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Abstract

In this paper we build upon previous works of Há-
jek and Vychodil on the axiomatization of truth-
stressing and depressing hedges as expansions of
BL logic by new unary connectives. They show
that their logics are chain-complete, but standard
completeness is only proved for the expansions over
Gödel logic. We propose weaker axiomatizations
that have as main advantages the preservation of
standard completeness properties of the original
logic and the fact that any subdiagonal (resp. su-
perdiagonal) non-decreasing function on [0, 1] pre-
serving 0 and 1 is a sound interpretation of the truth
stresser (resp. depresser) connectives.

Keywords: Truth hedges, Mathematical Fuzzy
Logic, Standard completeness, T-norm based log-
ics.

1. Introduction

In this paper we deal with interpretation of linguis-
tic hedges in the t-norm based fuzzy logics. Typical
examples of linguistic hedges in the sense of Zadeh
[1] are “very true”, “quite true”, “more or less true”,
“slightly true”, etc. They are represented in fuzzy
logic systems in broad sense as functions from the
set of truth values (typically the real unit interval)
into itself, that modify the meaning of a proposi-
tion by applying over the membership function of
the fuzzy set underlying the proposition.
In order to cope with these linguistic hedges in the

setting of mathematical fuzzy logic, Hájek proposes
in a series of papers [2, 3, 4] to understand them
as truth functions of new unary connectives called
truth-stressing or truth depressing hedges, depend-
ing on whether they reinforce or weaken the mean-
ing of the proposition they apply over. The intuitive
interpretation of a truth-stressing (resp. depressing)
hedge like very true (resp. slightly true) on a chain of
truth-values is a subdiagonal (resp. superdiagonal)
non-decreasing function preserving 0 and 1. The
class of such functions will be called hedge functions
from now on.
This paper builds upon previous works, mainly

those by Hájek [4] and Vychodil [5], on the axiomati-
zation of truth-stressing (resp. depressing) hedges as
expansions of BL logic (and of some of their promi-
nent extensions, like Łukasiewicz or Gödel logics)
by a new unary connective vt, for very true, and
another one st, for slightly true, respectively. The

logics they define are shown to be algebraizable and
to enjoy completeness with respect to the classes of
chains of their corresponding varieties, however not
any BL-chain expanded with such functions (called
hedges from now on) are models of them, or in other
words, belong to the corresponding varieties. More-
over, the defined logics are not proved to enjoy in
general standard completeness, except for the case
of logics over Gödel logic. One of the main reasons
for both problems is the presence in the axiomati-
zations of the well-known modal axiom K for the vt
connective,

vt(ϕ→ ψ)→ (vt ϕ→ vt ψ),

which puts quite a lot of constraints on the hedges to
be models of these logics with no natural algebraic
interpretation.

Particular classes of truth-stressers have been also
addressed in the literature. For instance, the well-
known globalization operator ∆ (introduced inde-
pendently by Monteiro in the context of intuition-
istic logic [6] and by Baaz in the context of Gödel-
Dummett logics [7]) is a limit case of a truth stresser
since, over a chain, it sends 1 to 1 and all the other
elements to 0, and the intuitive interpretation would
be definitely true.

In this paper we propose weaker axiomatizations
for both the truth-stressing and depressing connec-
tives not imposing any constraint on hedges other
than the ones we have mentioned above, and for
which we can prove standard completeness.

The paper is structured as follows. In the next
section we provide the necessary logical and alge-
braic preliminaries that will be used in the rest of
the paper. In Section 3 we propose a general axiom-
atization for truth stressers while Section 4 focuses
on truth depressers. Related work is discussed in
Section 5 and we conclude with some final remarks
in Section 6.

2. Preliminaries

In this section we gather from [8, 9] some necessary
results we will use in sections 3 and 4.

Let L be a finitary logic in a language L. We
say that L is a Rasiowa-implicative logic (c.f. [10])
if there is a binary (either primitive or definable by
a formula) connective → of its language such that:



(R) `L ϕ→ ϕ
(MP) ϕ,ϕ→ ψ `L ψ
(T) ϕ→ ψ,ψ → χ `L ϕ→ χ
(Cng) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)

→ c(χ1, . . . , χi, ψ, . . . , χn)
for each n-ary c ∈ L and each i < n.

