Prime numbers and implication free reducts of MV_n -chains

Marcelo E. Coniglio¹, Francesc Esteva², Tommaso Flaminio², and Lluis Godo²

 ¹ Dept. of Philosophy - IFCH and CLE University of Campinas, Campinas, Brazil coniglio@cle.unicamp.br
² IIIA - CSIC, Bellaterra, Barcelona, Spain {esteva,tommaso,godo}@iiia.csic.es

Abstract

Let \mathbf{L}_{n+1} be the MV-chain on the n+1 elements set $\mathbf{L}_{n+1} = \{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$ in the algebraic language $\{\rightarrow, \neg\}$ [3]. As usual, further operations on \mathbf{L}_{n+1} are definable by the following stipulations: $1 = x \rightarrow x$, $0 = \neg 1$, $x \oplus y = \neg x \rightarrow y$, $x \odot y = \neg(\neg x \oplus \neg y)$, $x \land y = x \odot (x \rightarrow y), x \lor y = \neg(\neg x \land \neg y)$. Moreover, we will pay special attention to the also definable unary operator $*x = x \odot x$.

In fact, the aim of this paper is to continue the study initiated in [4] of the $\{*, \neg, \lor\}$ reducts of the MV-chains \mathbf{L}_{n+1} , denoted \mathbf{L}_{n+1}^* . In fact \mathbf{L}_{n+1}^* is the algebra on \mathbf{L}_{n+1} obtained by replacing the implication operator \rightarrow by the unary operation * which represents the square operator $*x = x \odot x$ and which has been recently used in [5] to provide, among other things, an alternative axiomatization for the four-valued matrix logic $J_4 = \langle \mathbf{L}_4, \{1/3, 2/3, 1\} \rangle$. In this contribution we make a step further in studying the expressive power of the * operation, in particular our main result provides a full characterization of those prime numbers n for which the structures \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are term-equivalent. In other words, we characterize for which n the Lukasiewicz implication \rightarrow is definable in \mathbf{L}_{n+1}^* , or equivalenty, for which $n \mathbf{L}_{n+1}^*$ is in fact an MV-algebra. We also recall that, in any case, the matrix logics $\langle \mathbf{L}_{n+1}^*, F \rangle$, where F is an order filter, are algebraizable.

Term-equivalence between L_{n+1} and L_{n+1}^*

Let X be a subset of L_{n+1} . We denote by $\langle X \rangle^*$ the subalgebra of \mathbf{L}_{n+1}^* generated by X (in the reduced language $\{^*, \neg, \lor\}$). For $n \ge 1$ define recursively $(^*)^n x$ as follows: $(^*)^1 x = ^*x$, and $(^*)^{i+1}x = ^*((^*)^i x)$, for $i \ge 1$.

A nice feature of the \mathbf{L}_{n+1}^* algebras is that we can always define terms characterising the principal order filters $F_a = \{b \in \mathbf{L}_{n+1} \mid a \leq b\}$, for every $a \in \mathbf{L}_{n+1}$. A proof of the following result can be found in [4].

Proposition 1. For each $a \in L_{n+1}$, the unary operation Δ_a defined as

$$\Delta_a(x) = \begin{cases} 1 & \text{if } x \in F_a \\ 0 & \text{otherwise} \end{cases}$$

is definable in \mathbf{L}_{n+1}^* . Therefore, for every $a \in L_{n+1}$, the operation χ_a , i.e., the characteristic function of a (i.e. $\chi_a(x) = 1$ if x = a and $\chi_a(x) = 0$ otherwise) is definable as well.

It is now almost immediate to check that the following implication-like operation is definable in every \mathbf{L}_{n+1}^* : $x \Rightarrow y = 1$ if $x \leq y$ and 0 otherwise. Indeed, \Rightarrow can be defined as

$$x \Rightarrow y = \bigvee_{0 \le i \le j \le n} (\chi_{i/n}(x) \land \chi_{j/n}(y)).$$

Actually, one can also define Gödel implication on \mathbf{L}_{n+1}^* by putting $x \Rightarrow_G y = (x \Rightarrow y) \lor y$.

It readily follows from Proposition 1 that all the \mathbf{L}_{n+1}^* algebras are simple as, if $a > b \in \mathbf{L}_{n+1}$ would be congruent, then $\Delta_a(a) = 1$ and $\Delta_a(b) = 0$ should be so. Recall that an algebra is called *strictly simple* if it is simple and does not contain proper subalgebras. It is clear that if \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are strictly simple, then $\{0, 1\}$ is their only proper subalgebra.

