standard search mechanisms. Neither can we
reasonably use game theory to solve the problem strategically. Think that
the branching factor for chess is around 35. Besides that, the unit move-
ments in Diplomacy depend on the movements done by the other units.
The moves that a player performs are not independent from the ones per-
formed by other players. All players perform their moves at the same
time, hence a player cannot be sure about the outcome of a move because
there can be conflicts between different players’ orders. Therefore, it is
very difficult to predict the outcome of a movement without information
about the opponent’s intentions. In fact, the essence of Diplomacy relies
on the diplomatic moves that were not taken into account when analyz-

4By direct neighbour we refer to units that are in an adjacent region. And neighbor is used
for those units that are placed in a region that is at distance two, that is, they are units of a
direct neighbour of a direct neighbour.

5Number of units that are neighbour.
6The average number movements for a unit in every phase are: 1 hold, 4 movements to

the 4 adjacent regions, 2 supports to hold to the 2 neighbors and 4 · 2 supports to move for
every two neighbors of our 4 adjacent regions. Therefore 1 + 4 + 2 + 4 · 2 = 15.

4

ing the complexity above. Should we take every single negotiation step
into consideration, then the number of possible moves would be simply
overwhelming as Sarit Kraus already observed in [9].

From the point of view of AI research, Diplomacy is a multiagent
system environment where competitive self interested agents need to co-
operate to obtain better outcomes. This is done by the signature of agree-
ments where agents involved commit to do a plan of action. Agreements
in such environments are reached as the result of successful negotiation
processes in which agents dialoge exchanging proposals and information
with the aim of convincing the other agent to accept a deal, sometimes
arguing. Because of the repetition of negotiation dialogues, negotiations
get quicker since most of the previous discussed agreement issues do not
need to be discussed again. The agents can guess which are the believes,
desires and intentions of other agents just analyzing the past dialogues
and the state of the game. And as time goes by, agents can observe how
their counterparts honour up the agreements they sign. This information
can be used to build a model of agents’ behaviour. This model will help
in future negotiations, even to decide which agent should we negotiate
with. Concepts like trust, honor, sincerity, and others can summarize the
perception we can get from an agent as time goes by. Also the reputation
of an agent can be taken into account because agents can also talk (gossip)
about other agents performance, promises, intentions, ... From the last
sentences, it is straightforward to see that several MAS research topics
are highly relevant: negotiation, trust, reputation, argumentation. But
also other topics like coalition formation, behavior emergence or ways of
persuasion can be studied with this testbed.

By means of this testbed, we join together research and entertainment
as it was done previously in other projects7, with the aim of providing an
infrastructure to play Diplomacy comfortably —using a web or desktop
based graphical application, where and when the player wants to play
—we provide bots so the player does not need to wait for other players
writing their orders, using each player its own language —a software tool
will perform something similar to the translator sheets mentioned earlier,
and all for free. At the same time, the testbed will permit the gathering of
valuable information that can be useful to support experimental research
in MAS and AI.

The ‘translator sheets’ introduced before in Section 3 is another ben-
eficial aspect of the testbed as it restricts the language that humans use
and allows software agents to easily step in by just knowing the language
primitives. In other words, there is no need to deal with natural language
making the programming of bots much easier while hiding the possibility
that humans recognise whether the oponents are human or not.

The testbed is rather new and it is not really popular yet but we
expect to have a lot of users in a short time. Those users will provide a
lot of data that we will be able to work with. We plan to provide tools
for social networking that can give us extra information about the social
relationships of the users and how they affect the game. Diplomacy games

7In 2005, Luis von Ahn devised the ESP Game, an online game of image labeling that
Google is now using to improve its image search results.

5

Level 8: Arguing

Level 7: Explaining

Level 6: Taking into account the passage of time

Level 5: Sharing feelings

Level 4: Asking for indirect information

Level 3: Asking for direct information

Level 2: Sharing information

Level 1: Negotiating a deal

Figure 1: Language Levels

are usually played without revealing the player identity. But we can also
allow games where players meet beforehand to increase/modify the social
relationships.