(W) ϕ `L ψ → ϕ

As proved in [8], every Rasiowa implicative logic
is algebraizable in the sense of Blok and Pigozzi [11]
and, if it is finitary, its equivalent algebraic seman-
tics, the class of L-algebras, is a quasivariety; call
it L. Every L-algebra satisfies x → x = y → y for
any x, y, and hence the language can be expanded
by a definable constant 1 = p→ p. Then, the alge-
braizability gives the following strong completeness
theorem:

For every set Γ∪{ϕ} of formulae, Γ `L ϕ iff for
every A ∈ L and every A-evaluation e, e(ϕ) =
1A, whenever e[Γ] ⊆ {1A}.

Every L-algebra A is naturally endowed with a pre-
order relation by setting for every a, b ∈ A: a ≤A b

iff a →A b = 1A. A is called an L-chain if ≤A is
a total order1. L is called a semilinear logic iff it
is strongly complete with respect to the semantics
given by L-chains.
Many systems informally referred to as fuzzy log-

ics in the literature are actually finitary Rasiowa-
implicative semilinear logics. Well known exam-
ples are the three main fuzzy logics G, Π and Ł
(see e.g. [12]), BL (the logic of all continuous t-
norms, see [12, 13]) and MTL (the logic of all left-
continuous t-norms, see [14, 15]). A big class of
fuzzy logics which are finitary, Rasiowa-implicative
and semilinear, and contain the mentioned promi-
nent examples, are the so-called core fuzzy logics:
the axiomatic expansions of MTL satisfying (Cng)
for any possible new connective.
Finally, we need to recall a couple of definitions

and results about disjunction connectives, for they
provide a useful characterization of semilinearity.

A (primitive or definable) binary connective ∨ is
called a disjunction in L whenever it satisfies:

(PD) ϕ `L ϕ ∨ ψ and ψ `L ϕ ∨ ψ
(PCP) If Γ, ϕ `L χ and Γ, ψ `L χ, then

Γ, ϕ ∨ ψ `L χ

Given a disjunction ∨ and an a finitary inference
rule (R) : Γ ` ϕ (axioms are taken as rules with
Γ = ∅), we define the ∨-form of (R), denoted as
(R∨), as the rule Γ∨p ` ϕ∨p, where p is an arbitrary
propositional variable not appearing in Γ ∪ {ϕ}.
Proposition 1. [9] Let L1 be a logic with a disjunc-
tion ∨ and let L2 be an expansion of L1 by a set of
finitary rules C. Then, ∨ is a disjunction in L2 iff
(R∨) holds in L2 for each (R) ∈ C. In particular, ∨
is a disjunction in any axiomatic expansion of L1.

1For the sake of a lighter notation, from now on we will
drop the super-indexes in the algebra operations whenever
no confusion is possible.

Proposition 2. [9] Let L be a finitary Rasiowa-
implicative logic with a binary connective ∨ satisfy-
ing (PD). Consider the following two properties:

(P∨) `L (ϕ→ ψ) ∨ (ψ → ϕ)
(MP∨) ϕ→ ψ,ϕ ∨ ψ `L ψ and

ϕ→ ψ,ψ ∨ ϕ `L ψ

The following are equivalent:

(i) ∨ is a disjunction and satisfies (P∨),
(ii) L is semilinear and satisfies (MP∨).

As mentioned before, core fuzzy logics are semi-
linear, hence they are strongly complete with re-
spect the class of their chains. However, this com-
pleteness may be sometimes refined to special sub-
classes of chains. We will use the following no-
tions of completeness with respect to a given class
of chains.

Definition 3 (KC, FSKC, SKC). Let L be a core
fuzzy logic and let K be a class of L-chains. We
say that L has the (finitely) strong K-completeness
property, (F)SKC for short, when for every (finite)
set of formulae T and every formula ϕ it holds that
T `L ϕ iff e(ϕ) = 1A for each A-evaluation such
that e[T ] ⊆ {1A} for every L-algebra A ∈ K. We
say that L has the K-completeness property, KC for
short, when the equivalence is true for T = ∅.

