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Abstract. The purpose of this paper is to investigate how argumentation pro-
cesses among a group of agents may affect the outcome of group judgments.
In particular we will focus on prediction markets (also called information mar-
kets) and we will investigate how the existence of social networks (that allow
agents to argue with one another to improve their individual predictions) effect
on group judgments. Social networks allow agents to exchange information about
the group judgment by arguing about the most likely choice based on their indi-
vidual experience. We develop an argumentation-based deliberation process by
which the agents acquire new and relevant information. Finally, we experimen-
tally assess how different social network connectivity and different data distribu-
tion affect group judgment.

1 Introduction

The purpose of this paper is to investigate how argumentation processes among a group
of agents may affect the outcome of group judgments. In particular we will focus on
prediction markets (also called information markets) and we will investigate how the
existence of social networks (that allow agents to argue with one another to improve
their individual predictions) effect on group judgments using prediction markets.

There are different ways to aggregate the information held by a group of agents.
According to C. R. Sunstein [17] there are three main paradigms to achieve group judg-
ments, that is to say a joint decision or prediction based on aggregating the information
or preferences of a group of agents (Sunstein deals with human agents, while we will
focus only on artificial software agents). One paradigm is using statistical means to
aggregate the group information: techniques like plurality voting, Condorcet voting or
weighted voting define aggregation functions based on statistical means (i.e. on dimin-
ishing the joint error). Human committees, panels and juries use these techniques —
and groups of agents also, see for example [11] where learning agents’ joint predictions
are compared when using plurality voting vs. weighted voting.

A second paradigm is that of deliberation, where arguments in favor or against a
joint judgment are exchanged by the member agents of a group. Human public and
private institutions traditionally favor deliberative ways of taking decisions, and certain
accounts of democracy are based on the deliberation process. The main feature here
is that rough preferences are not considered sufficient to justify a joint judgment, and



deliberation provides reasons by an exchange of arguments by individuals with different
information and diverse perspectives. Agents can also use argumentation to deliberate
on joint judgments, as for example in the work reported in [13].

The third paradigm is the one this paper focuses on: prediction markets, also known
as information markets. Prediction markets’ goal is to aggregate information based on
a price signal emitted by the members of a group. The advantage of the price signal is
that it encapsulates both the information and the preferences of a number of individuals.
In this approach, the task of aggregating information is achieved by creating a market,
and that market should offer the right incentives for the participating people or agents
to disclose the information they possess.

The purpose of this paper is to analyze the effect of social network relationships
in group judgment —specifically in prediction markets. These social networks allow
agents to exchange information about the prediction task domain. We model this in-
formation exchange as an argumentation process, where an agent A tells an agent A′

its prediction S together with an argument α intended to justify why this prediction
is correct. Agent A can agree or disagree with S, and in the case of disagreement A′

communicates to A a counterargument or a counterexample that contradicts α. Agent
A may keep its original prediction S or change it to some new prediction S′ due to
the counterarguments and counterexamples A has exchanged with one or more other
agents. Social networks establish the different possible graphs of trusted acquaintances
with which an agent can soundly exchange information; several simple social networks
are tested in order to analyze the impact of information exchange.

The structure of the paper is as follows: the next section describes the Multiagent
Prediction Market (MPM) and discusses the assumptions to use such mechanism for
group judgment; section 3 describes the argumentation processes among agents that
models the information exchange among agents; then section 4 presents an empirical
evaluation of MPM in a prediction domain and we assess (1) the effect of using a pre-
diction market instead of a voting scheme, and (2) the effect upon prediction markets of
information exchange. Finally, section 5 presents related work and section 6 discusses
the contributions of the paper and the foreseeable future work.

2 Multiagent Prediction Market

Essentially, a Multiagent Prediction Market (MPM) is composed of (a) a prediction task
domain, (b) a market broker agent AD, (c) a collection of participating agents A, and
two parameters: M (maximum bet) and X (a percentage bonus).

In this paper we will address only single-issue predictions and we will assume that
the prediction task domain is characterized by an enumerated collection of alternatives
or solutions S = {S1, ..., SK} and the prediction task is to select the correct one for
the current situation or problem P . The participating agents is a multiagent system
composed of n agents A = {A1, ..., An}. For a specific market, given a problem P
every agent receives P , generates its individual prediction, and then it can bet up to a
quantity MP on one single alternative.

