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Abstract

We model the sense-making process of diagrams as conceptual
blends of the diagrams’ geometric configurations with apt im-
age schemas. We specify image schemas and geometric config-
urations with typed FOL theories. In addition, for the latter, we
utilise some Qualitative Spatial Reasoning formalisms. Using
an algebraic specification language, we can compute the con-
ceptual blends of image schemas and geometry as category-
theoretic colimits. We show through several examples how this
model captures the sort of direct inferences we confer to dia-
grammatic representations due to our embodied cognition. We
argue that this approach to sense-making might be of value for
the design and application of diagrammatic and graphical vi-
sualisations, as well as for Al in general.

Keywords: diagrammatic reasoning; sense-making; image
schema; conceptual blending.

Introduction

Sense-making refers to the process by which we structure our
percepts into constructs that are more meaningful for us. In
this work, we model the sense-making of diagrams as con-
ceptual blends of image schemas—reflecting early embodied
sensorimotor experiences (Johnson, |1987; [Lakoff] |1987)—
with the geometric configuration of diagrams. To the best of
our knowledge, modeling the sense-making of diagrams in
this manner is novel. We believe that formalising this sense-
making process could be of value for fields pertaining to
human-human or human-machine communication by means
of graphical aids.

To illustrate our approach, take for instance the Entity-
Relationship (ER) diagram of Fig.[1| Its geometric configura-
tion comprises rectangle-shaped region boundaries A and C, a
diamond-shaped region boundary B, and lines ab and bc, in-
tersecting with A and B, and with B and C, respectively. Some
of the possible ways one could make sense of this diagram are
that the three regions form a path from A to C; or that A with
B, and B with C, form pairs of entities symmetrically linked
by lines. The diagram may also be thought of as consisting of
three linked regions, on a path going from A to C. These con-
ceptualizations allow the emergence of some direct diagram-
matic inferences, such as an association of region A with C,
due to being on the same path. Such interpretations are con-
sidered direct because they are drawn by the observers with
zero inference steps (in terms of transformation steps effected
on the representation). Moreover, this variety of understand-
ings of the diagram leads to different conclusions, depend-
ing on whether the ‘path’ or the ‘link’ conceptualisation, or
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Figure 1: Geometric configuration of an ER diagram. La-
bels ‘1’ and ‘N’ denote that one customer may have many
accounts, but a single account belongs to one customer. The
remaining letters label the closed curves and the lines.

Figure 2: We distinguish the diagram geometry (left) from the
diagram we make sense of (bottom). The latter arises when
image schemas are blended with each other and

with the geometry.

both, are at play; one imbues direction, while the other im-
bues symmetric association. This shows that diagrams, taken
as geometric configurations, do not bring up a unique way of
making sense of them.

Our proposal is to model the aforementioned sense-making
process as follows: A configuration consists only of geomet-
ric entities. The ability to do inference with the diagram is
not a result merely of its geometry. We claim that the sense
and understanding, which make such inference possible, arise
when image schemas with their rich internal structure, such as
SOURCE-PATH-GOAL (PATH, in short) and LINK, are blended
with each other, and subsequently with the geometry, struc-
turing it into a meaningful diagram (Fig. [2). We model ex-
amples of such a sense-making process for diagrams from
computer science and mathematics.



Background

In this section we present the theoretical background upon
which our model is based.

The literature of diagrammatic reasoning has been valu-
able for formally studying the informational content and the
efficacy of diagrams for inference. In order to reach such con-
clusions, a one-to-one correspondence between the geometry
(the syntax) and the semantics of the diagram is typically as-
sumed. However, as shown, a certain geometric configuration
does not always evoke a unique understanding. Furthermore,
the interpretation of diagrams does not simply rely on dis-
covering a mapping, but may entail a constructive and imag-
inative process (May, |[1999). This is in line with the process
of sense-making, which we are modeling computationally in
this work.

