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—— Abstract

We study anti-unification for possibly cyclic, unranked term-graphs and develop an algorithm,
which computes a minimal complete set of generalizations for them. For bisimilar graphs the
algorithm computes the join in the lattice generated by a functional bisimulation. These results
generalize anti-unification for ranked and unranked terms to the corresponding term-graphs, and
solve also anti-unification problems for rational terms and dags. Our results open a way to widen
anti-unification based code clone detection techniques from a tree representation to a graph
representation of the code.
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1 Introduction

Term-graphs are rooted, directed, labeled graphs, which may contain cycles. They can be
used to represent functional expressions compactly and to process them efficiently with
the help of graph transformations. Rewriting with term-graphs has been studied quite
intensively, see, e.g., [4,6,15,19,20,27]. Term-graphs can be represented in various ways, for
instance, as constraints [6], hypergraphs [27], systems of recursion equations [4], or arrows in
a category [15]. With cycles, term-graphs can express infinite terms and can model regular
infinite data structures. Some related (not necessarily equivalent) representations, that are
widely used in computer science, include dags, u-terms, control flow graphs, abstract semantic
graphs, program dependency graphs, certain kinds of flowcharts, process graphs, etc.
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In this paper, we study the anti-unification problem for term-graphs: Given two such
graphs G; and Gy (maybe with cycles), our goal is to find a graph G, which is a least general
common generalization of G; and Gs. It means, there should exist variable substitutions o
and o9 such that the instances of G with respect to them, i.e., the graphs Go; and Gos, are
equivalent to G; and G, respectively.

Our representation of term-graphs follows the approach from [4], based on recursion
equations. The difference is that we are not restricted to ranked alphabets. Variadic function
symbols are permitted and, to take the advantage of such variadicity, hedge variables are used
together with individual variables. The latter stands for single graphs, while the former can
be instantiated by hedges (finite sequences) of graphs. The equivalence relation is bisimilarity.

It has already been shown in [22] that anti-unification for unranked finite terms is finitary:
There are, in general, finitely many least general generalizations (lggs). The same holds for
unranked term-graphs, discussed in this paper. We develop an algorithm, which computes
such lggs. Equivalence class of a term-graph with respect to bisimilarity is a complete lattice.
For bisimilar terms, our algorithm computes the lgg, which is the join in this lattice.

The intuition behind lggs is that they should contain “maximal similarities” between the
input graphs and should abstract differences between them by variables uniformly. While
this might sound similar to the problem of computing maximal common subgraphs (mcs)
between graphs [23,24], lggs, in general, might contain more edges than mcs’s and also give
information about differences, which is usually neglected in mcs’s.

The results reported in this paper extend our previous results for unranked finite terms
[8,22] to unranked cyclic graphs. In particular, we extend rigid anti-unification from terms
to graphs. The rigid version is a more efficient variant of the unranked anti-unification
algorithm, since it computes only certain kind of generalizations. It is guided by a rigidity
function, which, essentially, decides which nodes of the input graphs should be retained in
the generalization. Rigidity function is a parameter of the algorithm. Properties of the latter
are proved for arbitrary values of this parameter. As special cases of our results, we obtain
anti-unification for ranked term-graphs, rational trees, u-terms, and dags. To the best of our
knowledge, generalization for these structures has not been addressed yet in the literature.

Anti-unification has a pretty wide scope of interesting applications. Originally, it was
introduced for inductive reasoning [26]. As a method of computing generalizations, variants of
anti-unification are important ingredients of techniques and tools that have found applications
in various areas of artificial intelligence, machine learning, reasoning, linguistics, program
synthesis, analysis, transformation, verification, etc. We can not give an exhaustive overview
of all related work here. A couple of recent references (motivated by different applications)
include, e.g., [1,2,7,9,10,13,18,21,25]. A particularly interesting motivation comes from
software code clone detection, where anti-unification has been successfully incorporated at
the level of abstract syntax trees [14,16,28]. Our results can serve as a starting point to
extend these techniques for graph-based representation of code (e.g., abstract semantic graphs
or program dependence graphs) or graph-based languages (e.g., for model transformation).
Besides, term-graph anti-unification can be used to construct an index for sets of dags (e.g.,
substitution tree indexing), which can be useful in declarative programming and reasoning.

