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Abstract

In this paper a multiagent Tourism Recommender System is presented. This system has a multiagent architec-
ture and one of its main agents, The Travel Assistant Agent (T-Agent), is modelled as a graded BDI agent. The
graded BDI agent model allows to specify an agent’s architecture able to deal with the environment uncertainty
and with graded mental attitudes. We focus on the implementational aspects of the multiagent system and espe-
cially on the T-Agent development, going from the theorical agent model to the concrete agent implementation.
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1. INTRODUCTION

In the last years the Artificial Intelligence (AI) community has carried out a great deal of work
on recommender systems [12]. This kind of systems can help people to find out what they want,
especially on the Internet. Agent technology becomes invaluable by appreciating the facts that we
expect these systems to take personal preferences into account, and to infer and intelligently aggregate
opinions and relationships from heterogeneous sources and data. Furthermore, we want the systems to
be scalable, open, privacy-protecting and we want to get the recommendations with the least possible
work on users’ behalf [7]. From the application of this technology results a community of distributed,
complex and autonomous recommender agents.

Among recommender systems we particularly concentrate on the tourism domain. The travel and
tourism industry is one of the most important and dynamic sectors in Business-to-consumer (B2C)
e-Commerce. In this context, recommender applications can be valuable tools supporting, for ex-
ample, information search, decision making, and package assembly. Moreover this is an interesting
domain, where diverse user’s preferences and restrictions can be considered. Because of this variety,
the recommendation systems can be treated in different levels of complexity and the knowledge-based
approaches are very suitable [1].

Also, several architectures have been proposed to give agents a formal support. Among them, a
well-known intentional formal approach is the BDI architecture proposed by Rao and Georgeff [9].
This model is based on the explicit representation of the agent’s beliefs (B), its desires (D), and its



intentions (I). Indeed, this architecture has evolved over time and it has been applied, to some extent,
in several of the most significant multiagent applications developed up to now.

We consider that making the BDI architecture more flexible, will allow us to design and develop
agents potentially capable of having a better performance in uncertain and dynamic environments.
Along this research line we have proposed a general model for Graded BDI Agents (see [2]), specify-
ing an architecture able to deal with the environment uncertainty and with graded mental attitudes. In
this agent model, belief degrees represent to what extent the agent believes a formula is true. Degrees
of positive or negative desires enable the agent to set different levels of preference or rejection respec-
tively. Intention degrees give also a preference measure but, in this case, modelling the cost/benefit
trade off of reaching an agent’s goal. Then, agents having different kinds of behavior can be modelled
on the basis of the representation and interaction of these three attitudes.

In this work we present the development of a tourist recommender as a case study. The system goal
is to recommend the best tourist packages on argentinian destination according to user’s preferences
and restrictions. The packages are provided by different tourist operators. This system is designed
using a multiagent architecture and we particularly use the g-BDI model to specify one of its agents,
the Travel Assistant Agent (T-Agent). The purpose of this prototype implementation is to show that
the g-BDI agent model is useful to develop concrete agents on real domain.

In previous works we have presented the modelling process of a Travel Recommender Agent
using the g-BDI architecture [3] and a general methodology for engineering g-BDI agents [?]. In this
paper we describe the most relevant aspects of the tourism recommender system implementation and
particularly we focus on the T-Agent implementation. This paper is structured as follows, in Section 2
we briefly introduce the g-BDI agent model. Then, in Section 3 the multiagent Tourism Recommender
System is presented and in the next Section 4, the principal aspects of the T-Agent implementation
are described. Finally, in Section 5 some conclusions are exposed.

2. GRADED BDI AGENT MODEL

The graded BDI model of agent (g-BDI) allows to specify agent architectures able to deal with the
environment uncertainty and with graded mental attitudes. In this sense, belief degrees represent to
what extent the agent believes a formula is true. Degrees of positive or negative desire allow the agent
to set different levels of preference or rejection respectively. Intention degrees give also a preference
measure but, in this case, modelling the cost/benefit trade off of reaching an agent’s goal. Thus, a
higher intention degree towards a goal means that the benefit of reaching it is high, or the cost is low.
Then, Agents having different kinds of behavior can be modeled on the basis of the representation
and interaction of these three attitudes.