Let BAi
= 〈S, b〉 be the bet made by a particular agent Ai, where S is the predicted

solution, and b is the amount bet. Let BP = {BAi
, ..., BAn

} be the set of all bets



Fig. 1. Three of social networks among 8 agents where each agent has 1, 2 or 3 acquaintances.

made by all the agents in the market MPMP . We will use the dot notation to refer to
elements inside a tuple, e.g. we will write B.b to refer to the amount bet in B. We
define BP =

∑
B∈B B.b as the total amount of money bet by all the agents, and BSk

=∑
B∈B|B.S=Sk

B.b the total amount of money bet for a particular solution Sk.
The broker agent AD receives those bets (amounting to a total quantity BP ) and

determines the joint prediction as the alternative (say Sr) invested with the highest ac-
cumulated bet, as follows: Sr = arg maxSk∈S BSk

. When the correct solution Sc of P
becomes known, the broker agent AD checks whether the joint prediction was accurate
(Sr = Sc). If it was, then those agents that bet for Sc receive a reward. Specifically, an
agent Ai who bet for the correct solution receive the reward rAi

= 1
BS

(BP×BAi
.b×c),

where c = 100+X
100 is a factor that ensures that the agents receive more money than they

bet if they win. Intuitively, the winner agents receive all the money bet by all the agents
(i.e. BP ), but multiplied by the factor c, to provide an incentive. In our experiments we
have set the percentage bonus X = 10%, thus, c = 1.1.

The rationale of this design is to provide a twofold incentive: a) for the agents to
reveal their true prediction, and b) also to benefit from the the joint accuracy.

Concerning the participating agents, we make the assumptions that (1) the individ-
ual agents possess a way to determine the confidence in an individual prediction and
(2) the agents possess an argumentative capability that supports the information ex-
change with other agents regarding the prediction task domain. The first assumption
requires that the agent is not only capable of making a prediction, but also establish-
ing the likelihood of that specific prediction to be correct, i.e. a degree of confidence
for each specific prediction. Rationality dictates that the more confident an agent with
respect to a prediction, the higher the quantity to bet on that prediction. The second as-
sumption allows the agents to perform an information exchange phase (that we model
as an argumentation process), and thus generate more informed predictions.

3 Information Exchange in Social Networks

Social networks views social structures as composed of nodes and links, where nodes
are individuals or organizations and links are their relationships. For the purpose of this
paper, we will focus on individual agents as nodes and acquaintances as their links.

In our framework, a social network is a collection of acquaintance directional rela-
tions N = {(Ai1 , Aj1), ..., (Aim

, Ajm
)}, where an agent Ai has another agent Aj as an



acquaintance only if (Ai, Aj) ∈ N . Figure 1 shows three examples of social networks:
In the leftmost one, each agent has one acquaintance, in the middle one, each agent has
two acquaintances, and in the rightmost one each agent has three acquaintances.

Before declaring a prediction on the market, an agent Ai will first try to exchange
information with its acquaintances. Thus, Ai will engage in argumentation processes
about the correct solution of the problem at hand with each of its acquaintances before
making a prediction — following the argumentation formalism we introduced in [13].

3.1 Problem-Centered Information Exchange as Argumentation

An agent Ai can obtain new information concerning the solution of a problem P by en-
gaging in an argumentation process with another agent Aj , that might have information
unknown to Ai. During an argumentation process, two agents exchange information
concerning the solution of a specific problem P . Specifically, an agent may generate
an argument in favor of a particular solution and send it to the other agent. Agents can
also analyze a received argument, and agree or disagree with it. When an agent dis-
agrees with an argument, it might generate a counterargument or a counterexample.
By exchanging arguments and counterarguments two agents may reach a consensus
about which is the most plausible solution for a given problem taking into account the
information that both of them have. Therefore, the individual solution reached after an
argumentation process is in principle more informed, and thus more likely to be correct.

3.2 MPM with CBR agents

In our framework, each agent uses Case-Based Reasoning (CBR) [1] in order to gener-
ate predictions. Thus, each agent Ai owns a case base Ci, composed of a collection of
cases, Ci = {c1, ..., cm}. A case is a tuple c = 〈P, S〉 containing a case description P
and a solution S ∈ S. We will use the terms problem and case description indistinctly.

CBR agents can solve problems by themselves, using CBR problem solving meth-
ods. Moreover, agents can also try to obtain information from other agents in order to
increase their prediction accuracy. In a prediction market, given that each individual
agent is interested in maximizing its prediction accuracy (in order to obtain a higher
reward), it is rational for an agent to try to obtain the maximum information possible
from other agents before making its prediction.