Remark 2. It is well-known that \mathbf{L}_{n+1} is strictly simple iff n is prime. Note that, for every n, if $\mathbf{B} = (B, \neg, \rightarrow)$ is an MV-subalgebra of \mathbf{L}_{n+1} , then $\mathbf{B}^* = (B, \lor, \neg, *)$ is a subalgebra of \mathbf{L}_{n+1}^* as well. Thus, if \mathbf{L}_{n+1} is not strictly simple, then \mathbf{L}_{n+1}^* is not strictly simple as well. Therefore, if n is not prime, \mathbf{L}_{n+1}^* is not strictly simple. However, in contrast with the case of \mathbf{L}_{n+1} , n being prime is not a sufficient condition for \mathbf{L}_{n+1}^* being strictly simple.

We now introduce the following procedure P: given n and an element $a \in L_{n+1}^* \setminus \{0, 1\}$, it iteratively computes a sequence $[a_1, \ldots, a_k, \ldots]$ where $a_1 = a$ and for every $k \ge 1$,

$$a_{k+1} = \begin{cases} *(a_k), \text{ if } a_k > 1/2 \\ \neg(a_k), \text{ otherwise (i.e, if } a_k < 1/2) \end{cases}$$

until it finds an element a_i such that $a_i = a_j$ for some j < i, and then it stops. Since everything is finite, the procedure always stops and produces a finite sequence. Then we write $P(n, a) = [a_1, a_2, \ldots, a_m]$, where $a_1 = a$ and a_m is such that P stops at a_{m+1} . Therefore,

Lemma 3. For each odd number n, let $a_1 = (n-1)/n$. Then the procedure P stops after reaching 1/n, that is, if $P(n, a_1) = [a_1, a_2, \dots, a_m]$ then $a_m = 1/n$.

Furthermore, for any $a \in \mathbf{L}_{n+1}^* \setminus \{0, 1\}$, the set A_1 of elements reached by P(n, a), i.e. $A_1 = \{b \in \mathbf{L}_{n+1}^* \mid b \text{ appears in } P(n, a)\}$, together with the set A_2 of their negations, 0 and 1, define the domain of a subalgebra of \mathbf{L}_{n+1}^* .

Lemma 4. \mathbf{L}_{n+1}^* is strictly simple iff $\langle (n-1)/n \rangle^* = \mathbf{L}_{n+1}^*$.

Proof. (Sketch) The 'if' direction is trivial. As for the other direction, call $a_1 = (n-1)/n$ and assume that $\langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$. Launch the procedure $P(n, a_1)$ and let \mathbf{A} be the subalgebra of \mathbf{L}_{n+1}^* whose universe is $A_1 \cup A_2 \cup \{0, 1\}$ defined as above. Clearly $a_1 \in A$, hence $\langle a_1 \rangle^* \subseteq \mathbf{A}$. But $\mathbf{A} \subseteq \langle a_1 \rangle^*$, by construction. Therefore $\mathbf{A} = \langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$.

Fact: Under the current hypothesis (namely, $\langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$) if n is even, then n = 2 or n = 4. Thus, assume n is odd, and hence Lemma 3 shows that $1/n \in A_1$. Now, let $c \in \mathbf{L}_{n+1}^* \setminus \{0, 1\}$ such that $c \neq a_1$. If $c \in A_1$ then the process of generation of A from c will produce the same set A_1 and so $\mathbf{A} = \mathbf{L}_{n+1}^*$, showing that $\langle c \rangle^* = \mathbf{L}_{n+1}^*$. Otherwise, if $c \in A_2$ then $\neg c \in A_1$ and, by the same argument as above, it follows that $\langle c \rangle^* = \mathbf{L}_{n+1}^*$. This shows that \mathbf{L}_{n+1}^* is strictly simple.

Lemma 5 ([4]). If \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* then: (i) \mathbf{L}_{n+1}^* is strictly simple. (ii) n is prime

Theorem 6. \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* iff \mathbf{L}_{n+1}^* is strictly simple.