The specification of the g-BDI agent model is based on Multi-context systems (MCS) [?] to allow
different formal (logic) components to be defined and interrelated. The MCS specification contains
two basic components: units or contexts and bridge rules, which channel the propagation of conse-
quences among theories. Thus, a MCS is defined as a group of interconnected units:

〈
{Ci}i∈I , ∆br

〉
,

where each context Ci ∈ {Ci}i∈I is the tuple Ci = 〈Li, Ai, ∆i〉 where Li, Ai and ∆i are the lan-
guage, axioms, and inference rules respectively. When a theory Ti ⊆ Li is associated with each unit,
the specification of a particular MCS is complete. ∆br can be understood as rules of inference with
premises and conclusions in different contexts.

The deduction mechanism of these systems is based on two kinds of inference rules, internal rules
∆i, and bridge rules ∆br, which allow to embed formulae into a context whenever the conditions of
the bridge rule are satisfied.

In the g-BDI agent model, we have mental contexts to represent beliefs (BC), desires (DC) and
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Figura 1: Multi-context model of a graded BDI agent and a bridge rule example.

intentions (IC). We also consider two functional contexts: for Planning (PC) and Communication
(CC). Thus, the g-BDI agent model is defined as the MCS: Ag = ({BC, DC, IC, PC, CC}, ∆br).

The overall behavior of the system will depend of the logic representation of each intentional
notion in the different contexts and the bridge rules. The specification of the g-BDI agent model, with
the logic schema for each context (i.e. the language, axioms and inference rules and a set of basic
bridge rules can be seen in [2]. The left side of Figure 1 illustrates the g-BDI agent model proposed
with the different contexts and the bridge rules relating them.

The intention degree trades off the benefit and the cost of reaching a goal, by a plan execution.
One of the bridge rules included in the agent model (see Figure 1 right side) infers the degree of
intention towards a goal ϕ (Iϕ) for each plan α that allows to achieve the goal. This value is deduced
from the degree of desire D+ϕ (d), the expected satisfaction of the desire through the plan execution
(r) and the cost (c) of the plan. This degree is calculated by a suitable function f .

In order to represent and reason about graded notions of beliefs, desires and intentions, we use a
modal many-valued approach where uncertainty reasoning is dealt with by defining suitable modal
theories over suitable many-valued logics. For instance, let us consider a Belief context where belief
degrees are to be modeled as probabilities. Then, for each classical formula ϕ, we consider a modal
formula Bϕ which is interpreted as “ϕ is probable”. This modal formula Bϕ is then a fuzzy formula
which may be more or less true, depending on the probability of ϕ. In particular, we can take as truth-
value of Bϕ precisely the probability of ϕ. Moreover, using a many-valued logic, we can express
the governing axioms of probability theory as logical axioms involving modal formulae. Then, the
many-valued logic machinery can be used to reason about the modal formulae Bϕ, which faithfully
respect the uncertainty model chosen to represent the degrees of belief. In this proposal, for the mental
contexts we choose the infinite-valued Łukasiewicz logic but another selection of many-valued logics
may be done for each unit, according to the measure modeled in each case.

To set up an adequate axiomatization for our belief context logic we need to combine axioms
for the crisp formulae, axioms of Łukasiewicz logic for modal formulae, and additional axioms for
B-modal formulae according to the probabilistic semantics of the B operator. The same many-valued
logic approach is used to represent and reason under graded attitudes in the other mental contexts.
The formalization of the adequate logics –language, semantics, axiomatization and rules – for the
different contexts is described in [2].

3. TOURISM RECOMMENDER SYSTEM

In this section we present the general architecture of the Tourism Recommender System. The
methodological aspects of the analysis and design stages of this case study can be seen in [4].