Argumentation provides a formal and well founded way to problem-centered infor-
mation exchange. We will next summarize the case-based approach to multiagent argu-
mentation introduced in [13]: the kind of arguments and counterarguments supported,
how CBR agents generate arguments, and how agents compare arguments. Finally, we
will present a specific argumentation protocol for information exchange in prediction
markets, that agents can use to increase the accuracy of their predictions.

3.3 Arguments and Counterarguments

For our purposes an argument α generated by an agent A is composed of a statement
S and some information D endorsing the fact that S is correct. In the context of CBR
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Fig. 2. Relationship between two arguments:β2 is a counterargument of α1 because β2 is a re-
finement of α1 and predicts Y that is different from α1’s prediction X .

agents, agents argue about predictions for new problems and can provide two kinds of
information: a) specific cases 〈P, S〉, and b) justified predictions: 〈A,P, S,D〉. Using
this information, we can define three types of arguments: justified predictions, counter-
arguments, and counterexamples.

A justified prediction α is generated by an agent Ai to argue that Ai believes that
α.S is the correct solution for problem P because of justification α.D.

A counterargument β is an argument offered in opposition to another argument α.
In our framework, a counterargument consists of a justified prediction 〈Aj , P, S′, D′〉
generated by an agent Aj with the intention to rebut an argument α generated by another
agent Ai, that endorses a different solution S′ with a justification D′.

Figure 2 shows two arguments from our experimental setting in section 6. First
notice that each argument is predicting a different solution: α1 predicts X while β2

predicts Y . Moreover, α1 subsumes β2 (in other words, β2 is a specialization of α1),
meaning that all problems that satisfy β2 also satisfy α1. If the predictions are contra-
dictory (X 6= Y ) then β2 is a counterargument of α1.

A counterexample c is a case that contradicts an argument α. Thus, a counterexam-
ple is also a counterargument, stating that an argument α is not always true, and the
evidence provided is the case c. Specifically, a case c is a counterexample of an argu-
ment α if the following conditions hold: α.D v c and α.S 6= c.S, i.e. the case satisfies
the justification α.D while determining a solution different to than the predicted by α.

3.4 Argument Generation

In our framework, arguments are generated by the agents from cases, using learning
methods. Any learning method able to provide a justified prediction can be used to gen-
erate arguments. For instance, decision trees and LID [4] are suitable learning methods.
Specifically, in the experiments reported in this paper agents use LID. Thus, when an
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Fig. 3. Relationship between an argument and a case base. Dark stars are cases endorsing the
argument while white stars are cases contradicting it.

agent wants to generate an argument endorsing that a specific solution is the correct
solution for a problem P , it generates a justified prediction using LID.

Agents may try to rebut arguments by generating a counterargument or by finding
counterexamples. An agent Ai wants to generate a counterargument β to rebut an ar-
gument α when α is in contradiction with the local case base of Ai. Moreover, while
generating such a counterargument β, Ai expects that β is preferred over α. For that
purpose, agents use a specific policy to generate counterarguments based on the speci-
ficity criterion [14]. The generation of counterarguments using the specificity criterion
puts some requirements on the learning method but techniques LID or ID3 can be easily
adapted for this task (as shown in [13]).

For instance, in Figure 2, given an argument α1 that predicts X asserted by agent
A1 generating a counterargument means that agent A2 finds a description β2 such that
it is subsumed by α1 but (according to A2’s experience) predicts a solution Y 6= X .

Specifically, in our experiments, when an agent Ai wants to rebut an argument α,
uses the following policy: (1) Agent Ai tries to generate a counterargument β more
specific than α; if found, β is sent to the other agent as a counterargument of α. If not
found, then (2) Ai searches for a counterexample c ∈ Ci of α. If a case c is found, then
c is sent to the other agent as a counterexample of α. If an agent Ai is unable to generate
a counterargument or find a counterexample then Ai has no grounds to disagree with
argument α and can not rebut that argument.

3.5 Prediction Confidence

We will use a case-based confidence measure [13] to determine the degree of confi-
dence of an individual agent in its own argument (justified prediction) and also on the
counterarguments received from other agents. The confidence is assessed by the agents
via an process of examination of arguments. During this examination, an agent will
count how many of the cases in its individual case base endorse an argument α, and



how many cases are counterexamples of α. The more endorsing cases, the higher the
confidence; and the more the counterexamples, the lower the confidence.