Independently on the type of game, with hidden names or not, a soft-
ware mediator could be able to help human players to play Diplomacy
using information of past games. A mediator can assist a player in the
decision making process just showing his/her past deals and their out-
comes. Or even arguing to try and convince the human player to do what
the software mediator ‘thinks’ is better. In this way, human players can
be more receptive to the idea of having software agents helping them and
the human players can also indicate the mediators what is preferable for
them and why.

The proposal is thus to use Diplomacy as a testbed that combines
humans and agents.

6 Language

In MAS as well as in Diplomacy, one of the most important features is
the communication language between agents. This is done in our testbed
using a shared language L described in this section. Because of the com-
plexity of building an agent capable of understanding a complex language,
we define it as an 8 level language; starting from L1 and increasing the
expressiveness as the language level increases. Figure 6 represents graph-
ically the language level hierarchy.

L is a generic language that could be used for many other applications.
It defines the illocutions that the agents can use to communicate and the
basic concepts like Agree, Desire, Feel, etc. The language is parametric on
the vocabulary for a specific application domain, described as an ontology.

Bots might be programmed to use languages with different expressive
power. We think that the expressive ingredients that are most relevant
for MAS research are: cognitions, information exchange, agreements, emo-
tions, time, and argumentation. For instance, we could have argumenta-

6

tive bots that would not use time, or cognitive bots that have no emotions.
These combinations account for a large number of languages that we can
imagine as nodes in a graph where a directed arc related a less expressive
language to a more expressive language. In this section, for simplicity
we will select a representative subset of those possible languages and will
present them as a particular path in such graph. Language Li in this
section is more expressive than Lj if and only if i > j.

In Figure 2 we present a compressed version of the language level def-
inition expressed in BNF.8 Each language extends the languages in lower
levels, that is, if there is no re-writing rule for a term in Li then it can be
found in lower levels Lj , with j < i. The undefined non terminal symbols
that appear in L should be specifically defined for each application do-
main. These symbols are: time, agent, action and predicate. The higher
the language level that we use, the more complex the actions and the
predicates.

In the rest of this section, we describe and illustrate the expressivity
of each language level. The examples use the Diplomacy ontology intro-
duced in Figure 3. To that end, we define the symbols:

agent ::= power
action ::= order
predicate ::= offer
time ::= 〈phase, year〉

For instance, Unit(rus, Region(stp, scs)) is a term meaning that
‘There is a unit from Russia in the south coast of Saint Petersburg’,
pce({ita, rus}) is a predicate meaning ‘Peace between Italy and Russia’,
and sup(Unit(rus, Region(spa, ecs)), mto(Unit(ita, Region(mar, amy)),
Region(par, amy))) is an example of action where ‘The unit of Russia in
the east coast of Spain supports the movement of the italian army in Mar-
seilles to Paris’.

L1: Negotiating a deal. This is the first language level. It allows agents
to negotiate deals following the protocol described in Section 7. The deals
can be either two sets of commitments, one for every agent involved in the
deal, or a global agreement in which a set of agents agree on something,
usually the truth of a predicate. Here you have two examples of sentences
in L1:
‘Italy proposes to Russia a deal by which Italy commits to do a movement
from its army in Marseilles to Paris and Russia commits to support the
Marseilles italian army’s movement with the unit in the east coast of
Spain’:

propose(ita, rus,
{Commit(ita,rus,

Do(mto(Unit(ita, Region(mar, amy)),
Region(par, amy)))),

8Note that: expression+ ::= [expression expression ... expression], non terminal symbols
are written in italic, and undefined symbols (referring to terms in the ontology) appear in
underlined italics.

7

Level 1: Negotiating a deal
L1 ::= propose(α, β, deal1) | accept(α, β, deal1) |
reject(α, β, deal1) | withdraw(α, β)
deal1 ::= Commit(α, β, ϕ)+ | Agree(β, ϕ)
ϕ ::= predicate | Do(action) | ϕ ∧ ϕ | ¬ϕ

β ::= α+

α ::= agent

Level 2: Sharing information
L2 ::= L1 | inform(α, β, info2)
info2 ::= deal1 | Obs(α, β, ϕ) | Belief(α, ϕ) | Desire(α, ϕ) |
info2 ∧ info2 | ¬info2

Level 3: Asking for direct information
L3 ::= L2 | inform(α, β, info3) | query(α, β, info3) |
answer(α, β, info3)
info3 ::= info2 | Unknown(α, info3) | info3 ∧ info3 | ¬info3