Sense-making is defined within the scope of enactive cog-
nition as the process of an autonomous agent bringing its own
original meaning upon its environment (Varela, [1991)). Image
schemas are fundamental for such a process, because they
have the capacity to organise and structure our experience
(Lakoft] [1987, p. 372). The theory of image schemas analy-
ses such mental structures, formed early in life and constitut-
ing structural contours of repeated sensorimotor contingen-
cies such as SUPPORT, VERTICALITY, and BALANCE. Using
the latter as an example, Johnson explains that the meaning of
balance emerges through embodied action and not from learn-
ing some rules (Johnson||1987, p. 74-75). The repeated expe-
rience of different instances of balance leads to the formation
of a mental structure reflecting what is invariant among them.
This mental structure is a gestalt, i.e., a set of interrelated
parts that make up a whole (Johnson, 1987} [Lakott, [1987).
Image schemas can structure our perception and reasoning
by transferring this internal structure to various domains, ac-
cording to the principles of conceptual blending (Fauconnier
& Turner, 2002)). We model this structuring process by con-
sidering the image schemas and the geometric configuration
of a diagram as constituents of a blend representing the inter-
preted diagram.

Conceptual blending is a process by which several mental
spaces —coherent and integrated chunks of information that
underlie cognition and which comprise entities, and relations
or properties that characterise them—are put into correspon-
dence with each other via cross-space relations, so as to be
combined to yield a blend with novel structure (Fauconnier &
Turner, |2002). In this case, the original mental spaces can be
referred to as input spaces, and the resulting blend as blended
space.

In this paper, we propose to model the way one makes
sense of a sensory stimulus (such as a diagram), by means of
cross-space correspondences between an input space reflect-
ing this stimulus and input spaces reflecting image schemas.
These correspondences enable the construction of a blended
space, which integrates some substructure of each of these in-
put spaces. Within this blended space, the emergent structure
resulting from integrating the structures of the input spaces,

Figure 3: Geometric configuration of a Hasse diagram.

contains novel inferences that were not possible in each input
space alone.

For the ER diagram of Fig. |1} the input space of the geo-
metric configuration, comprising rectangular and diamond-
shaped regions and lines, can be blended, for instance, with
the input space of a PATH schema, of a LINK schema, or with
the blend of both schemas. Each of these blends would yield
alternative blended spaces that capture some of the different
ways we can make sense of the diagram, e.g., as comprising
(respectively) a directional structure, symmetrically associ-
ated entities, or a directional structure whereby each pair is
symmetrically associated.

Approach

We now present, by way of several examples, our computa-
tional model of the sense-making of diagrams. We capture
sense-making as the process of building the correspondences,
and the resulting blend, between the geometric configurations
of a given diagram, and the image schemas that provide struc-
ture to these configurations. We also show how certain direct
inferences of these diagrams arise within these conceptual
blends. To that end, for each example diagram we provide:

1. A formal specification of the geometry of the diagram.
Qualitative Spatial Reasoning (QSR) formalisms model
several aspects of spatial configurations at a level compat-
ible with human perception (Freksa, [1991). Here, we use
QSR to be able to capture the geometry of the diagram us-
ing typed first-order logic (FOL) theories.

2. Formal specifications of the structure of the relevant image

schemas by means of typed FOL theories. The schemas
discussed are CONTAINER, LINK, PATH, VERTICALITY,
and SCALE.

3. A formalisation of suitable correspondences between

image-schema structures and the geometric configuration.
Given such correspondences, each conceptual blend can be
modeled as a particular kind of category-theoretical colimit
(Schorlemmer & Plazal, 2021)).

Diagrammatic notations

We now briefly introduce the four diagrammatic notations of
our case studies.