While examining an argument α, an agent determines the set of cases in its individ-
ual case base that are subsumed by α.D (the cases shown as stars in the circle of Figure
3): the more of these cases that have α.S as solution, the higher the confidence. After
examining an argument α, an agent Ai obtains the aye and nay values: The aye value
Y Ai

α = |{c ∈ Ci| α.D v c.P ∧ α.S = c.S}| is the number of cases in the agent’s case
base subsumed by the description α.D that has solution α.S proposed by α, while the
nay value NAi

α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the number of cases in the
agent’s case base subsumed by description α.D that do not have that solution.

Figure 3 shows an the examination process where, given an argument α, an agent
first retrieves all the cases that are subsumed by α.D from the case base, and then counts
how many are counterexamples (white stars) or endorsing cases (black stars).

The confidence on an argument α is assessed by an agent Ai as follows:

CAi(α) =
Y Ai

α + 1
Y Ai

α + NAi
α + 2

where the reason for adding 1 to the numerator and 2 to the denominator is akin to the
Laplace correction to estimate probabilities.

3.6 Information Exchange Protocol

In this section we will define an information exchange protocol that allows agents in
an information market to exchange information with its acquaintances in the social
network. Intuitively, an agent will engage into one-to-one argumentation processes with
each one of his acquaintances sequentially, trying to improve its prediction at each step.
The intuition is that after each discussion, the solution is more likely to be the correct
one, since more information has been taken into account to come up with it.

Let us assume that a particular agent Ai wants to generate a prediction for a problem
P . Let F ⊆ A be the set of m acquaintances of Ai. The information exchange protocol
initiates a series of argumentation processes between Ai and each of the agents in F in
a series of rounds. In the first round r = 0, Ai simply generates its individual prediction
in the form of an argument α0. Then, in the next round r = 1, Ai will argue with the
first agent Aj ∈ F and refine its prediction into a better one α1. At the end of round
r = m, Ai will have a prediction αm that will be the final one made for the market.

Each one of these argumentation processes in itself consists of a series of cycles.
In the initial cycle, each agent states which is its individual prediction for P . Then, at
each cycle an agent can try to rebut the prediction made by the other agent. The agents
alternate turns in the protocol, and an agent is allowed to send one counterargument or
counterexample at its turn. When an agent receives a counterargument or counterex-
ample, it informs the other agent if it accepts the counterargument (and changes its
prediction) or not. Moreover, agents have also the opportunity to answer to counterar-
guments in their turn, by trying to generate a counterargument to the counterargument.
At any time the protocol terminates when all the agents agree or when no agent has
generated any counterargument during the last two cycles.

During the argumentation protocol, agents can use the following performatives:



– assert(α): the justified prediction held during the next cycle will be α. If multiple
asserts are send, only the last one is considered as the currently held prediction.

– rebut(β, α): the agent has found a counterargument β to the prediction α.

We will define αt
i as the prediction that an agent Ai is holding at iteration t of the

argumentation protocol, and Ht as the set containing the predictions that each of the
two agents hold at a cycle t. The argumentation protocol between an agent Ai, that is
currently holding a prediction αr at a round r of the information exchange protocol,
and an acquaintance Aj works as follows:

1. At cycle t = 0, the initial argument of Ai will be the one coming from the previous
round αr, thus α0

i = αr. The initial argument of Aj will be the result of trying
to solve P individually, building a justified prediction using its own CBR method.
Then, each agent sends the performatives assert(α0

i ) and assert(α0
j ) respectively

to the other agent. Thus, the agents know H0 = 〈α0
i , α

0
j 〉. The turn is given to the

first agent Ai.
2. At each cycle t (other than 0), the agents check whether their arguments in Ht

agree. If they do, the protocol moves to step 5. If during the last 2 cycles no agent
has sent any counterexample or counterargument, the protocol also moves to step
5. Otherwise, the agent Ai who has the turn tries to generate βt

i (a counterargument
or a counterexample) against the argument of the other agent:

– If βt
i is a counterargument, then, Ai locally compares αt

i with βt
i by assessing

their confidence against its individual case base Ci (notice that Ai is comparing
its previous argument with the counterargument that Ai itself has just generated
and that is about to send to Aj). If CAi(β

t
i ) > CAi(α

t
i), then Ai considers that

βt
i is stronger than its previous argument, changes its argument to βt

i by sending
assert(βt

i ) to the rest of the agents (i.e. Ai checks if the new counterargument
is a better argument than the one it was previously holding) and rebut(βt

i , α
t
j)

to Aj . Otherwise (i.e. CAi(β
t
i ) ≤ CAi(α

t
i)), Ai will send only rebut(βt

i , α
t
j)

to Aj . In any of the two situations the protocol moves to step 3.
– If βt

i is a counterexample c, then Ai sends rebut(c, αt
j) to Aj . The protocol

moves to step 4.
– If Ai cannot generate any counterargument or counterexample, the turn is given

to the next agent, a new cycle t + 1 starts, and the protocol moves to state 2.