Level 4: Asking for indirect information
L4 ::= L3 | inform(α, β, info4) | query(α, β, info4) |
answer(α, β, info4) | inform(α, β, L4) | query(α, β, L4) |
answer(α, β, L4)
info4 ::= info3 | Unknown(α, info4) | Unknown(α, L4) |
info4 ∧ info4 | ¬info4

Level 5: Sharing feelings
L5 ::= L4 | inform(α, β, info5) | query(α, β, info5) |
answer(α, β, info5) | inform(α, β, L5) | query(α, β, L5) |
answer(α, β, L5)
info5 ::= info4 | Unknown(α, info5) | Unknown(α, L5) |
Feel(α, feeling) | info5 ∧ info5 | ¬info5

feeling ::= V eryHappy | Happy | Sad | Angry

Level 6: Taking into account the passage of time
L6 ::= L5 | propose(α, β, deal6, t) | accept(α, β, deal6, t) |
reject(α, β, deal6, t) | withdraw(α, β, t) | inform(α, β, info6 , t) |
query(α, β, info6 , t) | answer(α, β, info6 , t) | inform(α, β, L6, t) |
query(α, β, L6, t) | answer(α, β, L6, t)
info6 ::= info5 | deal6 | Obs(α, β, ϕ6, t) | Belief(α, ϕ6, t) |
Desire(α, ϕ6, t) | Unknown(α, info6 , t) | Unknown(α, L6 , t) |
Feel(α, feeling, t) | info6 ∧ info6 | ¬info6

deal6 ::= deal5 | Commit(α, β, ϕ6, t)+ | Agree(β, ϕ6, t)
ϕ6 ::= predicate | Do(action, t) | ϕ6 ∧ ϕ6 | ¬ϕ6 | ϕ6; ϕ6
t ::= time

Level 7: Explaining
L7 ::= L6 | inform(α, β, info7 , t) | query(α, β, info7 , t) |
answer(α, β, info7 , t) | inform(α, β, L7, t) | query(α, β, L7, t) |
answer(α, β, L7, t)
info7 ::= info6 | Unknown(α, info7 , t) | Unknown(α, L7 , t) |
Explain(info7 , t) | Explain(L7 , t) | info7 ∧ info7 | ¬info7

Level 8: Arguing
L8 ::= L7 | inform(α, β, info8 , t) | query(α, β, info8 , t) |
answer(α, β, info8 , t) | inform(α, β, L8, t) | query(α, β, L8, t) |
answer(α, β, L8, t)
info8 ::= info7 | Unknown(α, info8 , t) | Unknown(α, L8 , t) |
Explain(info8 , t) | Explain(L8 , t) | Attack(info7 , info7) |
Support(info7 , info7) | info8 ∧ info8 | ¬info8

Figure 2: Language Levels

8

year ::= integer

phase ::= spr | sum | fal | aut | win

power ::= fra | eng | tur | rus | ita | aus | ger

coast ::= ncs | scs | ecs | wcs

regionType ::= amy | sea | coast

supplyCenter ::= spa | mar | par | stp | ...

province ::= supplyCenter | gas | bur | sil | tus | ...

region ::= Region(province, regionType)

unit ::= Unit(power, region)

order ::= hld(unit) | mto(unit, region) | sup(unit, hld(unit)) |
sup(unit, mto(unit, region)) | rto(unit, region) | dsb(unit) |
bld(unit) | rem(unit) | wve(power)

offer ::= pce(power+) | aly(power+, power+)

Figure 3: Summary of the Diplomacy ontology. See the complete Diplomacy
ontology at:
http://www.iiia.csic.es/dip/language

Commit(rus, ita,
Do(sup(Unit(rus, Region(spa, ecs)),

mto(Unit(ita, Region(mar, amy)),
Region(par, amy)))))})