The paper is organized as follows: In Sect. 2, we introduce the notions related to unranked
term-graphs. Sect. 3 briefly recalls results about term-graph bisimilarity. The notions related
to substitutions and generalizations are introduced in Sect. 4. The term-graph generalization
algorithm is described in Sect. 5. Conclusions and the future work are discussed in Sect. 6.

An experimental implementation of our anti-unification algorithm can be accessed online:
http://www.risc. jku.at/projects/stout/software/tgau.php.


http://www.risc.jku.at/projects/stout/software/tgau.php

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

(1) (1)
ONG6G () (1)
) OROWN O

Finite term Infinite non-rational term Infinite rational term

f(z, F(X)) f(a, f(a,a, f(a,a,a, f(...)))) fla, f(a, f(a, f(...)))

Figure 1 Unranked terms and their tree representations.

2 Unranked Cyclic Term-Graphs

We start by defining unranked (possibly infinite) terms. A position p € N* is a sequence of
natural numbers. We use a period to separate numbers in a position, e.g. 1.2.3. The empty
sequence is denoted by e.

» Definition 1. Given pairwise disjoint sets of unranked function symbols F (symbols
without fixed arity), term variables Vi, and hedge variables Vs, an unranked term is a partial
mapping ¢ : N* = F UV, U Vs such that
the domain of ¢, denoted dom(t), is non-empty and prefix-closed (i.e., if p1, p» € N* and
p1.p2 € dom(t), then p; € dom(t)),
for all p € N*, if t(p) € F, then there exists a natural number n > 0 such that p.i € dom(¢)
for all 1 <i < n and p.i ¢ dom(t) for all i > n,
for all p € N* if ¢(p) € V; UV, then for all n we have p.n ¢ dom(t).

t(e) ¢ Vs.

A term t is finite if dom(t) is a finite set. Otherwise it is infinite. A term is rational if it
has finitely many distinct subterms. Hedges are finite (possible empty) sequences of terms
and hedge variables. The set of terms (respectively, hedges) over F, V, and Vs is denoted by
T(F,V, Vs) (vespectively, H(F,Vy, Vs)). We use the letters f, g, h,a,b, ¢, and d for function
symbols, z,vy, z and u for term variables, X, Y, Z, and U for hedge variables, x,v,v and w
for a term variable or a hedge variable, ¢t and r for terms, s and g for a hedge variable or a
term, and § and ¢ for hedges. The empty hedge is denoted by e. Given a sequence §, the
ith element of § is denoted by §|;. Furthermore, §|Z denotes the subsequence between the
positions ¢ and j where ¢ < j, that is, §|;41,...,5];—1. Unranked terms (resp. hedges) can
be naturally represented as unranked trees (resp. forests).

» Example 2. In Fig. 1 we visualize three examples of a finite, infinite non-rational, and
infinite rational terms in form of trees. The triangles represent infinite subtrees:

For a term ¢, we denote by Vi(t), Vs(t), and V(¢) respectively the sets of term variables,
hedge variables, and all variables occurring in t. The notation extends to hedges as well.

Now we define unranked cyclic term-graphs with the help of recursion equations. We
start with a very general notion of a system of recursion equations and subsequently impose
restrictions to get to the interesting concept.

» Definition 3. A system of recursion equations over F, Vi, and Vs is a set of equations
{z1=t1,...,2p =1tp, X1 =51,...,X; =55}, where for all 4,5, 1 <i < j<mn, z; #z,,all
t’s are finite terms, for all ¢,7, 1 <i < j < m, X; # X;, and §’s are hedges consisting of
finite terms or hedge variables. The variables x1,...,x,, X1, ..., X, are called recursion
variables. They are bound in the system. All other variables occurring in the system are free.

9:3
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We will use different notation for free and bound variables in systems of recursion
equations, writing the latter in bold font. One recursion variable (usually, the leading
variable of the first equation) is a designated one and we call it the root of the system T,
denoted by root(T"). It is always a term variable.

A recursion variable v is reachable from a recursion variable x in a system I if I' contains
an equation of the form x = § € T and either v € V(§), or v is reachable from some recursion
variable v € V(§). In particular, we say that a hedge variable Y is horizontally reachable
from a hedge variable X in I, if I' contains an equation X = § such that either § has the
form (§1,Y, 82), or it has the form (31, Z, 32) and Y is horizontally reachable from Z. An
equation is called useless in T if its leading recursion variable is not reachable from root(T).