3. The agent Aj that has received the counterargument βt
i , locally compares it against

its own argument, αt
j , by locally assessing their confidence. If CAj (β

t
i ) > CAj (α

t
j),

then Aj will accept the counterargument as stronger than its own argument, and it
will send assert(βt

i ) to the other agent. Otherwise (i.e. CAj
(βt

i ) ≤ CAj
(αt

j)), Aj

will not accept the counterargument, and will inform the other agent accordingly.
Any of the two situations start a new cycle t+1, Ai gives the turn to the next agent,
and the protocol moves to state 2.

4. The agent Aj that has received the counterexample c retains it into its case base
and generates a new argument αt+1

j that takes into account c, and informs the rest
of the agents by sending assert(αt+1

j ) to all of them. Then, Ai gives the turn to the
other agent, a new cycle t + 1 starts, and the protocol moves to step 2.



5. The argument that Ai is holding is the one that will be carried on to the next round
of the information exchange protocol, i.e. when Ai engages in an argumentation
with the next agent out of his acquaintances.

Moreover, in order to avoid infinite iterations, if an agent sends twice the same
argument or counterargument to the same agent, the message is not considered.

3.7 Bet Generation

At the end of the information exchange protocol, an agent Ai will have a prediction α
for a particular solution class. Moreover, in order to participate in a prediction market,
the agent has to bet a particular amount of money on its prediction. The more money the
agent bets, the bigger the potential reward is, but the bigger the risk. Thus, it is natural
for an agent to bet more money when it is more confident that its prediction is correct.
For that reason, in our framework, agents bet money proportionally to the confidence
(computed as explained in Section 3.5) on their predictions. Since an MPM defines a
maximum amount of money M that each agent can bet, each agent will bet M ×C(α),
i.e. a proportional amount to its individual confidence. Thus, the bet made by an agent
Ai that has a prediction α after the information exchange process will be:

BAi = 〈α.S, M × C(α)〉

4 Experimental Evaluation

In this section we will empirically evaluate the performance of prediction markets, com-
paring it to the performance of normal voting. Moreover we will also study the effect
of having different social networks among the agents in the market and how much the
quality of data affects the market.

We have made experiments in the sponge data set, a marine sponge identification
tasks that contains 280 marine sponges represented in a relational way and pertaining to
three different orders of the Demospongiae class. In an experimental run, training cases
are distributed among the agents. In the testing stage problems arrive to the market, and
each agent will place a bet for the solution they predict is the correct one.

We have performed three sets of experiments. In the first set, we are interested
in comparing prediction markets with majority voting, in the second one we want to
explore the effect of argumentative information exchange in prediction markets, and
finally, the third one explores the effect of varying the quality of the data sample that
each agent owns. Each experiment consists of 5 runs of a 5-fold cross validation test.
Notice that in step 4 of the argumentation protocol in section 3.6, agents learn from
counterexamples coming from other agents. In the experiments we performed, each
problem in the test set has to be independent from one another, in order to compute the
averages for cross validation. Thus, the learning performed during argumentation is not
carried up to the next problem in the test set. We have researched the issue of learning
from communication in other multiagent scenarios in [12].



social network market accuracy individual accuracy average reward majority voting
0 acquaintances 89.71% 74.21% 10.35

89.71
1 acquaintances 90.57% 83.99% 11.42
2 acquaintances 91.29% 86.63% 12.14
3 acquaintances 91.14% 87.64% 11.94 0.20
4 acquaintances 91.07% 88.16% 11.85 0.21

Table 1. Prediction markets accuracy with information exchange along several social networks
and with different biases in the individual case bases.

4.1 Prediction Markets versus Majority Voting

For these experiments we evaluated the prediction accuracy of a committee using ma-
jority voting consisting of 8 agents with a prediction market consisting of the same 8
agents. The training set is split into 8 parts and each part is sent to an agent. Thus, each
agent has an initial case base of about 28 cases.