A Hasse diagram (Fig. 3 represents a partially ordered set
(poset). It consists of edges and vertices, drawn as points and
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Figure 4: Geometric configuration of an Euler diagram.
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Figure 5: Geometric configuration of a Concept diagram.

lines. Each point represents one element of the poset. Assum-
ing elements x, y and z of the poset, ordered by the ‘<’ rela-
tion, then the syntactic rules are that if x < y, then x is shown
in a lower position than y in the diagram, and that x and y are
connected by a line in the diagram iff x < y or y < x, and there
is no element z such that x < z and z < y.

ER diagrams (Fig. [T) represent entity types and relation-
ships among them. Entity types are represented as rectangles.
A relationship between two entity types is represented by a
diamond, intersecting by lines with the rectangles represent-
ing the entities. In Fig.[I] the entity types involved are ‘Cus-
tomer’ and ‘Account,” and they are associated by the relation-
ship ‘owner-of.” Numbers on the lines at each side can specify
how many instances of the entity of that side can participate
in a relation with one instance of the entity on the opposite
side (Chen, |1976).

Euler diagrams (Fig. @) can represent inclusion and inter-
section relationships between sets. Their syntax consists of
closed curves. Each curve represents a set, and separates the
plane into two regions, whereby the interior represents the
members of the set, and the exterior the non-members.

Concept diagrams (Fig.[5), an extension of Euler diagrams,
can represent ontology specifications (Howse, Stapleton, Tay-
lor, & Chapman, [2011). An external rectangle represents
Thing, the class that all individuals are members of. Circles
represent classes and dots represent individuals. The topology
of both denotes their class membership, as in Euler diagrams.
An arrow linking a circle (or dot) at their tail, to a circle (or
dot) at their head represents a binary relation, with its domain
and range. Therefore, the configuration of Fig. [5| represents
that, for any individual ¢ of class C, there is a relation R be-
tween an individual ¢ in C and some individual in E, the latter
being a subclass of D.

A formal model of sense-making

In this subsection, we discuss the formalisation of each geo-
metric configuration and of the image schemas corresponding
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to it. Hasse diagrams are described in some detail by provid-
ing fragments of the actual formalisation. The other diagrams
are discussed more succinctly, since the blends corresponding
to them are modeled with the same principlesE

In order to describe the geometric configurations at hand,
we draw from formal systems of the QSR literature. Re-
garding topology, existing formalisms enable us to charac-
terise spatial entities as points, lines, and regions and to
describe their topological relations (Egenhofer & Herring,
1991). Complex shapes can be described by identifying the
points where, and the manner with which, two sides converge
(e.g., acute or obtuse angle). An algorithm can automatically
identify these points in digital images, and generate a quali-
tative description of the shape in natural language (Falomir,
Gonzalez-Abril, Museros, & Ortega, 2013). The orientation
of 2D objects of any shape can be formalised using eight re-
lations (left, back-left, right, front-right, etc.) that specify the
qualitative position of a primary object, with respect to a ref-
erence one (Hernandez, [1991)).

As for the image schemas, their structure is captured by
a logical specification, based on conceptual descriptions in
the literature (Johnson,|1987; [Lakoff, |1987). As an example,
here is a possible axiomatisation of the LINK schema in typed
FOL:

Vs € LinkSchema : linked(anEnt (s),anotherEnt(s))
Ve1,ey € Entity : linked(ey,e3) — s € LinkSchema :
(anEnt(s) = e) AanotherEnt(s) = ep) V
(anEnt(s) = ey AanotherEnt(s) = ej)
VI € Link 3!s € LinkSchema : link(s) =
Ve € Entity : —linked (e, e)
Vey,ey € Entity : linked(ey,e;) — linked(ey,e})

Elements of type LinkSchema are constituted of two com-
ponents of type Entity and one component of type Link, which
are obtained with functions anEnt, anotherEnt, and link, re-
spectively. The axioms above state that the two entities of a
LINK schema are always linked; that linked entities are al-
ways part of some (not necessarily unique) LINK schema; that
a link is always part of a unique LINK schema; and that the
linked predicate is irreflexive and symmetric.