Of course, the SKC implies the FSKC, and the
FSKC implies the KC. When K is the class of all
chains whose support is the real unit interval [0, 1]
we will denote it as R, call its elements as real or
standard chains, and we will speak about real or
standard completeness properties.

3. Truth stressers: a general axiomatization

In order to solve the problems with the axiomatiza-
tion of truth stressers and depressers proposed by
Hájek and Vychodil mentioned in the Introduction
section, in what follows we will make use of available
results decribed in Section 2 to obtain a very sim-
ple and general axiomatizations with very intuitive
properties and nice completeness results. To begin
with let us consider the case of truth stressers.

Let L be a core fuzzy logic, and consider Ls the
expansion of L with a new unary connective s (for
stresser) defined by the following additional axioms:

(VTL1) sϕ→ ϕ,
(VTL2) s 1,

and the following additional inference rule:

(MON) from (ϕ→ ψ)∨χ infer (sϕ→ sψ)∨χ.

If we denote by `Ls the notion of deduction de-
fined as usual from the above axioms and rules, one
can easily show the following provabilities.

Lemma 4. In Ls the following deductions are valid:



(i) `Ls
¬ s 0

(ii) ϕ→ ψ `Ls
sϕ→ sψ

(iii) ψ `Ls
sψ

(iv) sϕ, ϕ→ ψ `Ls
sψ

Proof. (i) It follows directly from (VTL1) taking
ϕ = 0.

(ii) It follows directly from (MON) taking χ = 0.
(iii) It follows directly from (ii) taking ϕ = 1 and

using (VTL2).
(iv) Very easy using (ii) and modus ponens.

Notice that (iv) is a kind of stronger version of
the modus ponens rule: if ϕ implies ψ, and ϕ is very
true, then one can derive that ψ is very true as well.

On the other hand, (ii) shows that (Cng) is sat-
isfied for the new unary connective too. There-
fore, the logic Ls is Rasiowa-implicative and its
equivalent algebraic semantics is the class of Ls-
algebras. An algebra A = 〈A,∧,∨,&,→, s, 0, 1〉 of
type 〈2, 2, 2, 2, 1, 0, 0〉 is an Ls-algebra if it is an L-
algebra expanded by a unary operator s : A → A
(truth-stressing hedge) that satisfies, for all x, y, z ∈
A,

(1) s(1) = 1,
(2) s(x) ≤ x,
(3) if (x→ y) ∨ z = 1 then

(s(x)→ s(y)) ∨ z = 1.

It is clear that the class of Ls-algebras forms a quasi-
variety, call it Ls. Notice that if 〈A,∧,∨,&,→, 0, 1〉
is a totally ordered L-algebra and s : A→ A is any
non-decreasing mapping such that s(1) = 1 and
s(a) ≤ a for any a ∈ A, then the expanded struc-
ture 〈A,∧,∨,&,→, s, 0, 1〉 is an Ls-chain2. In other
words, in Ls-chains the quasiequation (3) turns out
to be equivalently expressed by this simplified form:
if x→ y = 1 then s(x)→ s(y) = 1, and this condi-
tion simply expresses that s is non-decreasing.
Moreover, since the rule (MON) is closed under

∨-forms, by Proposition 1 we know that ∨ keeps
being a disjunction in the expanded logic. On the
other hand, since (P∨) was already valid in L, by
Proposition 2 we obtain that Ls is also semilinear
and hence it is complete with respect to the seman-
tics of all Ls-chains.

Theorem 1. Ls is complete with respect to the class
of all Ls-chains.

Corollary 5. In Ls the following deductions are
valid:

(v) `Ls
s(ϕ ∨ ψ)↔ sϕ ∨ sψ

(vi) `Ls
s(ϕ ∧ ψ)↔ sϕ ∧ sψ

Proof. Both properties are easily checked on Ls-
chains.

2Observe that these three simple conditions required for s
would be not enough to define an Ls-chain in case Ls would
have been defined with the additional axiom K as in [4].

One might wonder whether the corresponding
equation for the monotonicity of s (i.e. s(x ∧ y) =
s(x) ∧ s(y) or, equivalently, s(x ∨ y) = s(x) ∨ s(y))
may substitute the quasiequation (3) in the defini-
tion of Ls-algebras. In other words, does the quasi-
variety Ls coincide with the variety V of expansions
of L-algebras satisfying the equations (1), (2) and
mononicity of s? The answer is negative as shown
by the following example.