Agents solving problems using a prediction market didn’t do any information ex-
change for this experiment. The maximum bet was set to M = 100, and the incentive
factor was set to X = 10%, thus c = 1.1. The results showed that the majority vot-
ing achieved a prediction accuracy of 88.93%, while the prediction market achieved an
accuracy of 89.71%, a significant improvement. Moreover, agents won an average of
10.35 monetary units per problem solved. In a voting committee, agents are only asked
to reveal part of its individual information, namely the preferred alternative for which
an individual casts a vote. In a prediction market, however, the amount bet by an indi-
vidual acts as a “signal” indicating the degree of individual confidence in predicting the
preferred alternative as being the correct one. Since the reward is proportional to the bet
amount, the agents have an incentive to disclose this additional information.

Since the reward is proportional to the individual prediction confidence, the agents
have an incentive to try to improve their individual prediction accuracy and confidence.

4.2 The Effect of Information Exchange

We performed several experiments with different social networks in a prediction market
composed of 8 agents. Figure 1 shows some social networks where each agent has 0,
1, 2 or 3 acquaintances; we have performed experiments with 0 to 4 acquaintances and
logged the prediction accuracy of the market, the prediction accuracy of each individual
agent, and also the average money reward received by each agent per problem.

Table 1 shows that information exchange is positive both for the individual agents
and for the market as a whole. We can see that the more acquaintances an agent has,
the higher its individual prediction. For instance, agents with 0 acquaintances have an
accuracy of 74.21% while agents with 1 acquaintance have an accuracy of 83.99%, and
when they have 4 acquaintances, their accuracy is increased to 88.16%. Moreover, the
predictive accuracy of the market increases from 89.71% when agents do not perform
information exchange, to above 91% when agents have more than 1 acquaintance.

These results also show that the argumentation process of section 3.6 is successful
in in acquiring individually valuable information. The increase in individual accuracy



and confidence in prediction can only be explained by agents changing their original
prediction and confidence value after arguing with other agents.

Another effect we can observe is that the reward that the agents obtain increases
when they perform information exchange, starting in 10.35 monetary units per problem
when they do not perform information exchange, and going up to close to 12 when
agents have 2 acquaintances ore more. It is interesting to notice that the performance of
the prediction market doesn’t increase linearly with the performance of the individual
agents. In fact, the more accurate the individual agents get, the more correlated their
individual predictions are, and thus there is less difference between their individual
predictions and the prediction of the market as a whole. This is a well known effect
in machine learning (known as the ensemble effect [9]), or in economics (related to
the Condorcet Jury Theorem). Therefore, if the reward signal that the agents get was
only related to its individual accuracy, agents might be interested in their classification
accuracy to a point were the correlation is too high, and then the market would not
achieve it’s optimal accuracy. The reward signal presented in Section 2 takes this into
account, and rewards the agents when the market as a whole has high accuracy.

Moreover, Table 1 shows that the reward signal is higher when the market accu-
racy is higher (in our experiments, when agents have 2 acquaintances), instead of when
their individual accuracy is higher. Therefore, the agents have an incentive to be highly
accurate, but up to a limit, so that the market as a whole has a high accuracy. In our
experiments, the agents receive maximum reward when they collaborate with two ac-
quaintances, and thus it is rational for the agents to do so. As a side effect, the accuracy
of the market as a whole is also maximum under those conditions, thus the agents have
an incentive to do what is better for the market.

Summarizing, the experiments show that prediction markets can provide incentives
for agents to disclose more information, and that information improves the accuracy of
joint predictions or group judgments. The MPM is based on disclosing further informa-
tion interpreted as a bet amount that represents the individual confidence on a predic-
tion. The results also show that the case-based confidence function defined in Section
3.5 provides a good estimation, since the prediction market improves the accuracy.

Concerning information exchange, the experiments show that individual and market
accuracy improve. This means that the agents make a more informed prediction, and
thus that the argumentation protocol of Section 3.6 is effective in providing agents with
enough information to correct previously inaccurate predictions.

4.3 Quality of the Data Sample

The results in the previous section assume that each agent have a good sample of data,
i.e. that each agent is competent. We performed a set of experiments where we changed
the quality of the data sample that each agent has and evaluated how this affects the
performance of the market, as well as the individual agents.