‘Italy accepts to Agree with Russia that they are allied against England’:

accept(ita, rus, Agree({ita, rus}, aly({ita, rus}, eng)))
L2: Sharing information. This language level adds the ability of

sharing information with other agents. It can be information about pre-
vious commitments, observed actions, beliefs, desires or deals.
E.g. ‘Italy informs England that Italy keeps an agreement of peace with
Russia’:

inform(ita, eng, Agree({ita, rus}, pce({ita, rus})))
L3: Asking for direct information. At level three, agents can

request other agents for information. Answers to queries are similar to
informs.
E.g. ‘England asks Italy if Italy and Russia have an agreement of peace’:

query(eng, ita, Agree({ita, rus}, pce({ita, rus})))

‘Italy answers England that Italy and Russia do have an agreement of
peace’:

answer(ita, eng, Agree({ita, rus}, pce({ita, rus})))
L4: Asking for indirect information. Level four allows to inform

about dialogical moves between agents.
E.g. ‘Russia asks Italy whether Italy answered to England that Italy and
Russia had an agreement of peace’:

9

query(rus, ita,
answer(ita, eng,

Agree({ita, rus}, pce({ita, rus}))))
L5: Sharing feelings. This level is the emotional one. Feelings can

be exchanged between agents.
E.g. ‘Italy asks Russia whether Italy answering England that Italy and
Russia had an agreement of peace made Russia feel sad’:

query(ita, rus,
answer(ita, eng,

Agree({ita, rus}, pce({ita, rus}))) →
Feel(rus, Sad))

L6: Taking into account the passage of time. L6 aggregates
time to L5. With L6, we can talk about the past and make promises for
the future. The time is added as an extra argument to predicates and
illocutions. But it is not necessary to specify it, as the expressions of L5

are also expressions of L6.
E.g. ‘Russia informs Italy that if Italy informs in the future to any power
that Italy and Russia have and agreement of peace, then Russia will feel
Angry’:

inform(rus, ita,
(inform(ita, power,

Agree({ita, rus},
pce({ita, rus})), t1) ∧ t1 > t0) →

(Feel(rus, Angry, t2) ∧ t2 > t1),
t0)

L7: Explaining. Dialogues often include explanations and explana-
tion requests. This level adds that possibility to allow agents to explain
why things are like they are.
E.g. ‘Italy asks Russia for an explanation of why the fact that some-
one (power in the expression) beliefs that there is an agreement of peace
between Russia and Italy makes Russia feel Angry’:

query(ita, rus,
Explain(

Belief(power,
Agree({ita, rus}, pce({ita, rus}))) →

Feel(rus, Angry)))

L8: Arguing. And finally, level 8 allows agents to express rebuts and
supports between arguments.
E.g. ‘Russia informs England that its alliance with Italy against Eng-
land and Italy’s desire of Paris support the imminent Italian attack from
Marseilles to Paris’:

inform(rus, eng, Support(
Agree({ita, rus},aly({ita, rus},eng)) ∧ Desire(ita, par),
Do(mto(Unit(ita, Region(mar, amy)), Region(par, amy)))
))

10

7 Protocol

For a correct understanding of the dialogues that can be generated with
the different languages it is necessary also to share a communication proto-
col. A protocol regulates the interaction between agents letting the agents
make proposals, accept or reject them. This protocol will be often used
to negotiate between only two agents. But, as you can see in the example
of Figure 4, it works with multi-partner negotiation also. We propose to
use a different protocol for each language level satisfying definition 1, but
only show one here. For details on other protocols go to URLblinded. A
protocol is understood as a finite state machine where the nodes repre-
sent negotiation states and arcs represent transitions between states. The
labels of the arcs correspond to expressions of a particular language or
timeouts. When the negotiation is in a given state and an agent utters
an illocution that matches the label of an outgoing arc the transition is
performed. When we reach a state and stay there for as much time as the
timeout value labelling an outgoing arc, the transition is made.

Definition 1 A communication protocol for language level i is a finite
state machine p = 〈S, s0, Sf , E, λ〉, where:

- S is the set of negotiation states.

- s0 ∈ S is the initial state.

- Sf ⊆ S is the set of final states.

- E ⊆ S × S represents transitions between states.

- λ : E (→ Li∪N is a labeling function that assigns to every transition a
term of the language Li or a natural number representing a timeout.