Inspired in the different members of a Tourism Chain, in the analysis phase we have detected the
following roles: the Provider role (tourist package providers), the Travel Assistant role and Services
role (hotel chains, airlines, etc.). In this case study we don’t deal with the Service role, we only men-
tion it as a necessary collaborator of the Provider role. Other functional roles were captured i.e., the
Interface role, to manage the user interface and the Reservory-Maintenance role (R-Maintenance), to
charge, translate to an adequate format and discharge the tourist packages that are sent by the Provider
role. In this simplified version of Recommender System, we define two agent’s types: the Provider
agent and the Travel Assistant Agent. We assign the Interface role, the Reservory Maintenance role
and the Travel Assistant role to the Travel Assistant Agent (T-Agent). As it is natural in the Tourism
Chain, different Tourist Operators may collaborate in the Provider role. To represent these different
sources of tourist packages, we use two different agents (P-Agents). This multiagent system is easily
scalable to include other providers.

The agents in the Recommender system with the principal source of information they interact with
(i.e., the destination ontology and the package reservory), are illustrated in Figure 2.

Figura 2: Multiagent architecture for the Tourism Recommender System

The implementation of the Recommender system was developed using SWI-Prolog [11]. This is a
multi-threaded version of prolog allowing an independent execution of different contexts (i.e. in dif-
ferent threads). A prior implementation of multi-context agents using this software [6] was a starting
point for our development. Furthermore, this prolog version is open source, it is well documented and
includes a graphic interface tool in native language.

For our recommender system, each provider agent in the multi-agent systems may be executed
in one thread and different threads correspond to the T-Agent components. The software has a set of
instructions to deal efficiently with the message communication between threads.

3.1. Providers agents

In our multiagent recommender system two Tour Operator agents (P-Agents) are implemented,
but the architecture enables to easily include other providers. These agents are only considered as
packages suppliers and therefore, we do not get into the inner architecture of them. Each P-Agent
runs in a different thread being in this way independent from each other and from the T-Agent. When
the T-Agent requests for information, the P-Agents send all the current packages they can offer. The
communication between agents is by message interchange.



Figura 3: Esquema de módulos e interconexión

In the real world each tourism operator may structure the tourist packages in a different way and
using its own terminology. To experiment with heterogeneous providers, we use different field names
in the plan structure used in each P-Agent. Then, these structures are translated into the format the
T-Agent use. Thus, a wrapper functionality is needed and it is carried out by the Communication
context of the T-Agent. In a more complete multiagent recommender architecture a wrapper agent
may be included.

4. T-AGENT IMPLEMENTATION

The principal role of the T-Agent is to give tourists recommendation about argentinian packages.
This agent may be suitable modelled as an intentional agent and particularly, by a g-BDI agent model.
This agent model is specified by a multicontext architecture having mental and functional contexts
(i.e, BC, DC, IC, PC and CC) and a set of bridge rules (BRs).

Then, for developing the T-Agent the implementation of these interconnected components is need-
ed. Each context has its own inference rules and facts, and they should not interfere. Choosing to use
a thread for each context allows the desired separation but could slows considerably the application.
The solution adopted for our implementation was to place some of these components in different
threads. That is the case for the Communication context (CC), the Desire context (DC) and some
bridge rules. Since the Belief (BC), Planner (PC) and Intention (IC) contexts interchange quite a lot
of information, for efficiency reasons they run in the same thread. The multithread scheme for the
T-Agent in the multiagent system is illustrated in Figure 3.

For this multithreaded implementation the policy adopted following [6], is to have asynchronous
threads and asynchronous communication. It means that the messages are sent and received at any
time, but they are processed only when the unit is inactive (has finished the internal deductions). Each
Unit has got a message queue that retains the messages until they are been processed. A communica-
tion meta-interpreter, is devoted to synchronise the ongoing inference process and the arrival of new
incoming messages.

In our prototype the principal interchange of messages is during the initial stage. In this phase the
T-Agent asks the P-Agents for the current tourist packages. Answering this request, the P-Agents send
many messages, each one containing a package offered. The software tool successfully support this
intensive messages interchange.

The Communication context (CC) in the T-Agent is in charge of receiving these messages, translat-
ing them and immediately it sends them to the Belief context (BC). In this way the agent knowledge
is increased with the package information. In the next subsections we described how the principal
multi-context components of the T-Agent are implemented in order to obtain the desired behavior.



We begin with the Communication context that provides the agent with a unique and well-defined
interface with the environment.