A system I' is called horizontally bounded if no hedge variable is reachable from itself in T,
i.e., I' contains no horizontal cycle.! For instance, {x = f(x), X = (x,Y)} is a horizontally
bounded system, while {x = f(x), X = (z, X)} is not.

We do not distinguish between two systems of recursion equations if they differ from each
other only by renaming of bound variables.

A system of recursion equations is called flat, if the equations have one of the following
three possible forms: © = f(xq,...,X,), € = u where u is a free or bound term variable, and
X = (vy,...,V,) where n > 0 and each v; is a free or bound term or hedge variable.

A system of recursion equations I' is in canonical form if it does not contain useless
equations and each equation in I' has one of the following forms:

= f(X1,---,Xn), Wwhere the x’s are (not necessarily distinct) recursion variables, or

x =y, where y is a free variable, or

X =Y, where Y is a free variable.

For instance, {x = f(y, X, X),y =g(x),X =Y} and {x = f(y,2,2),y = g(x),z = a}
are in canonical form, while {x = f(g(x), X ), X =Y}, {x = f(y,X),y = g(x)}, {x =
fly, X),y=g(x),X =a}, and {z = f(y,X),y =g(x), X =Y,Y = Z} are not.

Every canonical system is flat and horizontally bounded. On the other hand, each flat
horizontally bounded system can be transformed to the canonical form by performing the
following canonicalization steps as long as possible:

Remove useless equations.

Remove trivial equations of the form & = y and replace all occurrences of by y. If

y = x, then replace the equation by x = e, where e is some predefined constant from F.

Replace equations of the form X = (vy,...,V,), n > 1, where v’s are free or bound term
or hedge variables, by n new equations Y; = v;, 1 <1i < n, where Y;’s are fresh hedge
variables, and replace each occurrence of X by (Yi,...,Yy,).

Replace equations of the form X = u by & = u and replace each occurrence of X by x,
where u is a free or bound term variable and « is a fresh term variable.

Remove trivial equations of the form X =Y and replace all occurrences of X by Y.
Remove equations of the form X = ¢ and remove each occurrence of X.

Essentially, this canonicalization extends the canonicalization from [4] by four steps
dealing with hedge variables. These steps split each equation of the form X = (s1,...,sy)
into n new equations (one for each s;), and, eventually only those are retained for which s;
is a free variable. The bound s;’s at the end replace their leading recursion variables.

! Systems that are not horizontally bounded can be used to define cyclic term-graphs where cycles are
formed both vertically and horizontally. Such term-graphs can model infinitely branching trees of
infinite depth. These structures go beyond the scope of this paper.
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Intuitively, canonical systems of recursion equations can be naturally represented by
graphs: The nodes will be the recursion variables; a node  will be connected to a node x by
an edge if the system contains an equation = f(...,X,...); each node x will have a label f
for an equation & = f(...) or the label y for an equation & = y, each node X will have a
label Y for an equation X =Y. Every node is reachable from the root. Cycles and sharings
are defined by the occurrences of recursion variables. This intuition justifies the definition:

» Definition 4. A term-graph is a system of recursion equations in canonical form.

» Example 5. We show some term-graphs and their defining recursion equations.

‘ Equations: =z = f(y,x)
y=a

=(1)
2. Graph: ' ‘ Equations: = f(z,y)
e Y y=9(y,z)

1. Graph:

<
O

3. Graph: Equations: y = f(u,z)
z= f(u,y)
u z
U=z

A flat horizontally bounded system and its canonical form have the same (possibly infinite)
term unwinding. In the rest of the paper we consider only canonical systems of recursion
equations. The words “system of recursion equations” and “(term)-graphs” will be used
interchangeably. The letter G will be used to denote term-graphs.

Given a term-graph G and an equation & = t, the subgraph of G rooted at x is the set
subgraph(G,x) = {x =t} U{x = s | X = s € G, where x is reachable from x}. Obviously,
subgraph(G, root(G)) = G.