Example 1. If L is not classical propositional logic,
then there must be an L-chain A with at least three
elements on its domain. Take any a ∈ A \ {0A

, 1A}
and consider the direct product algebra A × A
and expand it with a unary operator s by putting
s(a, b) = 〈a ∧ b, a ∧ b〉. An easy computation shows
that, although s satisfies (1), (2) and monotonic-
ity, the rule (MON) is not sound. Indeed, we have
(〈1, 1〉 → 〈1, a〉) ∨ 〈a, 1〉 = 〈1, a〉 ∨ 〈a, 1〉 = 〈1, 1〉,
while (s(1, 1)→ s(1, a))∨〈a, 1〉 = (〈1, 1〉 → 〈a, a〉)∨
〈a, 1〉 = 〈a, a〉 ∨ 〈a, 1〉 = 〈a, 1〉 6= 〈1, 1〉.

Thus, V and Ls coincide over chains but they are
different. While Ls is semilinear due to the rule
(MON), the logic associated to V is not. This also
shows that in the presentation of Ls (MON) cannot
be substituted by the simpler rule: from ϕ → ψ
infer sϕ → sψ (which, as we have just seen, is
sound in Ls-chains but not for all Ls-algebras).
Similarly, inspired by the well-known presenta-

tion of logics with ∆, one might also ask whether
(MON) could be substituted by the globalization
rule for s: from ϕ infer sϕ. The answer is again
negative.

Example 2. Consider the finite MTL-chain C de-
fined over the domain C = {0, 1, 2, 3, 4, 5} with the
natural order and the following monoidal operation:

& 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 1 1 1
2 0 1 1 1 2 2
3 0 1 1 1 2 3
4 0 1 2 2 4 4
5 0 1 2 3 4 5

Take the MTL-filter F = {4, 5} and the following
unary operation s:

x s(x)
0 0
1 1
2 1
3 3
4 4
5 5

It is clear that s is subdiagonal, sends the top el-
ement to itself and it is non-decreasing. Moreover
for every x ∈ F , s(x) ∈ F , i.e. it is sound w.r.t. the
globalization rule for s. However, it is not sound
w.r.t. the rule (MON). Indeed, 3 → 2 = 4 ∈ F ,
while s(3)→ s(2) = 3→ 1 = 3 /∈ F .



We consider now the issue of completeness of Ls

with respect to the distinguished semantics of Ls-
chains. One can prove that if L has the finite strong
standard completeness property (FSRC), then Ls

has it as well. As usual, this can be done by showing
that the class Ls-chains is partially embeddable into
the subclass of standard Ls-chains.

Theorem 2 (Finite strong standard completeness).
If L is a finite strong standard complete core fuzzy
logic, then the logic Ls is finite strong standard com-
plete as well.

Proof. Assume that L has the FSRC. Take any
Ls-chain A = 〈A,∧,∨,&,→, s, 0, 1〉 and let B be a
finite partial subalgebra of A. We have to show that
there exists a standard Ls-chain 〈[0, 1],∧,∨, ∗,⇒
, s′, 0, 1〉 and a mapping f : B → [0, 1] preserving
the existing operations. By assumption, the s-free
reduct of A is partially embeddable into a stan-
dard L-chain 〈[0, 1],∧,∨, ∗,⇒, 0, 1〉. Denote this
embedding by f and consider any non-decreasing
and subdiagonal function s′ : [0, 1] → [0, 1] sat-
isfying s′(f(x)) = f(s(x)) for every x ∈ B such
that s(x) ∈ B. There are obviously many such
functions s′ interpolating the set of points P =
{〈f(x), f(s(x))〉 | x, s(x) ∈ B}, for instance a lin-
ear interpolant. Another interpolant can be defined
as follows: let 0 = z1 < . . . < zn < 1 be the set
of elements of [0, 1] such that 〈zi, ·〉 ∈ P and define
s′(1) = 1 and, for all z ∈ [0, 1),

s′(z) = f(s(xi)), if zi ≤ z < zi+1

where xi ∈ B is such that zi = f(xi). In any case s′
makes 〈[0, 1],∧,∨, ∗,⇒, s′, 0, 1〉 an Ls-chain and f a
partial embedding of Ls-chains.