Hasse diagrams. The Hasse configuration of Fig. [3| has
eight points (a to h) and twelve lines (ba, ca, etc.). Each
line intersects with a pair of points. Below is a fragment of
the specification of this configuration, which states the topo-
logical and orientation relations between some entities of the
configuration, with respect to point aE

IThe complete formalisation of the blends modeling the
sense-making of the four kinds of diagrams can be down-
loaded from |https://drive.google.com/drive/folders/
13c0dJT0gbnAua3uXIgTEW8zV3kF_2R14?usp=sharing,

“Predicates such as intersects state the topological relations as
defined in (Egenhofer & Herring, [1991), while predicates such as
right_back state the orientation of entities as defined in (Herndndez,
1991). Constants a, b, etc. are of type Point; constants ba, ca, etc.
are of type Line.


https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
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Figure 6: Conceptual blend of a Hasse diagram. The image-
schematic blends CHAIN and VERTICAL-SCALE (right) are
blended with the geometric configuration (left), yielding the
Hasse diagram as we make sense of it (bottom).

intersects(ba,a) right_back(a,b)
back(a,c)

left_back(a,d)

right_back(a,e)
intersects(ca,a) back(a,h)

intersects(da,a)

The image schemas that participate in the sense-making of
the Hasse configuration are LINK, PATH, VERTICALITY, and
SCALE (Fig.[6). This process is modeled as the complex con-
ceptual blend of several simpler blends (Fig. [7), discussed
below.

The first blend involved is the CHAIN E comprising a blend
of the PATH and LINK schemas. The PATH schema relates to
directed motion. It comprises a path of contiguous locations,
with a source and a goal location at its endpoints. The LINK
schema pertains to the notion of association, either physical
or abstract. It comprises two distinct entities, linked with a
link. To blend instances of these two schemas, each pair of
linked entities is put into correspondence with a pair of con-
tiguous locations in a path. Subsequently, we can compute
the image-schematic CHAIN blend, whereby serially linked
entities comprise a CHAIN with a source and goal as its end-
pointsE The blend thus contains the inferences that serially
linked entities on the same CHAIN are associated with each
other, and that any CHAIN has two endpoints, and a direction
from the source to the goal endpoint.

Ultimately, a sequence of points connected by lines in the
Hasse configuration (e.g., points a, d, g, and h in Fig. E])
can be put into correspondence with a particular instance of a
CHAIN by relating connected points (such as a and d, d and
g, and g and h) with linked entities of CHAIN, and end points
(such as a and h) with the source and the goal of CHAIN.
A line intersecting with a pair of points is put into corre-
spondence with the links of the CHAIN. More precisely, these
cross-space correspondences between the mental spaces of

3In this paper we extend the convention of typesetting the names
of image schemas in small caps, to image-schematic blends as well.

4The resulting blended entity type is now governed by the union
of the axioms of LINK and PATH in the blend.
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the Hasse geometric configuration and the CHAIN blend can
be expressed as pairs of a binary relation R between entities of
the two spaces. For example, the sequential points a, d, g, and
h and the lines da, gd and hg of Fig. [3|are related through R
with components of schema instances s, 52,53 € LinkSchema
present in the CHAIN blend:

R(anEnt(sy),a)
R(anotherEnt(sy),d)
R(link(sy),da)

R(anEnt(s3),d)
R(anotherEnt(s;),g)
R(link(s2),gd)

R(anEnt(s3),g)
R(anotherEnt(s3),h)
R(link(s3),hg)

These correspondences between the input spaces of CHAIN
and of the geometric configuration, enable integrating them
into a new blended space, as we will see later.