4.1. Communication Context

The Communication context (CC) constitutes the T-Agent interface with its environment and
makes it possible to encapsulate the agent’s internal structure. This context will take care of the send-
ing and receiving of messages to and from other agents in the multiagent society where our graded
BDI agents live. The CC is in charge of interacting with the tourism operators (P-Agents) and with
the tourist that is looking for recommendation.

In an extended version of this system, all the interactions could be improved in many different
aspects (e.g. being more dynamic).

4.1.1. Interaction with the P-Agents

The T-Agent before beginning its recommendation task, updated its information about current
packages (carrying out its reservory maintenance role). This is achieved by the CC through the fol-
lowing steps:

Require the packages offered - The CC sends a message to each P-Agent asking them for the cur-
rent touristic packages they offer.

Receive packages and translate them - The CC behaves as a wrapper, translating the incoming
packages into the T-Agent format.

Send packages - Once the packages are put into the correct format, they are sent to the Planner con-
text. The recommendation will derive from this package information and domain knowledge.

4.1.2. User interface

The user interface is in charge of explicitly acquiring the tourist’s profile, giving him the resulting
recommendation and receiving the user’s feedback. In a first approach this interface was developed
using the native graphic library of the software tool. As a tool requirement, this graphic interface runs
in an independent thread in closed interaction with the CC one. This interface may be divided into the
next sequential stages:

User’s preferences acquisition: These preferences are explicitly acquired asking him to fill in a
form. The tourist can select his preferences (positive desires) and restrictions (negative desires)
assigning them a natural number from 1 to 10 to represent the level of preference (resp. restric-
tion) in the selected item. Furthermore, he can choose different parameters as: the flexibility of
restrictions (flexible or strict), the espected frequency of the selected activity (high or low) and
the priority criterion to order the recommended packages (preference satisfaction, minimum
cost or trust). An example of a tourist’s selection using this interface is shown in Figure 4.

Once the user finishes his selection, the CC sends all the acquired information to the Desire
context (DC).

Bring the resulting recomendation: As result of the T-Agent deliberation process, the CC receives
from the Intention context (IC) a ranking of feasible packages that satisfies some of the tourist
preferences. The ranking is ordered also taking into account the priority criterion he has selected



Figura 4: User interface: acquisition of pref-
erences

Figura 5: User interface: package recommen-
dation

(e.g. preference satisfaction). The first packages of this ranking are showed to the tourist and the
user can visualize the information about them opening pdf files (may be used other multimedia
files).

Receive Tourist’s feedback: After analyzing the ranking of the recommended packages the user can
express through the interface his opinion about the recommendation. For this task, the options
considered are the following:

Correct: The user is satisfied with the ranking obtained.

Different order: The given recommended packages are well considered by the user, but
are in a different order than the user’s own ranking. Then, he is able to introduce the three
best packages in its right order.

Fair: The user is not satisfied with the given recommendation. Then, the interface enables
him to introduce a comment about his opinion.

All the information resulting from the previous stages (i.e., the tourist’s preferences, the recom-
mendation given and the user’s feedback) is stored as to evaluate the system performance.

4.2. Desire Context

As the T-Agent is a kind of personal agent, its overall desire is to maximize the satisfaction of
tourist’s preferences. Then, in this context the different tourist’s graded preferences and restrictions
are respectively represented as positive and negative desires.

On the one hand, the negative desires are used as strong constraints namely, the T-Agent will look
for packages that will not make true any of them. On the other hand, from the elementary positive
desires all their conjunctions are built as combined desires. The T-Agent will use all these desires as
pro-active elements, looking for different packages that will allow tourists to satisfy any of them.

Then, the theory in this context is constituted by positive and negative desires (represented by
desU formulae).