The set of nodes of a term-graph G is denoted by nodes(G). If @ € nodes(G) and
v is its ith successor (i.e., ¢ =t € G for some ¢t and v is ith argument of t), we will
write € —; v. An access path of v € nodes(G) is a possibly empty finite sequence of
positive natural numbers (i, ...,i;) such that there exist X;,...,X;_1 € nodes(G) with
700t(G) —iy X1 —ip ** —ri;_y Xj—1 —i; V- A node may have several access paths. The set
of all access paths of a node x is denoted by acc(x).

We will also consider term-graph hedges, defined analogously to hedges: they are finite,

possibly empty sequences of term-graphs and hedge variables. We will use G to denote them.

3 Bisimilarity Relation

It is straightforward to adapt the notions of bisimulation and bisimilarity [4] to our graphs:

» Definition 6. Let Ty = {x; =51,...,X, = Snt and Iy = {v1i = q1,..., Vi = ¢} be two
systems of recursion equations. Then R is a bisimulation from 'y to I'y iff

R is a binary relation with the domain {x;,...,X,} and codomain {vy,...,vp}.

The roots of I'y and I'y are related: x; Rv;.

9:5
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Ifx; Rvj, x; =l(xi,...,x5,) €T1, ki >0, and v; = b(v{,...,vij) €Ty, k; > 0, then
li = 1o, ki = kj, and x, Rv, forall 1 < u < k. (It applies also when [; and Iy are
variables: In this case k; = k; = 0.)
In short, bisimulation means that the roots are related, related nodes have the same label,
and their successor nodes are again related.

» Definition 7. Two graphs are bisimilar, if there exists a bisimulation from one to another.

Bisimilarity is an equivalence relation, see, e.g., [4]. We write G; ~ Gy if G; and Go
are bisimilar, and G; &> Go if there exists a functional bisimulation from G; to Gs (i.e., a
bisimulation which is a function).

Functional bisimulation collapses a graph into a smaller one. For the other way around,
one says that the graph gets expanded, copied, unwinded, or unraveled. In [4] it is shown
that the equivalence class of a term-graph G with respect to bisimilarity is a complete
lattice, partially ordered by functional bisimulation. The least upper bound in this lattice
is a rational term, denoted by AG, and the greatest lower bound is a fully collapsed graph,
denoted by VG. Hence, AG &> G > VG.

» Example 8. Let G be the term graph {x = f(y,2),y =a,z = f(y,z)}. Then AG is the
infinite rational term depicted in Fig. 1 in Example 2, and VG is the first graph in Example 5.

Given a bisimulation relation R from a term-graph G; to a term-graph Gs, its associated
graph G# is defined as follows: (i) nodes(Ga) = R, root(G) = (r00t(G1), root(Gs)), the label
of each (X;,X2) € nodes(Ga) is that of x; (which is the same as the label of x,); (ii) if
X1 € nodes(G1), Xo € nodes(G2), (X1,X2) € R, X1 —i X1, and X5 —; X5, then in G4 we have
(Xl,XQ) i (X/17X/2)

4  Substitutions and Generalizations

The notions related to substitutions, formulated for finite unranked terms and hedges in [22],
can be reused with a slight modification for (possibly) infinite terms and hedges.

A substitution is a mapping from term variables to terms and from hedge variables to
hedges, which is the identity almost everywhere. We use the traditional finite set repres-
entation of substitutions, e.g., {x — f(a, f(a,...)), X =€, Y = (X,9(Y,9(Y,...,Y),Y))},
which stands for the substitution that maps every variable to itself except x, X, and Y that
are mapped respectively to f(a, f(a,...)), ¢ and (X, g(Y,g(Y,...,Y),Y)).

The lower case Greek letters are used to denote substitutions, with the exception of the
identity substitution for which we write Id. The domain and range of a substitution o are
defined in the usual way: dom(o) = {x € V | o(x) # x} and ran(o) = {o(x) | X € dom(o)}.

Substitutions can be applied to terms and hedges using the congruences o(f(s1,...,8,)) =
flo(s1),...,0(sn)) and o(s1,...,8n) = (0(s1),...,0(sn)). We call o(s) and o(§) the in-
stances of respectively s and § and use postfix notation to denote them, writing so and So.
We also say that § is more general than ¢ if ¢ is an instance of § and denote this fact by
§<qG. If 5<Gand § < 5, then we write § ~ ¢. If § < ¢ and § 2 ¢, then we say that § is
strictly more general than ¢ and write 5§ < q.