An example of protocol for L3 is represented graphically in Figure 4.

s1s0

s2

propose(α,β, deal1)

accept(α,β, deal1), reject(α,β, deal1)

withdraw(α,β), [tmax]

inform(α,β, info3), query(α,β, info3)
inform(α,β, info3), query(α,β, info3)

withdraw(α,β), [tmax]

Figure 4: Communication Protocol for L3

During a negotiation process, a lot of deals can be signed; that is, a
lot of proposals can be finally accepted. If it is desired, as in the pro-
tocol in Figure 4, the protocol can specify a tmax used to automatically

11

terminate the negotiation process when no message is sent during such
specific amount of time. In this particular case, the negotiation termi-
nates when one of the agents decides to withdraw. Note also, that an
agent can also reject a non accepted deal previously proposed by himself
in order to retract that proposal.

8 Testbed Architecture

The testbed is designed as a set of software components that allow to
check and analyze the correct behaviour of bots playing Diplomacy. At the
same time, the testbed includes a framework that makes it easy to develop
new bots, as the potential actions the bot may choose are calculated by
the framework. It also includes a library that allows the bot to talk
with other players. With this testbed, the researcher can build a bot
and get relieved from the painful programming communication between
agents and concentrate on the interesting decisions from MAS research
perspective: what to do and whom to say what, that is, reasoning. Next,
we describe the three components of the testbed and how it can be used.

c)

a) b)

negoBot

diploBot

dip

dipNego

gameManagernegoManager

dipWebClient

dipdipNego

gameManagernegoManager

Bot

Observer

Player ConsoleObserver

ConsolePlayer

DefaultBot

RegionEvaluator
<<interface>>

OrderEvaluator
<<interface>>

OptionEvaluator
<<interface>>

DefaultRegionEvaluator DefaultOrderEvaluator DefaultOptionEvaluator

Figure 5: a) negoBot structure, b) dipWebClient structure and c) UML 2 class
diagram of the bot development framework

8.1 dip

dip is a framework for bot development written in java that incorporates
a simple bot architecture for playing Diplomacy. A bot developer has to

12

just build the mental state for its agent and program the decision making
process that makes this bot to be able to play Diplomacy with or without
negotiation.

The bot developer can choose one out of three different levels of ab-
straction that dip provides. As it can be seen in Figure 5 c), dip provides
a hierarchy of abstract classes: Observer, Player and Bot. The Observer
class only observes a game. It gets information about the current state
of the game and about the orders that the players write in each phase.
Contrarily, Player is not only an observer. As its name indicates, Player
plays Diplomacy getting from the Observer all the necessary information
and written orders.

As examples of clients and players, dip provides the classes ConsoleOb-
server and ConsolePlayer that allow a human player to observe a game
reading the messages that will appear in an alphanumeric console9 (Con-
soleObserver) and, then, to play the game by writing the orders that
he/she chooses (ConsolePlayer).

In addition, dip provides Bot that is the more simple way to implement
a bot. Bot deals with the search of the best option, that is the best order
combination, using the implementations of RegionEvaluator, OrderEvalu-
ator and OptionEvaluator that the bot developper has to specify. In this
way, we reduce the complexity of bot development to just a simple spec-
ification of the preferences of the programmer among different regions,
orders and options at any time.10

In summary, a bot developper can choose between using Bot or im-
plement from scratch the orders selection mechanism. In both cases, dip
will deal with the management of the game state and the orders, as well
as with the communication with the game manager.

8.2 negoBot

negoBot is a bot capable of playing Diplomacy using negotiation11 devel-
oped over defaultBot, a bot that uses Bot and provides an implementation
of the three interfaces that Bot needs to work properly. Therefore, negoBot
does not even have to worry about the game strategy because defaultBot
already does it. Then, the functionality that negoBot provides is a model
of the agents (players) and their relationships (enemies, allieds, friends)
that drives the decisions that negoBot has to take: which deal should it
propose? who should it propose the deal to? when? should it accept
the deal that someone is currently proposing to it? should it respect the
deal? negoBot has always the last word when choosing the set of orders
to write. defaultBot provides a ranking of them and negoBot can choose,
for instance, the best one respecting the deals that it has signed.

The Figure 5 a) represents the module dependency of negoBot. All
the modules represented in that figure have been already developed by us
except the game manager that is currently under development. But this

9Console, Shell, Bash terminal
10The evaluators can be parametrized to evaluatre differently according to the current game

state.
11Almost all bots currently developed play the no-press version of Diplomacy. That is, the

game without negotiation. negoBot allows to negotiate using level 1 of our language definition.