Proof. The 'only if' part is (i) of Lemma 5. For the 'if' part, since \mathbf{L}_{n+1}^* is strictly simple then, for each $a, b \in \mathbf{L}_{n+1}$ where $a \notin \{0, 1\}$ there is a definable term $\mathbf{t}_{a,b}(x)$ such that $\mathbf{t}_{a,b}(a) = b$. Otherwise, if for some $a \notin \{0, 1\}$ and $b \in \mathbf{L}_{n+1}$ there is no such term then $\mathbf{A} = \langle a \rangle^*$ would be a

proper subalgebra of \mathbf{L}_{n+1}^* (since $b \notin \mathbf{A}$) different from $\{0, 1\}$, a contradiction. By Proposition 1 the operations $\chi_a(x)$ are definable for each $a \in \mathbf{L}_{n+1}$, then in \mathbf{L}_{n+1}^* we can define Lukasiewicz implication \rightarrow as follows:

$$x \to y = (x \Rightarrow y) \lor \left(\bigvee_{n>i>j\geq 0} \chi_{i/n}(x) \land \chi_{j/n}(y) \land \mathbf{t}_{i/n,a_{ij}}(x)\right) \lor \left(\bigvee_{n>j\geq 0} \chi_1(x) \land \chi_{j/n}(y) \land y\right)$$

where $a_{ij} = 1 - i/n + j/n$.

We have seen that *n* being prime is a necessary condition for \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* being termequivalent. But this is not a sufficient condition: in fact, there are prime numbers *n* for which \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are not term-equivalent and this is the case, for instance, of n = 17.

Definition 7. Let Π be the set of odd primes n such that 2^m is not congruent with $\pm 1 \mod n$ for all m such that 0 < m < (n-1)/2.

Since, for every odd prime n, 2^m is congruent with $\pm 1 \mod n$ for m = (n-1)/2 then n is in Π iff n is an odd prime such that (n-1)/2 is the least 0 < m such that 2^m is congruent with $\pm 1 \mod n$.

The following is our main result and it characterizes the class of prime numbers for which the Lukasiewicz implication is definable in \mathbf{L}_{n+1}^* .

Theorem 8. For every prime number n > 5, $n \in \Pi$ iff \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are term-equivalent.

The proof of theorem above makes use of the procedure P defined above. Let $a_1 = (n-1)/n$ and let $P(n, a_1) = [a_1, \ldots, a_l]$. By the definition of the procedure P, the sequence $[a_1, \ldots, a_l]$ is the concatenation of a number r of subsequences $[a_1^1, \ldots, a_{l_1}^1]$, $[a_1^2, \ldots, a_{l_2}^2]$, \ldots , $[a_1^r, \ldots, a_{l_r}^r]$, with $a_1^1 = a_1$ and $a_{l_r}^r = a_l$, where for each subsequence $1 \le j \le r$, only the last element $a_{l_i}^i$ is below 1/2, while the rest of elements are above 1/2.

Now, by the very definition of *, it follows that the last elements $a_{l_j}^j$ of every subsequence are of the form

$$a_{l_j}^j = \begin{cases} \frac{kn-2^m}{n}, \text{ if } j \text{ is odd} \\ \frac{2^m-kn}{n}, \text{ otherwise, i.e. if } j \text{ is even} \end{cases}$$

for some m, k > 0, where in particular m is the number of strictly positive elements of \mathbf{L}_{n+1} which are obtained by the procedure before getting $a_{l_i}^j$.

Now, Lemma 3 shows that if n is odd then 1/n is reached by P, i.e. $a_l = a_{l_r}^r = 1/n$. Thus,

$$\begin{cases} kn - 2^m \equiv 1, \text{ if } r \text{ is odd (i.e., } 2^m \equiv -1 \pmod{n} \text{ if } r \text{ is odd)} \\ 2^m - kn \equiv 1, \text{ otherwise (i.e., } 2^m \equiv 1 \pmod{n} \text{ if } r \text{ is even}) \end{cases}$$

where m is now the number of strictly positive elements in the list $P(n, a_1)$, i.e. that are reached by the procedure.

Therefore 2^m is congruent with $\pm 1 \mod n$. If n is a prime such that \mathbf{L}_{n+1}^* is strictly simple, the integer m must be exactly (n-1)/2, for otherwise $\langle a_1 \rangle^*$ would be a proper subalgebra of \mathbf{L}_{n+1}^* which is absurd. Moreover, for no m' < m one has that $2^{m'}$ is congruent with $\pm 1 \mod n$ because, in this case, the algorithm would stop producing a proper subalgebra of \mathbf{L}_{n+1}^* . This result, together with Theorem 6, shows the right-to-left direction of Theorem 8.

In order to show the other direction assume, by Theorem 6, that \mathbf{L}_{n+1}^* is not strictly simple. Thus, by Lemma 4, $\langle a_1 \rangle^*$ is a proper subalgebra of \mathbf{L}_{n+1}^* and hence the algorithm above stops, in 1/n, after reaching m < (n-1)/2 strictly positive elements of \mathbf{L}_{n+1}^* . Thus, 2^m is congruent with ± 1 (depending on whether r is even or odd, where r is the number of subsequences in the list $P(n, a_1)$ as described above) mod n, showing that $n \notin \Pi$.