The user’s preferences are acquired in the CC by the user interface and are introduced in a list to
the DC. The message is first pre-processed by the meta-interpreter. In the following items we describe
how the positive desires are built, in a similar way the negative ones are treated:

1. Elementary desires: The DC takes each desire from the list received from the CC, normalizes
its degree (i.e. mapping it from {1, ..., 10} into (0, 1]) and adds it to the context formulae. The
structure of these formulae is: desU(y(Desire, V alue), NormalizedDegree)

The relation y(Desire, V alue) represents a positive desire where the first argument is the class
of desire (e.g. transport “transporte”) and the second is the value the tourist has chosen (e.g.
plane “avion”), followed by the normalized degree (e.g. 0.8). For instance, elementary desires
in DC for a tourist’s consultation (see selection in figure 4) are:

desU(yLst([(zona, patagonia)]), 0.9)
desU(yLst([(transporte, avion)]), 0.7)
desU(yLst([(comodidad, hotel3)]), 0.5)

2. Combined Desires: After the elementary desires are added to the context, all the possible conjunc-
tions are built. The degrees for the conjunctions are calculated following the guaranteed possibility
model (see [2]) where the resulting degree is greater than the maximum of elementary degrees. Hav-
ing in the DC formulae like desU(y(D1), G1) and desU(y(D2), G2) it is added the combined desire
desU(yLst([D1, D2]), G). In this prototype G is particularly computed by the following function:

calcularGraduacion(G1, G2, G) :- G is G1 + ((1 - G1) * G2)

As for example, it is showed the code of one of the conjunctive combinations built from the elementary
desires given above:

desU(yLst([(zona, patagonia), (transporte, avion)]), 0.92)

The positive and negative desires are both passed by a bridge rule to the Planner context where the
feasible packages to satisfy the tourist are selected.

4.3. Belief Context

In this context the T-Agent represents all the necessary knowledge about tourism and the argen-
tinian domain: tourist packages, information about destinations and rules to infer how the different
user’s preferences may be satisfied (in some degree) by the feasible tourist packages.

4.3.1. Tourist packages

One of the most significant data structure in our system is the package structure. After analyzing
nearly fourty argentinian packages selected from the Internet, a general structure capable of repre-
senting the information available in most of them, was proposed. Each package is represented as a list
containing an identifier, a tour provider, the package cost and a travel-stay sequence represented by
Trip as can be seen in the following structure:

Package ::= (Id, Provider, Cost, Trip)
Trip ::= [(Travel, Stay)]
Travel ::= (Transport, Road)
Stay ::= (Destination, Days, Accommodation, [Activity])
Activity ::= activity(Sport, Hours) | excursion(Resource, Hours, Name)



As for example, the prolog representation of the package named holCalafatePatagonia is present-
ed below:
paq(id(holCalafatePatagonia), costo(1900),

[(viaje(avion, aire), estadia(calafate, dias(3), comodidad(hotel3),
actividades([

[act(cityTour), horas(4)],
[exc(parqueNacional), horas(8), peritoMoreno]]))),

(viaje(avion, aire), estadia(ushuaia, dias(4), comodidad(hotel3),
actividades([

[act(cityTour), horas(1.5)],
[exc(museo), horas(1), finDelMundo],
[exc(historia), horas(1), carcelDeReincidentes],
[exc(parqueNacional), horas(2), tierraDelFuego],
[exc(lago), horas(1), escondido],
[exc(lago), horas(1), fagnano]]))),

(viaje(avion, aire), null)])

Notice that in the last element of the travel list, the stay is null representing the return travel.

4.3.2. Destination ontology

The T-Agent needs to have information about the country and the different possibilities its diverse places
bring. Usually the packages have little information about the destinations and the resources available in them.
This domain knowledge is complementary to the package information and vital to infer how a trip including
certain destinations, can satisfy some tourist preferences (e.g. natural resources). To structure the knowledge
about argentinian tourism, we analyzed different tourism ontologies and most of them were focussed on desti-
nations (see e.g. [8]) including the resources they have, the activities they offer, etc. Inspired in some of them,
the following features were extracted for the destination ontology in our prototype.

Destination ::= (Name, Coordinates, Zone, [NaturalResource],
[ArtificialResource], [Activity])

Coordinates ::= (X, Y)
RecursoNatural ::= Resource
RecursoArtificial ::= Resource
Resource ::= (KindOfResource, Name)

The information of almost fifty argentinian destinations (i.e. all the places related to the packages used) was
introduced to fill in this ontology. This information was extracted from official web-sites.

We use as coordinates the geographic coordinates provided by tInstituto Geográfico Militar de la República
Argentina (http://www.geoargentina.com.ar). The zone assigned to each destination corresponds to the par-
tition of argentinian provinces into zones, proposed by Secretarı́a de Turismo de la República Argentina
(http://www.turismo.gov.ar).