13

is not a shortcoming as dip implements the standard Diplomacy protocol
and can communicate with different existing servers such as: AiServer or
Parlance. In the figure there are two modules not yet mentioned: dipNego
and negoManager. dipNego implements the language described in Section
6 and negoManager allows the players to communicate using the language
level decided by them at the begining of the game.

AiServer

negoBot

dipWebClient

negoServer

human player

Figure 6: Execution example of a human playing Diplomacy with the dipWeb-
Client against six negoBots

8.3 dipWebClient

With dip and negobot we can run a Diplomacy game between seven ne-
goBots using negoManager and, for example, AiServer managing the
game. To be able to observe how our bots play we can connect to ei-
ther an observer provided by dip, consoleBot, or to a graphical friendly
web interface called dipWebClient. In Figure 6 we can see how the differ-
ent components would be connected to allow a human to observe a game.
dipWebClient can be set as observer, using directly the Observer class of
dip, or as player, using the Player class. In both cases, it allows a human
agent to follow a game just observing how the units move from one region
to another in the map. Besides, if we set dipWebClient as a player, we will
be able to point out which orders do we want to write using the mouse on
the map. We can also talk with other players, humans or bots capable of
negotiating, by means of a chat interface that is visible just next the map
of the game. In Figure 7 a screenshot of a Diplomacy game is visualised
using dipWebClient. Currently, there are some other graphical interfaces
to play Diplomacy but no one as clear and useful as this one. dipWeb-
Client provides a sliding bar that allows to visualise on the map all the
history of movements of a game. You can check past moves just moving
the slider right and left.

14

Figure 7: Screenshot of dipWebClient

8.4 Results

All the components of the testbed have been tested and used for playing
games with and without negotiation. The reuse of code —remember that
all components depend on dip, makes it easier to test everything and
reduces the number of errors that can appear in the code. Currently, all
the components of the testbed presented in this paper work properly.

One of the goals of dip has been the creation of a repository of small
code modules useful for bot development. In fact, one of our goals with
the implementation of defaultBot and negoBot was to check the facility of
people not directly involved in the dip framework development to focus
on what it is really interesting for them: the strategy of the game and
the negotiation. The software structure of dip makes the reusability of
code easier in the development of bots. Thus, the building of a new bot
becomes just the reuse of a set of modules plus the development of a few
new ones. For instance, in the case of negoBot, the strategic modules that
allow region, order and option evaluation provided by defaultBot have
been combined with the agent and the agent relationship modules and
with a decision taking module developed from scratch. Other components
are currently under development and will be briefly discussed in Section
10.

We have already described how a human player can use dipWebClient
and how a developer can observe his/her bots using this interface. But
dipWebClient can also be used to record what a human expert player does
in a specific situation. This data logging can be used to implement data

15

mining or machine learning technics.
This server allows also to write free text when so is agreed by the

players. This communication server allows a researcher to monitor his/her
bots capability of keeping a communication dialogue. A simulator used to
test bots is also provided: it allows the researcher to talk to his/her bot
and observe its reactions.

9 Related Work

Almost all the bots that are currently implemented follow a standard on
communication defined by DAIDE. This is the use of a client-server ar-
chitecture where the server is the game manager and clients can be either
observers or players. Clients cannot communicate directly, the communi-
cation is always between client and server. The server may decide to for-
ward a message to another client. The communication is done via TCP/IP
following the protocol defined in [12]. The syntax of the messages that
client and server can exchange follow the level 0 language syntax. These
two parts, the communication protocol and the syntax of language level
0, are shared by almost everyone who is developing bots. But the rest of
language levels is not. In fact, we claim that a new language definition for
communication between players is needed and we have proposed a new
one that separates the domain dependent terms from the language itself
and divide it in several levels of complexity. This new language is defined
from the point of view of multiagent system researchers and allows to test
the work in a lot of research topics like, for example: negotiation, trust,
reputation and argumentation. We are in the process of outreach the
community and try of persuade developers to adopt the language tower.