The composition of two substitutions o and 14, written as o4, is defined as the composition
of two mappings: We have s(cd) = (so)d for all s. A substitution o is more general than
o9 with respect to a set of variables X C V, written o1 <y 03, if there exists ¥ such that
xo1¥ = Xoo, for each x € X. The relations ~ and < are extended to substitutions: o1 ~y o9
means 01 <y 09 and o2 <y 01, and g1 <y 02 means oy <y 03 and 01 Fx 9.
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Next we define substitutions directly for term-graphs, i.e., for systems of recursion
equations (in canonical form). Instead of writing the whole systems of recursion equations in
the range of substitutions, only the roots of the corresponding term-graphs appear there.
Hedge variables in the image remain unchanged. For instance, assume the term-graphs G;
and G, are given by the systems of recursion equations: G, = {x = f(y,x),y = a}, and
Go = {x = g(X,2,X),X =Y} Then the substitution {z — f(a, f(a,...)), X = €Y —
(X,9(Y,g9(Y,...,Y),Y))} we considered above can be written as {x — root(G1), X — €,Y —
(X, 100t(G2))}. The bound variables in G; and Gy should be appropriately renamed to
guarantee that the names are distinct from each other and from free variables.

To define application of such a substitution to a term-graph, we assume that all term-
graphs are in canonical form and the bound variables are appropriately renamed. Let ¢ be a
substitution and G be a term-graph. Then the term-graph o(G), the instance of G under
0, is obtained by canonicalizing the following flat horizontally bounded system of recursion
equations: {x =0(3) | x =8§€ G}UG U---UG,, where G1,...,G, are all term-graphs whose
roots appear in ran(o). Substitution application naturally extends to term-graph hedges.

» Example 9. Let G be the term-graph:
G ={xo = f(zo, X1, 21, X1,®2), X1 = X, &) = g(Xa, 22, X3), Xo =Y, x5 = z}.

Let o = {x — r00t(G1), X — (root(G2), X),Y — €}, G ={y = f(y)}, G2 = {z = a}. Then
o(G) ={xo = f(z0,2, 24, 21,2, Z,y), 2 =0, Z =X, m1 = g(y), y = f(y)}.

The notion of more general term-graphs and term-graph hedges is defined modulo
bisimilarity: g} is more general than GQ, if there is a substitution o such that g~10 ~ Gg.
We reuse the symbol < for this relation over term-graphs and term-graph hedges, and also
write C;l ~ g} if Ql < g} and g} =< g}. For the strict part of < we reuse <. Analogously
for substitutions: A substitution over term-graphs oy is more general than a substitution
over term-graphs oy with respect to a set of variables X C V), if there exists ¥ such that
xo19 ~ Xog for each x € X. Also in this case we reuse the =< symbol and write o1 <x 09
(and similarly for the relations ~ and < for substitutions).

A term-graph hedge G is called a generalization of two term-graph hedges G, and G, if
C; < _C';l and C; = _C';z. We say that a term-graph C; is a least general generalization (lgg in
short) of Q~1 and g} if Gis a generalization of C;l and _C';g and there is no generalization G of
_C';l and QNQ that satisfies QN < C;' . That means, there are no generalizations of C;l and ,C';g that
are strictly less general than their least general generalization.

An anti-unification triple, AUT in short, is written x : G1 2 Go, where x does not occur
in G1 and G». Intuitively, x is a variable that stands for the most general generalization of Gy
and Go. An anti-unifier of x : Gi & Gy is a substitution o such that dom(c) C {x} and xo is
a generalization of both G: and Gy. An anti-unifier o of an AUT X : G1 2 G, is least general
(or most specific) if there is no anti-unifier ¥ of the same problem that satisfies o <,y . If
o is a least general anti-unifier of an AUT x : G1 £ Go, then xo is an lgg of G; and G.

A complete set of generalizations of two term-graph hedges G, and G is a set G of
term-graph hedges that satisfies the properties:

Soundness: Each G € G is a generalization of both Ql and g}.
Completeness: For each generalization G’ of .C';1 and ,C';z, there exists G € G such that ¢’ < G.