An example of the destination structure for the Ushuaia city is presented below:

localidad(nombre(ushuaia), provincia(tierraDelFuego),
gps(54.80, 68.31), zona(patagonia),
naturaleza([(parqueNacional,tierraDelFuego), (canal,beagle),

(bahia,lapatala), (lago,roca), (lago,fagnano),
(lago,elEscondido), (laguna,negra), (rio,grande)]),

infraestructura([(museo,finDelMundo), (museo,regional).
(museo,acatushun), (historia,presidio),
(ingenieria,trenFinDelMundo)],

actividades([avistajeFauna,esqui,navegacion,pesca,trekking]))



The ontology used in this prototype was directly code in a prolog file, but it is possible for the T-Agent to
receive an ontology built using an ontology editor (via XML code).

4.3.3. Special Relations in the domain

To increase the domain knowledge of the T-Agent other relations were included in the BC.This knowledge
about related concepts makes it possible for the T-Agent to expand the search to other terms related to the ones
expressed in the tourist’s preferences and are used in the selection of the best packages for the tourist. In this
implementation we considered important to include the following relations:

1. Similarity dictionary: The BC includes a set of similarity relations between synonymous or similar
concepts, according to the tourism domain. As the T-Agent has a Belief context that deals with graded
information, this similarity relation may include a degree g ∈ [0, 1] expressing the semantical distance
between terms. The formulae in this dictionary are structured as: belU(similar(term1, term2), g)

For instance, we show a fragment of this silimarity dictionary:

% accommodation category
belU(similar(apart, hotel3), 0.75)
belU(similar(camping, campamento), 1.0)
% nature category
belU(similar(lago, embalse), 0.7)
belU(similar(montaña, serro), 0.8)

2. “Better than” relation: For the accommodation concepts was added a “better than” relation expressing
whether an accommodation is better than another one. This transitive relation allows the T-Agent to ex-
pand the search of the packages that satisfy the user’s preferences, to those that include accommodations
better than the selected one.

4.3.4. Preference Satisfaction Estimation

The Belief context is in charge of evaluating the estimation of how a tourist’s desire D is satisfied after
executing certain package αP . Following the model presented in [2], the truth degree of B([αP ]D) is considered
the probability of having D after following plan αP . Then, the needed rules to compute the degree r of the
formula B([αP ]D) are included in the BC.

Basically a tourist plan may be considered as a time sequence of subplans (see [3] for details), and the
satisfaction estimation depends on “how probable” a preference is expected to be satisfied in each stage of
a trip. As it was presented above, the packages are structured as: Package ::= (Id, Provider, Cost, T rip)
where Trip is a travel-stay sequence [(Traveli, Stayi)] i = 1, n. In our approach each Traveli and Stayi

parts of the Trip are considered as atomic package stages (sub-plans), amenable to satisfy desires. Packages
αP are therefore modelled as composed plans, αP = α1; ..., ;αn, alternating travel and stay sub-plans.

Then, the degree r of B([αP ]D) will depend on the degrees ri of having D after the execution of the each
sub-plan αi. For computing the degree r the T-Agent needs to estimate the components ri and then to aggregate
them using a suitable operator, i.e.

(B([α1]D), r1) ∧ ... ∧ (B([αn]D), rn) → (B([αP ]D),⊕i=1,nri), where ⊕ is an appropriate aggregation
operator.

A set of rules which play this aggregation role, depend on the kind of desire and on the user’s priority
criterion. In the following items we give the insights of this estimation for positive desires.

- Elementary desires
For evaluating the expected satisfaction of a desire D by executing a package P depending on the kind of

desire D, the travel or stay stages of P are considered. As for example, if the desire is about transport, the travel
stages are used, and if it is related to a natural resource, the stay parts are considered.



The underlying idea to compute the expected satisfaction is to take the proportion of the package where the
user’s desire is expected to be satisfied (in some degree) respect to the total trip.