Actuallly, this theorem can be generalized to ar-
bitrary classes of L-chains and their s-expansions,
proved in a completely analogous way, and yielding
a more general result.

Corollary 6. Let L be a core fuzzy logic, K a class
of L-chains, and Ks the class of the Ls-chains whose
s-free reducts are in K. If L has the FSKC.

Theorem 3 (Strong standard completeness). If L
is a strong standard complete core fuzzy logic, then
the logic Ls is strong standard complete as well.

Proof. Assume that L has the SRC. We have to
show that any countable Ls-chain can be embed-
ded into a standard Ls-chain. Let A be a count-
able Ls-chain. By the assumption, the s-free reduct
of A is embeddable into a standard L-chain B =
〈[0, 1],∧,∨, ∗,⇒, 0, 1〉. Denote this embedding by f
and define s′ : B → B in the following way: for each
z ∈ [0, 1], s′(z) = sup{f(s(x)) | x ∈ A, f(x) ≤ z}.
So defined, s′ is a non-decreasing and subdiagonal
function such that s′(f(x)) = f(s(x)) for any x ∈ A
and hence B expanded with s′ is a standard Ls-
chain where A is embedded.

Observe that the proof of the previous theorem
can be repeated whenever the linear order of the
chains is complete. Therefore we obtain the follow-
ing corollary.

Corollary 7. Let L be a core fuzzy logic, K a class
of completely ordered L-chains, and Ks the class of
the Ls-chains whose s-reducts are in K. If L has the
SKC, then Ls has the SKsC.

4. The case of truth depressers

Very similarly to the case of truth stressers, we can
proceed to define an axiomatization for the case of
truth depressers just by replacing axioms (VTL1)
and (VTL2) with dual versions (STL1) and (STL2)
(for slightly true). Namely, given a core fuzzy logic
L, we define Ld as the expansion of L with a new
unary connective d, the following additional axioms

(STL1) ϕ→ dϕ,
(STL2) ¬ d 0,

and the following additional inference rule

(MON) from (ϕ→ ψ)∨χ infer (dϕ→ dψ)∨χ.

Being a kind of dual version of Ls, many proper-
ties are proved in a completely analogous way:

Lemma 8. In Ld the following deductions are valid:

(i) `Ld d 1
(ii) ϕ→ ψ `Ld dϕ→ dψ
(iii) ¬ϕ `Ld

¬ dϕ
(iv) `Ld

¬ dϕ→ ¬ϕ
(v) dϕ, ϕ→ ψ `Lm dψ

Proof. (i) It follows directly from (STL1) taking
ϕ = 0.

(ii) It follows directly from (MON) taking χ = 0.
(iii) It follows from (ii) for ψ = 0 and (STL2).
(iv) It follows directly from (STL1) using the fact

that (ϕ → ψ) → (¬ψ → ¬ϕ) is derivable in
MTL.

(v) Very easy using (ii) and modus ponens.

It is interesting to remark that (v) provides a kind
of weaker or modified version of modus ponens with
the truth-depresser: if ϕ implies ψ, and ϕ is slightly
true, then one can derive that ψ is slightly true as
well.

Again, (ii) shows that the (Cng) condition is sat-
isfied for the new unary connective too. There-
fore, the logic Ld is Rasiowa-implicative and its
equivalent algebraic semantics is the class of Ld-
algebras. An algebra A = 〈A,∧,∨,&,→, s, 0, 1〉 of
type 〈2, 2, 2, 2, 1, 0, 0〉 is an Ld-algebra if it is an L-
algebra expanded by a unary operator d : A →
A (truth-depressing hedge) that satisfies, for all
x, y, z ∈ A,

(1′) d(0) = 0,



(2′) x ≤ d(x),
(3′) if (x→ y) ∨ z = 1 then

(d(x)→ d(y)) ∨ z = 1.
Analogously to the case of truth-stressers, every L-
chain A can be expanded to an Ld-chain by adding
an arbitrary non-decreasing mapping d : A → A
such that d(0) = 0 and x ≤ d(x) for every x ∈ A.