Specifically, we performed experiments where agent have biased case bases. A bi-
ased case base is one that is not a good sample of the complete data set. The bias of a
case base Ci with respect to a data set C is defined by:



bias social network market accuracy individual accuracy average reward majority voting

0.2

0 acquaintances 90.14% 73.01% 10.44

89.00
1 acquaintances 89.86% 82.79% 10.29
2 acquaintances 90.07% 85.80% 10.53
3 acquaintances 91.21% 87.16% 11.54
4 acquaintances 91.36% 87.49% 11.79

0.4

0 acquaintances 88.71% 66.43% 8.86

84.86
1 acquaintances 87.79% 75.95% 7.43
2 acquaintances 89.43% 79.56% 8.63
3 acquaintances 90.57% 81.7% 9.59
4 acquaintances 90.79% 82.16% 9.84

0.6

0 acquaintances 86.29% 58.05% 6.7

83.29
1 acquaintances 88.00% 70.00% 6.75
2 acquaintances 90.14% 74.94% 8.05
3 acquaintances 89.36% 74.48% 7.33
4 acquaintances 89.21% 75.51% 7.21

0.6

0 acquaintances 49.71% 38.63% -32.36

55.57
1 acquaintances 48.00% 41.26% -23.64
2 acquaintances 61.43% 47.52% -16.55
3 acquaintances 67.43% 55.67% -0.02
4 acquaintances 66.93% 55.44% -0.53

Table 2. Prediction markets accuracy with information exchange along several social networks
and with different biases in the individual case bases.

B(Ci) =

√√√√ ∑
k=1...K

(
#({c ∈ Ci|c.S = Sk})

#(Ci)
− #({c ∈ C|c.S = Sk})

#(C)

)2

Notice that Case Base Bias is zero when the ratio of cases for each solution class is
the same in the case base Ci than in the data set C. The higher the bias, the worst the
sample.

We performed experiments giving agents case bases with bias 0.2, 0.4, 0.6, and 0.8
(results in Table 1 correspond to bias equal to 0.0). Table 2 shows the accuracy of the
market, of the individual agents, and also of majority voting. If we look at the accuracy
of majority voting, we can see that it degrades when the bias increases, since the in-
dividual agents’ predictions also degrades. For instance, the classification accuracy of
majority voting degrades from 88.93% when the bias is 0.0 to 83.29% when the bias is
0.6 or to 55.57% when the bias is 0.8 (0.8 is a really large bias in our sponge data set,
and each agent almost only knows cases of a single class).

Concerning market’s accuracy, increasing the bias also diminishes its accuracy, but
remarkably much less than for majority voting; in fact market’s accuracy is strongly
affected only when the bias is very high. For instance, a prediction market where agents
have 4 acquaintances with bias 0.6 has still an accuracy of 89.21% (compared to 83.29%
of majority voting). The accuracy of individual agents is much more affected by bias,



being reduced from 74.21% with no bias to 58.05% with bias 0.6 when they have no
acquaintances. When the bias is even larger (0.8), their accuracy goes down drastically
to 38.63%. As the number of acquaintances increases, the individual accuracy largely
increases, showing that the argumentation framework allows agents to efficiently ex-
change information and benefit from information in the case bases of acquaintances. For
instance, the individual accuracy with bias 0.6 recovers from 58.05% with no acquain-
tances to 75.51% with 4 acquaintances. This effect of argumentation is thus responsible
for the increase of the market’s accuracy with bias 0.6 recovers from 86.29% with no
acquaintances to 89.21% with 4 acquaintances. Even in the extreme case with 0.8 bias,
argumentation is able to increase the accuracy of individual agents. Therefore, we can
conclude that an argumentation-based process of information exchange is very useful
in conditions where individuals do not have a perfect (or very good) sample of data in
which to base its decisions. Argumentation allows each individual agent to contrast its
empirically-based judgements with those of its peers and acquire new information that,
albeit partially, help it recover a better sample of data.

An interesting effect is that when the bias is extreme, the confidence the agents
computes is not accurate: this is the only scenario where the market has lower accuracy
than simple majority voting and where the agents obtain a negative reward. However,
by means of information exchange (having acquaintances) even in this extreme scenario
the quality of the individual solutions increases, and thus the market accuracy also in-
creases, from 48.0% accuracy with no information exchange to 67.43% and 66.93%
when agents have 3 and 4 acquaintances respectively.

Thus, in summary, we see that by means of information exchange using an argu-
mentation process, agents become much more robust to biased data than standard vot-
ing mechanisms, by leveraging available information in the acquaintances’ case bases.
Agents with biased case bases benefit from exchanging information (by means of argu-
mentation processes) with other agents, and the result of argumentation among agents
with different biases is a less biased prediction that can largely overcome the effect of
bias (except in the extreme case of 0.8 bias, where we see an improvement, but not up
to the levels achieved when there is no bias). However, notice that in our experiments,
the cases learnt from other agents during argumentation are not stored (for experimen-
tation purposes), it is part of our future work to explore how retention of cases can help
agents to further overcome the effect of bias (continuing the work started in previous
work [12]).