The Hasse configuration is also structured by a blend of
the VERTICALITY and SCALE schemas (Fig. [7). VERTICAL-
ITY reflects the structure we experience from standing upright
with our bodies resisting to gravity, or from perceiving up-
right objects like trees. Serra Borneto (1996)) argues that the
VERTICALITY schema comprises an axis reflecting the tra-
jectory an object subjected to gravity would follow, or the
axis of an object standing upright. In either case, a base or
ground is involved as reference point. Given all the above in-
formation, we model VERTICALITY as a unique vertical axis
with some marks on it, among which ‘base’ is the lowest one,
and as a simple distinction between up and down. Lastly, the
SCALE schema relates to a gradient of quantity. It comprises
a structure of several grades and it has a cumulative property;
if one has 15 euros, they also have 10. Consequently, we
formalise SCALE as a total order on grades. Putting into cor-
respondence the marks of VERTICALITY with the grades of
SCALE schemas enables the construction of the VERTICAL-
SCALE blend. This blend comprises blended levels oriented
with respect to the down-up axis. The lowest of those lev-
els corresponds to the base of VERTICALITY. An instance of
VERTICAL-SCALE can be put into correspondence with the
Hasse geometric configuration so that levels whereby one is
ordered immediately above the other correspond to pairs of
points that intersect with the same line, and one is oriented
‘back’ of the other.

In summary, the entire complex conceptual network of im-
age schematic correspondences and blends, blended with the
Hasse geometric configuration, yields the Hasse diagram as
we make sense of it, with the following inferences: The
Hasse diagram comprises several chains of linked elements,
arranged at several levels of generality along a down-up ver-
tical axis; some of these elements of different chains are on
the same level of generality; there is a unique source ordered
before all other elements of the diagram, and a unique goal or-
dered after all other elements. Mathematically, we formalise
these blends as category-theoretic colimits of typed FOL the-
ories (Schorlemmer & Plaza, [2021).

Entity-relationship diagrams. We model the sense-
making of the ER diagram in an analogous way to that of
the Hasse diagram, i.e., as a network of blends among the



LINK PATH SCALE VERTICALITY Hasse configuration
E —

CHAIN VERTICAL SCALE

Hasse diagram made sense of

Figure 7: The network of blends modeling the sense-making
of the Hasse diagram.

CONTAINER, LINK, and PATH schemas, and the ER geomet-
ric configuration. The latter has three region boundaries, two
rectangle-shaped ones (A and C) and a diamond-shaped one
(B), as well as two lines (ab and bc) that intersect with them
in pairs (Fig. [I). The difference here is the contribution of
the CONTAINER schema. CONTAINER captures the structure
of entities that are hollow, and can enclose and protect other
entities, ranging from a fence to a balloon. It consists of a
boundary, an inside and an outside. Its structure dictates that
an entity can be either in the inside or on the outside, but not
both, and the transitivity of containment. Our formalisation
closely follows this.

The correspondences involved between the LINK and PATH
schema are the same as before, yielding a CHAIN blend. Ad-
ditional correspondences are that one boundary corresponds
to one entity of the CHAIN. Given these correspondences, a
second blend, namely CHAIN-OF-CONTAINERS, can be con-
structed. Finally, CHAIN-OF-CONTAINERS is put into corre-
spondence with the ER configuration so that one boundary
corresponds to one region boundary of any shape, and that
boundaries whereby one is outside of another correspond to
region boundaries that are disjoint.

Consequently, an additional inference that emerges in the
ER diagram, thanks to CONTAINER, is that the three region
boundaries are on the outside of each other. The remaining
emergent inferences are as before, i.e., region boundaries A,
B, and C all become associated due to being parts of a CHAIN
configuration with direction from left to right.

Euler and Concept diagrams. The modeling of these
blends is done exactly as before. Here, the most prominent
schema is CONTAINER. It can be inferred that some shapes
are indirectly inside, or outside, some region boundaries. This
is possible through the axioms in the CONTAINER specifica-
tion, which are projected into the blend. In particular, in the
Euler diagram of Fig.[d] region boundary Q is outside region
boundary R. As for the blend capturing the sense of the Con-
cept diagram of Fig.[3] it can be inferred that region boundary
D is inside region boundary A, and point ¢ is outside region
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boundaries D and E.