Furthermore, the value of how the different stages of a trip may satisfy a preference, may be also graded.
In our approach we take this estimation as the similarity degree between the tourist’s desire and the respective
proposal in the package. On the one hand if the offer is exactly or “better than” the user’s preference, the ex-
pected satisfaction in this package stage is consider total. On the other hand if the offer is similar, our approach
is to take the similarity degree (between asked and offered preferences) as the expected satisfaction of the user’s
desire in a package stage.

Then, if the package P is composed by different stages, i.e. αP = α1; ...;αn the general way of computing
the preference satisfaction of D by the execution of package P , i.e the degree r in the formula (B[αP ]D, r), is
the next:

(B([α1]D), r1) ∧ ... ∧ (B([αn]D), rn) → (B([αP ]D),
∑

i ri × Timeαi

TotalT ime
)

where Timeαi and TotalT ime are computed according to the kind of desire D.
For instance, if D is about acommodation, Timeαi computes the duration (in days) of the stay αi and

TotalT ime is the total duration of the trip. In the case of being D an activity and considering that the user has
chosen the high activity frecuency, Timeαi is the hours that the activity is programmed in the stage αi of the
package and TotalT ime is an estimation of the total number of hours that the activity could take along the trip.

Example: Suppose a tourist has an accommodation preference of Apart Hotel represented by the desire D:
desU(yLst([(comodidad, apart)]), 0,7). Then, the T-Agent wants to evaluate the expected satisfaction of D
through the package holCalafatePatagonia (see subsection 4.3.1). This package has two stay stages: in Calafate
destination, with accommodation in Apart Hotel and in Ushuaia, propossing a Hotel 3*. Then, the degrees ri

corresponding to (B([αi]D), ri)i = 1, 2 formulae are computed as: r1 = 1 and using the similarity relation
belU(similar(apart, hotel3), 0,75), r2 = 0,75.

Finally, the degree r corresponding to B[holCalafatePatagonia]D is : r =
(1× 3d) + (0,75× 4d)

7d
=

0,857

When the tourist’s desire is related to a destination resource (e.g. natural resources, activity) the
computation of the expected preference satisfaction has another interesting characteristic. We have
noticed that usually the packages have limited information about destinations and their resources.
Thus, for the estimation of some preference satisfacion the T-Agent needs to use domain knowledge.
In our prototype this information is structured in the destination ontology.

Using the same schema for evaluating the degree r presented above, the computation of ri degrees
are refined. They are computed after a package-destinations cross inference, to assess the presence of
the tourist’s selected preference in the package and in the destination information.

The strategy followed is to evaluate for each package stage αi, the possibility that it has of satis-
fying certain resource either it is explicitly offered in a package (rPi) or it is inferred by the ontology
information (rOi). In this approach the T-Agent takes as the degree ri the maximum of both expecta-
tions, i.e. ri = max {rPi, rOi}.
- Combined desires

The DC theory includes conjunction of positive desires. To evaluate the expected satisfaction of
the conjunction of elementary desires D1 and D2, by the execution of a package α, we assumed that
the desires are stochastically independent for each package P . Then, from the expectations of the
elementary desires we can compute the expectation of their conjunction using the following rule:
((B[α]D1, r), (B[α]D2, s)) → (B[α](D1 ∧D2), r · s)

We remark that the many-valued model of information representation and reasoning in the BC
has many advantages. First, this model ables an expressive representation of the domain knowledge.



Secondly, this approach allows the agent to evaluate in a more real way the expected satisfaction of
preferences by the execution of diverse packages by a package-ontology cross inference. Finally, the
treatment of this many-valued information makes it possible to compute in a graded way each expect-
ed satisfaction. This graded evaluation gives the agent more information than a bi-valued approach,
where only the existence or not of certain resource is evaluated.

4.4. Planner Context

The PC unit is vital for the T-Agent implementation, its theory is composed by planner formulae.
This context is responsible for looking for feasible package. A feasible package satisfies one of the
positive desires (elementary or combined) and its execution cannot satisfy any restriction. These fea-
sible plans are computed within this context using an appropriate searching method, that takes into
account beliefs and desires injected by bridge rules from the BC and DC units, respectively.