5 Related Work

Research on prediction markets has been focused on exploiting human knowledge [17],
and to our knowledge they have not been used in multiagent systems. Research in MAS
is generally focused on negotiation processes and much less on social choice, in the
sense of modeling and implementing processes where a group of agents achieve a joint
judgment. As argued in [8], computational approaches to social choice can benefit both
social choice studies and AI. Impossibility theorems proved in theoretical approaches
to social choice do not prevent the design of reasonably fair and robust mechanisms [3].



Other approaches in social choice (different from prediction markets) have been
applied to MAS. What we have been calling statistical means approaches (that includes
voting) have been applied to MAS, from simple voting to complex schemes such as
voting for combinatorial domains [10]. Deliberative approaches to group judgment have
also been studied, for instance in [13] a committee of agents argue the pros and cons
of a group judgment. Market mechanisms have been applied to resource allocation [15]
or other types of market goods. Our focus here is rather different: developing an agent-
based information or prediction market for group judgment.

Concerning on argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument selection
and c) argument interpretation. Approaches for logic and languages that support argu-
mentation include defeasible logic [7] and BDI models [16]. An overview of logical
models of reasoning can be found at [6]. Moreover, the most related area of research is
case-based argumentation. Combining cases and generalizations for argumentation has
been already used in the HYPO system [5], where an argument can contain both specific
cases or generalizations. Moreover, generalization in HYPO was limited to selecting a
set of predefined dimensions in the system while our framework presents a more flexible
way of providing generalizations. Furthermore, HYPO was designed to provide argu-
ments to human users, while we focus on agent to agent argumentation. Case-based
argumentation has also been implemented in the CATO system[2], that models ways
in which experts compare and contrast cases to generate multi-case arguments to be
presented to law students.

6 Conclusions

Mechanisms for group judgment (voting, deliberation, etc) are ubiquitous in human so-
cieties. However, in addition to the formal structure of the group judgment mechanism,
the informal structure play an important role [17]. We have considered here the effect of
an informal structure (social networks used to exchange information mediated by argu-
mentation) in a formal group judgment mechanism (MPM). We have shown that these
social networks maybe individually useful for artificial agents, since agents may use
argumentation to improve their information about the world. Therefore, artificial mul-
tiagent systems will also have to deal with the interplay of informal structures together
with formal group judgment mechanism.

We have taken a typical task of prediction form a Machine Learning data set and
we had goal of developing a simple market called MPM. The basic idea of MPM is
that learning agents can use data concerning a prediction task domain to predict new
unknown problems and, moreover, use the learnt data to implement a confidence esti-
mate of their own predictions. Then, the prediction market design has to be set up to
encourage the expression of the agents confidence as a “price signal”. Clearly, this is
a quite general approach, and different variations can be explored in future work: im-
proving the confidence estimation functions, modifying the market reward scheme or
using other machine learning techniques.

We also introduced a process of deliberation based on an argumentation protocol
inside the framework of prediction markets. The reason is twofold: first, we wanted to



model the idea that people often consult trusted people before making a decision (i.e.
they not only learn from experience, but also from communication). Second, current
state of the art in multiagent learning suggests that the individual accuracy and con-
fidence increases after a deliberative process [13]. The experiments shown that this is
the case: information exchange supported by an argumentation process increases indi-
vidual accuracy and confidence. As expected, the information exchange also increases
the error correlation among agents [12], decreasing the so-called “ensemble effect”
that increases joint accuracy over the individual accuracy. The conclusion thus is that
information exchange is beneficial to a certain extent, i.e. among a small number of in-
dividuals compared to the total number of participating individuals, in such a way that
individual performance is rather increased but error correlation is not much increased.
We have also shown that information exchange helps agents with biased views of the
problem to overcome their bias and produce more accurate predictions.

Although we presented the results for one data set, any other classification machine
learning data set could be used. Current state of the art in multiagent learning suggests
that the only difference would be on the degree in which the prediction market surpasses
voting [11, 13].

As part of our future work, we plan to explore how our techniques will extend to
fully open multi-agent systems, where there are several different problems that agents
must solve, and not all agents ar competent in all of them, agents use heterogeneous
learning mechanisms, and not all agents are trustable. So, agents will have to learn
which agents are trustable and which ones are not, and the argumentation process has
to be generalized to support heterogeneous learning methods. Our final goal is to define
a framework for learning agents with problem solving, learning, collaboration and argu-
mentation capabilities ready to be deployed and be autonomous in an open multi-agent
system for real-life application.
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