Related work

In this section we situate our contribution within the context
of previous related work.

In diagrammatic reasoning it is often posited that the ef-
ficacy of diagrams lies in their sharing structural proper-
ties with their referents. These properties allow observers to
draw direct interpretations (Stapleton, Jamnik, & Shimojima,
2017). Therefore, the more the properties of the geometry of
a diagram match the properties of its semantics, the more ef-
ficacious this diagram would be to represent this semantics.
Here, we expanded in this direction by modeling the origin
of these properties as the blending of image schemas with the
geometry of a diagram.

A few research groups have worked on formalising im-
age schemas and the relations among them. [Rodriguez and
Egenhofer| (2000) provide a relational algebra inspired by the
CONTAINER and SURFACE schemas, used to model, and rea-
son about, spatial relations of objects in an indoor scene. Im-
age schemas have also been used to model planning and ac-
tions of agents |St Amant et al.| (2006). Some image schemas
were recursively defined as compositions of other schemas.
In both these works, the formalisations are inspired by image
schemas, rather than faithful representations of their descrip-
tions in the literature. Embodied Construction Grammar for-
malises (Bergen & Chang, 2005) and implements (Bryant,
2008) language understanding by mapping components of
specific schemas (image schemas, and others) to phonemes.
This work is analogous to our own, except the stimulus made
sense of is a diagram and not a spoken sentence.

Kuhn| (2007 formalised image schemas as ontology rela-
tions using functional programming in a relatively abstract
manner. In a recent, comprehensive work, [Hedblom (2020)
modeled image schemas as families of interrelated theories,
with each schema comprising a combination of primitive
components. QSR formalisms that capture the spatiotempo-
ral content of schemas were used. In the present approach,
we chose not to use such formalisms to capture the internal
structure of image schemas.

There have also been several efforts to provide mathe-
matical models that formalise a blending process for given
input spaces. Related to our approach, |Goguen| (2006) ap-
plied algebraic specifications and their category-theoretic op-
erations for modeling the cognitive understanding of space
and time when solving a riddle. Building on this work,
Schorlemmer, Confalonieri, and Plaza (2016) modeled the
creative problem-solving process of tackling the same riddle
by way of a category-theoretic characterisation of blending,
based on typed FOL specifications of image schemas. In a
similar vein, Hedblom (2020) also implemented a small ex-
ample of blending linguistic concepts using image schemas.
As with the work by Schorlemmer et al., image schemas are
used to establish shared structure between two input spaces.
Image schemas have also been used to interpret an icon by



blending a description of the schema with a QSR descrip-
tion of the icon (Falomir & Plaza, 2019). This approach is
a conceptual equivalent of the current computational model,
referring to the sense-making of icons, instead of that of dia-
grammatic configurations.

Discussion

In this paper we have presented a formal framework of the
sense-making of diagrams, modeling the way observers struc-
ture diagrams by unconsciously projecting preexisting mental
structures — i.e., image schemas — on the geometry of a di-
agram, giving rise to direct inferences.

We have already described some interpretations that ob-
servers can make directly when encountering specific types
of geometric configurations, and which are not fully deter-
mined by that configuration itself. Here, these interpretations
are made precise and formal. In the case of the Euler dia-
gram (Fig. @), the inference of region boundaries R and Q
being disjoint is directly observable from the configuration,
because of its inherent structural properties (Stapleton et al.|
2017). Here, we model such direct inferences as arising in the
blend. Likewise, in the Hasse diagram (Fig. [6), the transitive
ordering of points in terms of their degree of the VERTICAL-
SCALE schema, the inference that the source of an instance of
CHAIN is ordered before all others (minimal element), and the
goal is after all others (maximal element), as well as the ex-
istence of distinct instances of CHAIN (maximal chains), are
all direct inferences made possible by the blending of image
schemas with the geometric configuration.