Also, since the lattice disjunction keeps satisfying
the (PCP) in the expanded logic, Ld is semilinear
and hence it is complete with respect to the seman-
tics of all Ld-chains. As a straightforward conse-
quence, we have for d an analogous result to Coro-
lalry 5 for s
Lemma 9. In Ld the following deductions are valid:
(v) `Ld d(ϕ ∨ ψ)↔ dϕ ∨ dψ
(vi) `Ld d(ϕ ∧ ψ)↔ dϕ ∧ dψ

If we modify Example 1 by taking s(a, b) =
〈a ∨ b, a ∨ b〉, it shows that in the context of truth
depressers the rule (MON) cannot be substituted
by simple monotonicity. Similarly, Example 2 can
be modified by taking the function d:

x d(x)
0 0
1 1
2 2
3 4
4 4
5 5

and then it shows that in the presentation of Ld

(MON) cannot be substituted by the following rule:
from ¬ϕ infer ¬ dϕ. Indeed, d is superdiagonal,
sends the bottom element to itself and it is non-
decreasing, it satisfies ¬d(x) ∈ F whenever ¬x ∈ F ;
however, 3 → 2 = 4 ∈ F , while d(3) → d(2) = 4 →
2 = 3 /∈ F .

Finally, analogous proofs of those of Corollaries
6 and 7 allows us to obtain this theorem about the
preservation of completeness properties.
Theorem 4 (Completeness properties). Let L be a
core fuzzy logic, K a class of L-chains and Kd the
class of Ld-chains whose d-free reducts are in K.
Then:
(i) If L has the FSKC, then Ld has the FSKdC.
(ii) If L has the SKC and all the chains in K are

completely ordered, then Ld has the SKdC.

5. Related work

As mentioned in the introduction, there are two
main references when talking about the formalisa-
tion of truth-stressing hedges within the framework
of mathematical fuzzy logic. The first one is Hájek’s
paper [4] where he axiomatizes over BL a logic for
the hedge very true. The second one is the paper
by Vychodil [5] where he extends Hájek’s analysis
to truth-depressing hedges. In the rest of this sec-
tion we overview these and some related logics and
compare them with our proposal.

5.1. On Hájek’s logic of “very true”

Hájek defines the logic BLvt as the expansion of BL
with a new connective vt and the following axioms

(VE1) vt ϕ→ ϕ,
(VE2) vt(ϕ→ ψ)→ (vt ϕ→ vt ψ),
(VE3) vt(ϕ ∨ ψ)→ (vt ϕ ∨ vt ψ).

and the following necessitation inference rule:

(NEC) necessitation for vt: from ϕ infer vt ϕ

If we define the corresponding logic Lvt with this
kind of truth stresser over a core fuzzy logic L in-
stead of BL (with the same axioms and rules), it
turns out, by simple inspection, that Lvt can be ob-
tained from the logic Ls by replacing the (MON)
inference rule by the axiom (VE2) and the necessi-
tation rule for vt (NEC). In general, this makes Lvt

a strictly stronger logic than Ls. An exception is
when L is Gödel logic, since in that case Gvt and
Gs are equivalent. This is due to the fact that in
Gs the axiom (VE2) is derivable.

Hájek proves completeness of BLvt with respect
to the class of linearly ordered BLvt-algebras, which
extends to any axiomatic extension of BL, but the
issue of standard completeness is left as an open
problem, except for the case of Gödel logic.

A relevant further study of logics with truth
stressers can be found in the paper by Ciabattoni
et al. [16], that makes significant contributions in
various respects. They basically consider extensions
of MTL as base logics to be expanded with a unary
connective (called modality in [16]), they consider
three possible additional axioms to be added to
Hájek axiomatics, and they develop proof systems
for the arising new logics and study their algebraic
and completeness properties. Particularly relevant
for our purposes, they consider for a given logic L
that is an extension of MTL the following logics:

L-KTr = L + (VE1) + (VE2) + (VE3) + (NEC)
L-S4r = L-KTr + (VE4) vt ϕ→ vt(vt ϕ)

Axiom (VE4), together with axiom (VE1) forces the
truth-stressing hedges to be closed over their image,
i.e. that vt ϕ has to be equivalent to vt(vt ϕ).
Notice that Hájek’s BLvt logic is nothing but the

logic BL-KTr. Moreover, in their paper they prove
standard completeness of the L-S4r logics for dif-
ferent choices for L: namely MTL, SMTL, CnMTL,
IMTL and CnIMTL.