Then, from the positive and negative desires, the package information, the beliefs of the agent
about package destinations, the estimation of desire satisfaction by plan execution and the package
cost; the Planner can find feasible packages (coded as paqSi formulae). These touristic packages may
fulfill the tourist’s positive desires, but avoiding negative ones (do not satisfy them in degree greater
than a threshold: UmbralN ).

The following forward rule code this in the Planner context:

des(yLst(DeseosP), _), des(nLst(DeseosN), UmbralN),
planner(paq(IdPaq, Proveedor, Costo, _Recorrido)),
bel(contiene(IdPaq, DeseosP), R),
bel(not(contiene(IdPaq, DeseosN)), UmbralN),
bel(costoNormalizado(Costo, CN), 1)
--: planner(paqSi(IdPaq, Proveedor, CN, DeseosP), R)

Notice that this rule uses formula coming from DC (des formulae) and from BC (bel formulae). For each
feasible package named IdPaq the normalized cost (CN ∈ [0, 1]) is computed and used instead of its actual
cost.

After the PC has found the set of feasible packages, they are passed to the Intention context in charge of
making a ranking of these packages.

4.5. Intention Context

The T-Agent in this context (IC) finds the intention degree for each feasible package. As we have previously
mentioned, the intention degree trades off the benefit and the cost of reaching a goal or desire, through a plan
execution.

There is a bridge rule that infers the degree of Iα(D) for each package α that allows to achieve D. This
value is deduced from the degree of desire D (GD), the expected satisfaction B([α]D) (GR), the cost of the
plan α (CN ) and the trust in the package provider (GT ).

The intention degree for Iα(D) is calculated by a function f that suitably combines all these factors. Dif-
ferent functions can model different individual agent behaviors. In the T-Agent this function is defined as a
weighted average:

f = (wd ∗GD + wr ∗GR + wc ∗ (1− CN) + wt ∗GT )

where the different weights wi are set by the T-Agent according to the priority criterion selected by the user
(minimum cost, preference satisfaction or trust).

The following bridge rule infers the intention formulae related to the package Id with the corresponding
intention degree (G):



planner(paqSi(Id, Proveedor, CostoN, DeseosP), GR),
bel(trust(Proveedor), GT),
des(yLst(D), GD),
bel(prioridad(PU), 1),
f(GD, GR, GT, CN, PU, G)
--: int(paqRecomendado(Id), G)

Once the rule has been applied to all the feasible plans the IC has a set of graded intention formulae. Using
the intention degree the T-Agent makes a package ranking that communicates to the CC. We opted to select the
first N 1 packages to recommend the tourist.

Finally, the selected packages are passed to the CC and then, through the user interface the T-Agent gives
the tourist this ranking as recommendation. For instance, for the tourist preference selection showed in Figure
4 the resulting recommended ranking can be seen in Figure 5. After analyzing the results, the user is asked to
give the system his feedback.

5. CONCLUSIONS

A prototype of multiagent Tourism Recommender system has been implemented. A multiagent approach is
suitable for this kind of systems dealing with heterogeneous and distributed information. Particularly we used a
g-BDI architecture for modelling the T-Agent, showing in this way, that this model is useful to develop concrete
agents in real domains.

We remark that the many-valued model of information representation and reasoning in the g-BDI agent,
has many advantages for this implementation. First, this model enables an expressive representation of the
domain knowledge (agent beliefs), the user’s preferences (desires) and the resulting intentions. Secondly, the
implemented approach allows the agent to expand the retrieval of feasible packages using similarity relations
and domain knowledge, not explicitly included in the package information. Also, the treatment of many-valued
information makes it possible to compute in a graded way the expected satisfaction of the different tourist’s
preferences, by the execution of diverse packages. Finally, the intention degree of a plan towards a desire may
be computed as a function of diverse factors (e.g. satisfaction, cost, trust). As we can obtain diverse agent
behaviors defining different functions for intention computation, these become a crucial point in the agent
model.

The first experimentation of this prototype was carried out with good results. Considering 170 recommen-
dations, the 75 % of the user’s opinions were aceptable (correct or different order) and among them, the 70 %
was correct. Now we are working in the adjustment of the T-Agent behavior using this user’s feedback. As for
future work we plan to simulate a crisp BDI version of the T-Agent as to experiment and compare with the
graded BDI model of this agent.
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