Therefore, some geometric configurations are more ef-
ficacious for representing a given semantics, than others,
due to having more similar properties with this semantics
(Stapleton et al., 2017). For example, set membership is rep-
resented more efficaciously with enclosure in closed curves
(Fig. @) than with points of a line (Mineshima, Sato, Take-
mura, & Okada, 2014), because curve enclosure is transitive
and asymmetric (geometrical property), as is set inclusion
(semantic property). Taking one step back, our conjecture
is that this correspondence between geometric and semantic
properties, is explained by the fact that some geometric con-
figurations can be integrated with image schemas that lead
to inferences compatible with the intended semantics. Such
examples are: the CONTAINER schema, in the case of Euler
diagrams and the semantics of set inclusion, and the SCALE
and VERTICALITY schemas, in the case of Hasse diagrams
and the semantics of posets. The above will be further ex-
plored formally in future work.

Conclusions and Future Work

In this paper we have modeled the sense-making of diagrams,
and the inferences carried out with them, as conceptual blends
of an observer’s embodied cognitive structures —crystallized
as image schemas— with the geometry of a diagram. The
novelty of our framework lies in the fact that it is not merely
conceptual but also written in a formal, computer-processable
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language. We contribute to the literature with a reusable set
of formalized image schemas. Importantly, our framework is
general enough to be applicable to different types of stimuli.
Therefore, although in this paper we have modeled a blend-
ing process to represent the sense-making of geometric con-
figurations of diagrams, the stimuli made sense of could in
principle be any structure that is expressible in typed FOL.
Furthermore, the entire framework could eventually be gen-
eralised in a representation-independent manner as described
in (Schorlemmer & Plazal [2021)).

One limitation of the current work is the lack of a quan-
titative metric of evaluation of the outcome of the sense-
making process. However, the view of the theories of con-
ceptual blending, image schemas and enactivism is precisely
that sense-making has no ground truth, as sense arises subjec-
tively for each organism through its experience with relation
to a body and an environment. In the framework of concep-
tual blending, correspondences are not prescriptive and there
is a variety of different ways to blend input spaces and obtain
new meaning. Nonetheless, even in this subjective and rela-
tional view, a good blend would be one that is well integrated
(Fauconnier & Turner, 2002} ch. 16) and, in our approach,
one that leads to emergent structure containing valid infer-
ences. More concretely, in the current work, as in most of the
literature of diagrammatic reasoning, we prescribed the cross-
space correspondences, and thus the blends, so that they give
rise to inferences that are consistent with the intended seman-
tics of a diagrammatic notation.

The issue of generating and evaluating alternative blends
for a given configuration, including those that model erro-
neous interpretations, i.e., inconsistent ones with the intended
semantics, will be explored in the future. To that end, we
intend to model a wider range of image schemas, obtaining
a reusable, comprehensive library. In another direction, we
would like to extend our research to formally explore why
some diagrams are interpreted faster or more accurately than
others. This information is of value for human-computer in-
teraction because it could provide guidelines for the design of
efficacious diagrammatic and graphical visualizations.

Although our direct contributions pertain to diagrams, our
formal framework could be useful for other areas in Al Im-
age schemas reflect invariants across states of affairs, en-
abling their abstraction into a specific concept. For exam-
ple, cups of various shapes and materials, perceived through
vision or touch, are a CONTAINER. It has indeed been pro-
posed that the generalisation capabilities of Al systems re-
garding knowledge about the physical world, which some an-
imals possess, could be improved through the acquisition of
abstract concepts like gravity, container, and motion along
a path (Shanahan, Crosby, Beyret, & Cheke, 2020; Thosar
et al., [2020). Interestingly, such concepts correspond directly
to image schemas, and future developments of our blending
framework could model the way agents use these concepts to
make sense of various states of affairs they perceive.
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