Other papers dealing with particular types of
truth stressers are [2] where truth-stressers are clo-
sure operators while in [3, 17] where truth-stressers
are further required to map any element to the
greatest idempotent (w.r.t. to the monoidal oper-
ation) below it. Finally, observe that adding the
axiom vt ϕ∨¬ vt ϕ to L-KTr, vt turns to be equiva-
lent to the well-know Baaz-Monteiro projection con-
nective ∆.



5.2. Vychodil’s logic of “slightly true”

Vychodil first introduces in [5] a logic combining
both a truth-streseer and a truth depresser. In-
deed the logic BLvt,st is defined as an expansion
of Hájek’s BLvt logic with a new unary connective
“slightly true” denoted by st and with the following
additional axioms

(ST1) ϕ→ st ϕ,
(ST2) st ϕ→ ¬ vt¬ϕ,
(ST3) vt(ϕ→ ψ)→ (st ϕ→ st ψ)

This logic is proved to be complete with respect to
the class of all linearly-ordered BLvt,st-algebras (de-
fined in the obvious way). Note that axioms (ST1)
and (ST2) put into relation both connectives vt and
st. Vychodil also proposes two slightly different ax-
iomatizations (systems I and II) for the truth de-
pressing hedge slightly true alone. They are defined
again as expansions of BL with the unary connec-
tive st. Namely, system the (I) has the following set
of additional axioms:

(DH1) ϕ→ st ϕ,
(DH2) ¬ st(0̄),
(DH3) st(ϕ→ ψ)→ (st ϕ→ st ψ)

while the system (II) consists of the axioms (DH1),
(DH2) and

(DH4) (ϕ→ ψ)→ (st ϕ→ st ψ)

Both systems also have the following rule of infer-
ence:

(RNst) from ¬ϕ infer ¬ st ϕ.

Chain-completeness for both systems is proved, but
again the issue of standard completeness is left
open.
Notice that axioms (DH1) and (DH2) correspond

exactly to (STL1) and (STL2) of our logic Ld, and
that the inference rule (RNst) is derivable from the
rule (MON) using axiom (STL2). So, again, the
main difference between Vychodil’s logics and our
proposal is the presence of the K-like axioms (DH3)
and (DH4), which do not appear in the logics Ld.

6. Conclusions

In this paper we have been concerned in provid-
ing new axiomatic systems Ls and Ld for the truth
hedges very true and slightly true, by weakening the
proposed systems by Hájek and Vychodil, and de-
fined over any core fuzzy logic L. The main ad-
vantage of the proposed systems with respect to
the previously ones is that we can show standard
completeness, i.e. completeness with respect to the
class of standard L-chains expanded by arbitrary
(stressing and depressing) hedges. The price paid
in this process is that the class of corresponding al-
gebras cannot be shown in general to be a variety
any longer, but only a quasi-variety. Actually it

remains as an open problem to prove or disprove
whether they form in fact a variety in the general
case (for instance, for L being Gödel logic it is in-
deed a variety). An easy solution to get a variety
would be to make use of the Baaz-Monteiro ∆ op-
erator. In case this operator is definable in L, as it
happens e.g. when L is the n-valued Łukasiewicz
logic Łn (where ∆ϕ is defined as ϕ& n. . . &ϕ) or
when L is an extension of SBL∼, the expansion of
SBL with an involutive negation ∼ (where ∆ϕ is
defined as ¬∼ϕ), then the (MON) inference rule in
Ls can equivalently be replaced by the axiom

(MON∆) ∆(ϕ→ ψ)→ (sϕ→ sψ)

and analogously for the d connective in Ld. If ∆
is not definable in L, then we can expand the base
logic L with the operator ∆ together with its usual
set of axioms and necessitation rule (see e.g. [12])
and consider the logics L∆,s and L∆,d instead, where
the (MON) inference is again replaced by the above
(MON∆) axioms.
Finally, to study logics combining both kinds of

hedges along the line proposed in this paper is also
a matter of future research.
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