G is a minimal complete set of generalizations (mcsg) of G; and G if, in addition to
soundness and completeness, it satisfies also the following property:

9:7
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Minimality: For each Qi, Qé e G, if QN{ = ,C';é then G; = Gé

» Lemma 10. For any hedges § and q there exists their minimal complete set of generaliza-
tions. This set is finite and unique modulo ~.

Proof. Similar to the analogous lemma for hedges with finite terms, see [22]. <

» Theorem 11. For any term-graph hedges Gy and G there exists their minimal complete
set of generalizations. This set is finite and unique modulo ~ and ~.

Proof. Note that G ~ AG for all G. Let G, = (G},...,G}) and G, = (G3,...,G2). By
Lemma 10, the hedges (AG},...,AG}) and (AG?,..., AGZ) have a finite minimal complete
set of generalizations, unique modulo ~. |

Our goal is not to compute minimal complete sets of generalizations. We would rather
focus on so called rigid generalizations, which we define below. The motivation comes from
the experience with finite unranked term anti-unification, where unrestricted mcsg can grow
too big and it makes sense to restrict consecutive hedge variables in the generalization. For
the details, see [22].2

» Definition 12 (Alignment, Rigidity Function). Let w; and ws be strings of symbols. Then
the sequence aq[i1, j1] - - - anlin, jn], for n > 0, is an alignment if ’s and j’s are positive integers
such that 0 < i1 < -+ <4y, < |’LU1| and 0 < 1< <gn< |1L)2|7 and aj = ’LU1|Z‘k_ = ’LU2|jk for
all 1 <k <n. A rigidity function R is a function that returns, for every pair of strings of
symbols w; and we, a set of alignments of w; and ws.

For instance, if R computes the set of all longest common subsequences, then R(abcda,
bcad) = {b[2,1]c[3, 2]a[5, 3], b[2,1]c[3,2]d[4,4]}.

The top symbol of a term is defined as top(xz) = x for any variable z, and top(f(8)) =
for any term f(§). The notion is extended to hedges: top(X) = X and top(s1,...,Sn)
(top(s1), ..., top(sn)). {x; = $1,--.,X1 = $n} € G, n > 0, then we define top(xy,...,Xn, G)
as top(si, ..., sn). Moreover, we define top(G) = top(root(G),G).

f

» Definition 13 (R-Generalization). Given two term-graphs G; and G (without common free
and bound variables) and the rigidity function R, we say that a term-graph G that generalizes
both G, and Gs is their generalization with respect to R, or, shortly, an R-generalization, if
either

R(top(G1), top(G2)) € {0, {e}} and G = {x = y}, where = is a new bound term variable

and y is a new free term variable, or

fI1,1] € R(top(Gy), top(Ga)) for some f and G = {root(G) = f(X)} UY UG U--- UG/,

where X does not contain pairs of consecutive hedge recursion variables.

The sequence X, the set ), and the graphs Gi, ..., G, are defined as follows:

For i = 1,2, the original graph G; contains an equation root(G;) = f(V;) and there exists

an alignment gi[i1, j1] - gn[in, jn] € R(top(V1,G1), top(Va, G2)), satisfying the following

conditions:
1. If we remove all hedge recursion variables that occur as elements of x, we get a sequence
of term recursion variables (1, ..., &y), such that &, = root(G,,) and each G, contains

an equation of the form @ = g5 () for all 1 < k < n, and

2 Note that unrestricted unranked term anti-unification (i.e., without a rigidity function) can be also
modeled as associative anti-unification with the unit element. The latter problem has been studied, e.g.,
in [2,3].
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2. For every 1 < k < n, there exists a pair of term recursion variables y,ﬁ and y,% such
that vi|;, = y}, V2|j, = yi, and G}, is an R-generalization of subgraph(Gi,y;) and
subgraph(Ga, y3).

3. Y= =2%4,...,Y, = Z,}, where Y1, ...,Y,, are all hedge recursion variables in X
and Z1,...,Z, are new free hedge variables.

» Example 14. Let R compute the set of all longest common subsequences and let G, = {x¢ =
flx1,22), 1 = g(x2,®2), T2 = a} and G2 = {yo = f(Y1,%0,Y2,%0), Y1 = g, Y2 = a}.
The term graph {zg = f(z1,2Z1,22,2Z1), z1 = g(Z2), 20 = a, Z1 = 71, Zy = Z} is an
R-generalization of Gy and Go while {2z = f(21, Z1, 22, Z1), 21 = 9(Z2,Z2), zo =a, Z1 =
Zy, Zy = Zs} and {z0 = f(21,21,22,21), 21 =z, 22 =a, Z1 = Z1} are not.