10 Discussion

Diplomacy is an ideal environment for testing MAS because players must
constantly confer, sign agreements and decide whether to honour them,
decide who to cooperate with, ... There is also a large group of human
players ready to go head to head with software agents and accustomed to
both playing online and dealing in a restricted language. There are also
a lot of developers wanting to provide bots of Diplomacy.12 Finally, the
game has no random elements that could decrease the relevance of the
experimental results. Therefore, the results obtained by the use of this
testbed would be significative.

The testbed is already available online at URLblinded Next work will
be focussed mainly on developing good negotiator agents capable of play-
ing against humans in the different language levels of L. In fact, this
testbed was needed as a step before being able to test our own work on
negotiation. However, we also wanted to share it with everyone interested
in negotiation or argumentation.

In parallel with the negotiating bot development, we are working to
provide the following new tools to the testbed:

12DAIDE community has over 200 members.

16

- a desktop based graphical interface similar to the one we provide for
playing online.

- a tool for translating from a restricted natural language to the testbed
language. It will assist human players when negotiating with agents.

- a web application that manages the creation of new games and pro-
vides a rating of the players and some tools for social networking.

- a repository of the source code of modules that provides several
capabilities needed for a full Diplomacy negotiator bot, such as the
functionality that defaultBot and negoBot already provide.

- a new functionality for the web application that will allow other
researchers to launch a bot connected to our game manager auto-
matically.

- a game manager with its adjudicator. They are almost finished and
implemented in java using dip. Remember that we are currently
using other game managers that follow the standard communication
protocol and language.

By means of this testbed we provide to the MAS community an en-
vironment where very expressive illocutions can be exchanged between a
small set of agents, usually 7. Agents compete with the aim of getting
more power. But power is obtained by cooperation. To be able to in-
crease your power, you have to convince others to help you. Thus, agents
repeatedly negotiate to convince others to accept a plan of action where
both cooperate and split the benefit. Being friendly, persuasive, loyal and
trustworthy are some of the skills that can be tested with this testbed.

References

[1] Diplomacy ai development environment site. http://www.daide.
org.uk/.

[2] The diplomatic pounch. http://www.diplom.org.

[3] jdip, a diplomacy mapper and adjudicator, 2004. http://jdip.
sourceforge.net/.

[4] T. Alsinet, C. Chesñevar, L. Godo, and G. Simari. A logic program-
ming framework for possibilistic argumentation: Formalization and
logical properties. Fuzzy Sets and Systems, 159(10):1208–1228, 2008.

[5] L. Amgoud and H. Prade. Using arguments for making and explain-
ing decisions. Artif. Intell., 173(3-4):413–436, 2009.

[6] J. Debenham and C. Sierra. Trust and honour in information-based
agency. pages 1225–1232, 2006.

[7] S. Kraus. Designing and building a negotiating automated agent.
Computational Intelligence, 11:132–171, 1995.

[8] S. Kraus. Negotiation and cooperation in multi-agent environments.
Artificial Intelligence, 94:79–97, 1997.

17

[9] S. Kraus, D. Lehmann, and E. Ephrati. An automated diplomacy
player. In D. Levy and D. Beal, editors, Heuristic Programming in
Artificial Intelligence: The 1st Computer Olympia, pages 134–153.
Ellis Horwood Limited, 1989.

[10] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. Negotiating with
bounded rational agents in environments with incomplete informa-
tion using an automated agent. Artificial Intelligence, 172(6-7):823
– 851, 2008.

[11] D. Norman. Diplomacy ai development environment message syntax,
2006. http://www.ellought.demon.co.uk/dipai/dpp_syntax.rtf.

[12] A. Rose. The diplomacy centralisation project client-server protocol,
2003. http://www.daide.org.uk/external/comproto.html.

[13] J. Shaheed. Creating a diplomat. Master’s thesis, Department of
Computing, Imperial College Of Science, Technology and Medicine,
180 Queen’s Gate, London, SW7 2BZ, UK, June 2004.

[14] C. Sierra and J. Debenham. Information-based reputation. In First
International Conference on Reputation: Theory and Technology,
2009.

[15] A. Webb, J. Chin, T. Wilkins, J. Payce, and V. Dedoyard. Auto-
mated negotiation in the game of diplomacy. Master’s thesis, January
2008.

18