Algebraizability of $\langle \mathbf{L}_{n+1}^*, F_{i/n} \rangle$

Given the algebra \mathbf{L}_{n+1}^* , it is possible to consider, for every $1 \leq i \leq n$, the matrix logic $\mathbf{L}_{i,n+1}^* = \langle \mathbf{L}_{n+1}^*, F_{i/n} \rangle$. In this section we recall from [4] that all the $\mathbf{L}_{i,n+1}^*$ logics are algebraizable in the sense of Blok-Pigozzi [1], and that, for every i, j, the quasivarieties associated to $\mathbf{L}_{i,n+1}^*$ and $\mathbf{L}_{i,n+1}^*$ are the same.

Observe that the operation $x \approx y = 1$ if x = y and $x \approx y = 0$ otherwise is definable in \mathbf{L}_{n+1}^* . Indeed, it can be defined as $x \approx y = (x \Rightarrow y) \land (y \Rightarrow x)$. Also observe that $x \approx y = \Delta_1((x \Rightarrow_G y) \land (y \Rightarrow_G x))$ as well.

Lemma 9. For every n, the logic $L_{n+1}^* := L_{n,n+1}^* = \langle \mathbf{L}_{n+1}^*, \{1\} \rangle$ is algebraizable.

Proof. It is immediate to see that the set of formulas $\Delta(p,q) = \{p \approx q\}$ and the set of pairs of formulas $E(p,q) = \{\langle p, \Delta_0(p) \rangle\}$ satisfy the requirements of algebraizability. \Box

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two propositional deductive systems S_1 and S_2 in the same language are *equivalent* if there are translations $\tau_i : S_i \to S_j$ for $i \neq j$ such that: $\Gamma \vdash_{S_i} \varphi$ iff $\tau_i(\Gamma) \vdash_{S_j} \tau_i(\varphi)$, and $\varphi \dashv_{S_i} \tau_j(\tau_i(\varphi))$. From very general results in [2] it follows that two equivalent logic systems are indistinguishable from the algebraic point of view, namely: if one of the systems is algebraizable then the other will be also algebraizable w.r.t. the same quasivariety. This can be applied to $L_{i,n+1}^*$.

Lemma 10. For every n and every $1 \le i \le n-1$, the logics L_{n+1}^* and $L_{i,n+1}^*$ are equivalent.

Indeed, it is enough to consider the translation mappings $\tau_1 : L_{n+1}^* \to L_{i,n+1}^*, \tau_1(\varphi) = \Delta_1(\varphi)$, and $\tau_{i,2} : L_{i,n+1}^* \to L_{n+1}^*, \tau_{i,2}(\varphi) = \Delta_{i/n}(\varphi)$. Therefore, as a direct consequence of Lemma 9, Lemma 10 and the observations above, it follows the algebraizability of $L_{i,n+1}^*$.

Theorem 11. For every n and for every $1 \le i \le n$, the logic $L_{i,n+1}^*$ is algebraizable.

Therefore, for each logic $L_{i,n+1}^*$ there is a quasivariety $\mathcal{Q}(i,n)$ which is its equivalent algebraic semantics. Moreover, by Lemma 10 and by Blok and Pigozzi's results, $\mathcal{Q}(i,n)$ and $\mathcal{Q}(j,n)$ coincide, for every i, j. The question of axiomatizing $\mathcal{Q}(i,n)$ is left for future work.

References

- W.J. Blok, D. Pigozzi. Algebraizable Logics Mem. Amer. Math. Soc., vol. 396, Amer. Math. Soc., Providence, 1989.
- [2] W.J. Blok, D. Pigozzi. Abstract algebraic logic and the deduction theorem, manuscript, 1997. (See http://orion.math.iastate.edu/dpigozzi/ for the updated version, 2001).
- [3] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht, 2000.
- [4] M. E. Coniglio, F. Esteva, T. Flaminio, L. Godo. On an implication-free reduct of MV_n chains. Proceedings of LATD2018 - Logic, Algebra and Truth Degrees. Bern, Switzerland, 2018.
- [5] M. E. Coniglio, F. Esteva, J. Gispert, L. Godo. Maximality in finite-valued Lukasiewicz logics defined by order filters. Journal of Logic and Computation (accepted).