5 The Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on quadruples
A; S;T; G, called configurations. Here A, S, and T are sets of anti-unification triples and G is
a term-graph. The rules transform configurations into configurations. Intuitively, the problem
set A contains AUTs that have not been solved yet, the store S contains the already solved
AUTs, the trail T keeps track of the names of recursion variables, and G is the generalization
which becomes more and more specific as the algorithm progresses by applying the rules.

To keep the notation short, in anti-unification triples we only use variables from the
graphs to be generalized. Those graphs are not explicitly present in the configurations, but
are global parameters, denoted by G; and G,. For simplicity, we assume that G; and G do
not contain free variables. This is not a restriction, because we can replace free variables
by new constants, use the algorithm defined below, and in the generalization replace those
constants back with variables. (In case of hedge variables, we might need to replace their
corresponding generalization term variables by generalization hedge variables.) The rigidity
function R is yet another global parameter. In the rules below, generalization term-graphs
are assumed to be implicitly transformed into the canonical form.

Step: Simplification Step
{x:y22YUA; S;T; G= AgUA; S; TU{u:y = z2}; Gz~ u}U{u=t},
where y = [(V) € Gy, 2 =1(0) € Go, [1,1] € R(top(y, G1), top(z,G2)), T does not contain an

AUT of the form _ :y £ 2z, and w is a fresh recursion term variable. If v = 0 = € then t = |
and Ay = (), otherwise t = [(X) and Ay = {X : ¥V 2 0} where X is a fresh hedge variable.

Dec-S: Decomposition and Solving

{X:vEDIUA; S; T; G =

AU{ykillLk éf)|jk | 1 Skgn},

SU{Yo s V5 2 O JU{Y: VI 200 [ 1<k <m—1JU{Y, - 9] T 2 9Py

T; GoU{Zy=Yy,...,.Z, =Y},
if R(top(Vv,G1), top(V, G2)) contains a sequence ly[i1, j1] - - ln[in, jn], » > 0. The y’s are fresh
term variables, the Y’s are fresh hedge variables, the Z’s are fresh recursion hedge variables,
and the substitution is o = {X — (Zo,y1, Z1,..., Zn—1,Yn, Zn)}. For each 1 < i < n, if the
new AUT has the form Yj : € £ ¢, then it is not added to S and Z; does not appear in o.
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Solve: Solving
{Xx:VEV YA S T; = A; SU{x:V =20} T; G{x— w}U{w =x},

if R(top(v,G1), top(0,Gs)) = 0 or R(top(V,G1), top(V,G2)) = {€}. The variable w is a fresh
recursion variable. If x € V;, then w € V; and if x € Vs, then w € V.

Share: Sharing
{z:y22YUA S; {u:y22}uT; G=A; S; {u:y22}UT; G{z — u}.

Merge: Merging Nodes in the Store

@; {X1 Z{/éf),XQ:{'éf)}US; T; {(1)1 = X1, Wso i)(2}ng>
0; SU{XL:VEOE T; G{we = wi} U{w: =x1},
where x1,X2 € Vy U Vs such that if x; € Vs, then X2 € V.

The rules never generate the AUTSs of the form X : ¢ £ €. To compute R-generalizations
of G; and Go, we start with {x : r00t(G;) £ root(G2)},0,0, {x = 2} and apply the rules on
the selected AUTs in all possible ways. The obtained procedure is denoted by Gen(R).

The notation =* abbreviates finite (possible empty) sequence of rule applications. If
we want to make it clear which rule is used to transform a configuration, we will write
the rule name as the index at the arrow like, e.g., A;5 : TG = step A'; 5" : T7; G’ for the
transformation with the rule Simplification Step.

» Example 15. Let R be the longest common subsequence. Then the term-graphs G; and
Go below have a unique R-1gg G:

G1 = {xo = f(x1,®2, T3, T0, T3, T2, T3), T1 = g(T1,T2), T2 =b, 3 = a}.
Ga = {yo = f(y1,90,Y3); Y1 = 9(Y1,92), