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Abstract. Meetings are an important vehicle for human communication. The Meet-
ing Scheduling problem (MS) is a decision-making process affecting several peo-
ple, in which it is necessary to decidewhenandwhereseveral meetings could be
scheduled.MS is a naturally distributed problem which has a clear motivation to
be tried using distributed techniques: people may desire to preserve the already
planned meetings in their personal calendars during resolution. In this paper, we
evaluate three distributed algorithms forMS according to efficiency and privacy
loss. Two of these algorithms viewMS as a Distributed Constraint Satisfaction
problem.
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1. Introduction

The Meeting Scheduling problem (MS) consists of a set of people which use their per-
sonal calendars to determinewhenandwhereone or more meeting(s) could take place
[4]. This is problem is a naturally distributed problem because (1) each person knows
only his/her own personal calendar before resolution and (2) people may desire to pre-
serve the already planed meetings in their personal calendars during resolution. In the
centralized approach, all people must give their private information to one person, who
solves the problem and returns a solution. This approach results in a high privacy loss
(each person must give his/her personal calendar to the solver). In a distributed approach,
people work together, revealing some information of their personal calendars, in order to
agree upon the time and the place that the meetings could be planned. In such context,
it is natural to viewMS as Distributed Constraint Satisfaction problem (DisCSP) with
privacy requirements.

Regarding privacy, two main approaches have been explored in the context of
MS. One considers the use of cryptographic techniques [6]. Alternatively, other au-
thors try to enforce privacy by using different search strategies [4,3]. In this paper,
we follow this line. Here, we provide an empirical comparison of three distributed ap-
proaches (two synchronous and one asynchronous) forMSin terms of efficiency and pri-
vacy loss. Among these approaches, two areDisCSPalgorithms: Synchronous Conflict-
backjumping (SCBJ) [2] and Asynchronous Backtracking (ABT) [7].

1Correspondence to: Pedro Meseguer, IIIA-CSIC, Campus UAB, 08193 Bellatera, Barcelona, Spain. Tel.:
+34 93 580 9570; Fax: +34 93 580 9661; E-mail:pedro@iiia.csic.es.



2 I. Brito et al. / Distributed Meeting Scheduling

2. The Meeting Scheduling Problem

The Meeting Scheduling [4] problem (in shortMS) is a decision-making process affect-
ing several people, in which it is necessary to decidewhenandwhereseveral meetings
could be scheduled. Formally, aMS is defined by the following parameters:

• P = {p1, p2, ..., pn}, the set ofn people; each with his/her own calendar, which
is divided intor slots,S = {s1, s2, ..., sr};

• M = {m1,m2, ..., mk}, the set ofk meetings;
• At = {at1, at2, ..., atk}, the set ofk collection of people that define which at-

tendees must participate in each meeting, i.e. people inati must participate in the
meetingmi, 1 ≤ i ≤ k andati ∈ P ;

• c = {pl1, pl2, ...plo}, the set ofo places where meetings can be scheduled.

Initially, people may have several slots reserved for already filled planning in their cal-
endars. A solution to this problem answers thewhereandwhenof each meeting. This
solution must satisfy the next rules:

• attendees of a meeting must agreewhereandwhenthe meeting is to take place,
• no two meetingsmi andmj can be held at same time if they have at least one

attendee in common,
• each attendeepi of a meetingmj must have enough time to travel from the place

where he/she is before the meeting starts to the place where the meetingmj will
be. Similarly, people need sufficient time to travel to the place where their next
meetings will take place.

2.1. Meeting Scheduling as Distributed CSP

The Meeting Scheduling problem is a truly distributed benchmark, in which each at-
tendee may desire to keep the already planned meetings in his/her calendar private. So
this problem is very suitable to be treated by distributed techniques, trying to provide
more autonomy to each person, and to keep preferences private. For this purpose, we
define the Distributed Meeting Scheduling problem (DisMS).

EveryDisMSinstance can be encoded as a Distributed Constraint Satisfaction prob-
lem (DisCSP). A DisCSPis a constraint satisfaction problem whose variables and con-
straints are distributed among autonomous agents [7]. In theDisCSPformulation for
DisMS, there exists one agent per person. Every agent includes one variable for each
meeting in which the corresponding person wishes to participate. The domains of the
variables enumerate the possible alternatives ofwhereandwhenmeetings may occur.
That is, each domain includesk × o values, wherek means the number of places where
meetings can be scheduling ando represents the number of slots in agents’ calendars.
There are two types of binary constraints between variables: equality and difference con-
straints. There exists a binary equality constraint between each pair of variables that be-
longs to different agents and corresponds to the same meeting. There exists a binary
difference constraint between each pair of variable which belongs to the same agent.



I. Brito et al. / Distributed Meeting Scheduling 3

3. Privacy onDisMS Algorithms

To solve aDisMS instance, agents must cooperate and communicate among them in
order to determinewhenandwheremeetings will take place. During this process, agents
leak some information about their personal calendars. Privacy loss is concerned with
the amount of information that agents reveal to other agents. In theDisCSPformulation
for DisSM, variable domains represent the availability of people to hold a meeting at
a given time and place, which actually is the information that agents desire hide from
other agents. In that sense, measuring the privacy loss of aDisMSmodeled asDisCSPis
actually the same as measuring the privacy loss of variable domains.

Later on this section we will analyze privacy loss on three distributed algorithms
for DisMS. FromDisMSperspective, agents in these algorithms make proposals to other
agents aboutwhenandwheremeetings could take place. A proposal can be accepted or
rejected by recipient agents. Depending on the answers of recipient agents, the propos-
ing agent can infer some information about the other agents. Similarly, when an agent
receives an assignment proposal, some information is leaked about the proposing agent.
In following we describe which knowledge can be inferred by agents in each case [3]:

1. When a proposal is rejected, the proposing agent can infer that it may be because
the rejecting agent either has a meeting in that slot already or has a meeting that
could not be reached if the proposed meeting was accepted.

2. When a proposal is accepted, the proposing agent can infer that the accepting
agent does not have a meeting in that slot, that possible meetings that are incom-
patible with the proposal do not occur in the possible another agent’s calendar.

3. When an agent receives a proposal from another agent, the recipient agent can
infer that the proposing agent has not a meeting in that slot, nor in any slot that
would be incompatible because of the distance constraints.

The aforementioned points constitute what we callthe process of knowledge inference. In
this work, we actually consider only part of the information that agents can infer by using
the first point. The inferred knowledge in this case is very vague because the agent that
receives a rejection cannot deduce anything for certain regarding the personal calendar
of the rejecting agent. From the other two cases (points 2 and 3), we identify three kinds
of information that can be deduced from agents:

Positive Information This is the information that denotes that can have a meeting in
certain locations at certain times.

Negative Information This is the information that denotes that an agent cannot have a
meeting in certain locations at certain times.

Open SlotsThis is the information related to slots in which an agent surely does not
have any meeting already in any of the places.

The concepts ofPositive Information andNegative Information are similar to the def-
initions of "present-meeting information" and "future-meeting information" given in [3].
RegardingOpen Slots, this information can be deduced by an agent if its proposal is
accepted by another agent. In this case, the accepting agent does not any meeting already
in a time-and-city that is incompatible with the proposal because the distance constraints.

In the following subsections we analyze the details of the process of knowledge
inference within each considered algorithm presuming that the number of meetings to be
scheduled is simply one (k = 1).
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3.1. The RR Algorithm

RRwas presented and used in [4] to solveDisMS. This algorithm is based on a very
simple communication protocol: one agent at a time proposes to the others agents the
time and the location that meeting may occur. The ordering in which proposals are made
follows the Round Robin strategy. When an agent receives a proposal, it responds only
to the proposing agent if this proposal is possible according to its calendar.

RRagents exchange six types of messages:pro, ok?, gd, ngd, sol, stp. pro mes-
sages are used by agents to select the proposing agent. When an agent receives apro
message, this cause the agent to become the proposing agent. After the proposing agent
chooses the time/place that the meeting can be scheduled, it informs about its decision
to rest of agents viaok? messages. When an agent receives anok? message, it checks if
the received proposal is valid with respect to the previously scheduled appointments in
its calendar. If this proposal is consistent, the agent sends agd message to the proposing
agent announcing it accepts the proposal. Otherwise, the agent sends angd message to
the proposing agent saying that it rejects the proposal. Messagessolandstp are responsi-
ble for announcing to agents that a solution has been found or the problem is unsolvable,
respectively.

Based on the previously discussed message system, it follows that the process of
knowledge inference is clear-cut. The message system is simple: proposals are sent via
ok? messages; which are accepted viagd messages or rejected viangd messages.

3.2. SCBJ

Synchronous Conflict-backjumping algorithm (SCBJ) is a very simple distributed algo-
rithm for solvingDisCSP[2]. In SCBJalgorithm assign variables sequentially []. They
exchange assignments and nogoods throughok? andngd messages, respectively. From
the point of view ofDisMS, agents propose or reject the proposals made by other agents.
ok? messages are used for the agents to send proposals regarding the time and the place
that are acceptable for a meeting. Contrary to what happens inRR, ngd messages only
mean that someone has rejected the proposal, but the agent who has done such is not
easily discovered. It is important to note thatSCBJloses some possible privacy in the
sense that as the agents sendok? messages down the line, each subsequent agent knows
that all the previous agents have accepted this proposal.

For the purpose of clarification, take for example, a problem consisting of five
agents each one representing a person with its own personal calendar. Suppose that the
first agent sends a proposal to the second agent about meeting Monday at 9:00 am in
Barcelona. The second agent accepts the proposal and sends it to the third agent. Then,
the third agent finds this proposal to unacceptable and therefore sends angd message to
the second agent, effectively eliminating the possibility of meeting Monday at 9:00 in
Barcelona. In this case, it is impossible for agent 1 or 2 to to know where the rejection
originated, because any of the agents situated ahead of them, could be responsible, an
thengd message came via the third agent. Furthermore, it is impossible for both the first
and second agents to discover the agent that rejected the proposal, as it could have been
any of the agents situated ahead of them, as was simply relayed back to them via the
third agent. However, in such systems, there is one specific case in which it is possible to
determine which agent has rejected a proposal. In this example, such a case would occur
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Figure 1. Constraint checks and number of messages for RR, SCBJ and ABT on Distributed Meeting Schedul-
ing instances.

if all of the agents 1-4 have already received the proposal and then the fifth agent rejects.
When this happens, the fourth agent knows that it was the fifth agent that rejected the
proposal as the latter is the only agent capable of sending such a message, assuming that
the fourth agent knows that the system contains only five agents in total.

3.3. ABT

The Asynchronous Backtracking algorithm (ABT) is a reference algorithm forDisCSP
[7]. Agents inABTassign the variables asynchronously and concurrently. Mainly, agents
exchange assignments and nogoods throughok? andngd messages, respectively. Similar
to SCBJ, ok? messages represent proposals, whilengd messages represent rejections.
The pervious discussion regardingngd message inSCBJis still valid for this algorithm,
however, there is a difference with respect took? messages. This difference is that since
a sending agent may send anok? to all of the lower priority agents, the information
contained in this message is only valid for the sending agent and is revealed only to the
receiving agents.

4. Experimental Results

In this section, we evaluate two synchronous algorithms (RRandSCBJ) as well as one
asynchronous algorithm (ABT) for solvingDisMSinstances. In order to compare the al-
gorithms, we make use of three measure: computation effort, communication cost, and
privacy loss. We measure computation effort using the number of non concurrent con-
straint checks (nccc) [5], communication cost in terms of the number of messages ex-
changed (msg) and privacy loss using the three types of information that agents may de-
duce regarding other agents’ calendars:Positive Information, Negative Information,
Free Slots.

Lower priority agents inSCBJandABT tend to work more than higher priority ones,
which causes them to reveal more information than higher priority agents. In order to
analyze the difference in the amount of privacy loss, we give the minimum, maximum
and average amount data for each type of information that agents can find out from other
agents’ plans.

In our experiments, we deal withDisMSinstances in which there has to be only one
meeting scheduled and which admit at least one solution. Each problem is composed of
12 people, 5 days, with 8 time slots per day and 3 meeting places. This gives5·8·3 = 120
possible values in each agent’s domain. Meetings and time slots are both one hour long.
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The time required for travel among the three cities is 1 hour, 1 hour and 2 hours.DisMS
instances are generated by randomly establishingp predefined meetings in each agent’s
calendar. The value ofp varies from 0 to 14.

In RR, we look at one constraint check each time that an agent checks to see if a
meeting can occur at a certain time/place. In all algorithms, each time an agent has to
propose, it chooses a time/place at random. Agents inABT process messages by packets
instead of processing one by one [2] and implement the strategy of selecting the best
nogood [1].

Figure 1 gives the results in terms ofnccc (on the left) andmsg (on the right) for
each algorithm averaged over 100 instances. For every value ofp, we observe thatRR
requires lessnccc thanSCBJandABT has the worst results. This can be explained by
looking at how agents reject invalid proposals in each algorithm. InRR, the proposing
agent broadcasts its proposal to all the other agents. Then, the receiving agents check if
this proposal is valid or not. This process can be performed concurrently by all receiving
agents, and therefore, its computation effort is just one non concurrent constraint check.
(Actually, thenccc value forRRis equal to number of proposals made before finding a
solution.) InSCBJ, the active agent sends the proposal (received from prior agents) to
the next agent when this is valid for him/her. It could be happen that a proposal make by
the proposing agent inRRand by the first agent in the ordering inSCBJandABT decide
to meet at certain time and certain place which is inconsistent for an agent lower in the
ordering forSCBJandABT. In RR, this inconsistency will be found as soon as this agent
responds to the proposing agent. InSCBJ, otherwise, this will be found when this agent
receives the proposal, after that all the prior agents have accepted it and have performed
several non concurrent constraint checks. RegardingABT, this results can be explained
because (1) agents choose their proposals randomly and (2) these proposals are made
possibly without knowing the proposals of higher priority agents. The combination of
these two facts makeABT agents more likely to fail when trying to reach an agreement
regardingwhereandwhenthe meeting could take place. Consideringmsg, the relative
ordering among agents changes only in the sense thatRRis worse thanSCBJ. This differ-
ence between both algorithms occurs probably becauseSCBJomits the accept messages
used byRR.

Figure 2 report the privacy loss with respect to each information type. Regarding
Positive Information (plots on the left in Figure 2), we observe that according to min-
imum values ofPositive Information, ABT andSCBJhave similar behavior, whileRR
is a little worse, especially for more difficult problems (p > 6). This plot indicates that
the less informed agent in terms for each algorithm infers only thePositive Information
derived from the problem solution. That is, when a solution is reached, this agent can
deduce that all the other agents can meet at the time and the location given by the found
solution.

In terms of maximum values it is apparent that the difference between algorithms
is greater.ABT is always less private thanSCBJandRR is the algorithm with the best
results. From these values we may conclude that the better informed agent inRRhas less
Positive Information than the better informed agent in the other two algorithms. In terms
of average values ofPositive Information, the plot shows thatABT agents discover on
average approximately two time slots in which each agent is available while for agents
in the other two algorithms this value is approximately one.SCBJshows better results
thanRRon instances with larger numbers of already planned appointments.
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Figure 2. Privacy loss for RR, SCBJ and ABT on Distributed Meeting Scheduling instances.

Considering the number ofFree Slotsthat agents leak from other agents, in terms
of minimum values, we observe that the three algorithms have results similar toPositive
Information ones. The less informed agent for each algorithms identifies almost 10 free
slots from the other agents’ calendars. In terms of maximum values, the better informed
agent inABT infers almost twice moreFree Slotsthan the better informed agent inRR,
while the better informed agent inSCBJdiscovers more than this agent inRR. In terms
of average values,ABT agents also find moreFree Slotsthan the other two algorithms.
SCBJlightly outperformsRRon instances withp > 6.

The amount ofNegative Information deduced in each algorithm is practically null.
Only for instances with higher number of already planned appointments, the better in-
formed agent inABT/RRcan identify at most one rejection from the other agents.

From the above results, we observe the following. Regarding computation effort and
communication cost,ABT, the asynchronous algorithm, is less economic than the other
two algorithms. This is becauseABTagents work concurrently and select their proposals
randomly, which makes more difficultABTagents to reach an agreement regardingwhen
andwherethey can meet together. Consistently for all tested instances,SCBJrequires
less messages thanRR, however, it performs more constraint checks. Regarding privacy,
for the three algorithm the greater amount of information revealed identifies time slots
in which agents surely does not have any meeting in any of the places. In terms of this
parameter,ABT is always worse than the synchronous algorithms. On average,SCBJ
agents reveal less information thanRR. However, the better informed agent inSCBJ
deduce more information than inRR.



8 I. Brito et al. / Distributed Meeting Scheduling

5. Scheduling Multiple Meetings

This work is focused onDisMS instances in which only a meeting have to be planned.
Previous works [4,3], that also useRRto solveDisMS, make the same assumption. This
is motivated by the fact that agents inRRhave to plan only one meeting at a time. Nev-
ertheless, the extension ofRR to deal withDisMS instances in which several meetings
must be scheduled is direct. For these instances,RRagents schedule one meeting after
the other. If agents reach an agreement about the time and the place where the current
meeting may occur, another not yet scheduled meeting is considered as the current meet-
ing. Otherwise, a different plan for the previous scheduled meeting is searched. This
process continues until all the meetings have been planned or every alternative of place
and time for the first meeting has been considered without reaching an agreement. Con-
versely toRR, agents inSCBJandABT may schedule several meetings simultaneously.
For instances with multiple meetings to be scheduled, the only difference with respect to
the details described above is that agents in these algorithms may hold multiple variables.

6. Conclusions

In this work we have evaluated privacy loss of three distributed algorithms for the Meet-
ing Scheduling problem, a naturally distributed benchmark. Our experimental results
show that the two synchronous approaches outperform the asynchronous one regarding
computation effort, communication cost as well privacy loss. These results do not im-
plies that synchronous algorithms should be considered the chosen algorithms for solv-
ing this problem. Synchronous and asynchronous algorithms have different functionali-
ties (i.e. synchronous algorithms are less robust to network failures). Regarding privacy,
neither of the distributed algorithms that we have considered is worse than the centralized
approach, which needs to gather the whole problem into a single agent to solve it.
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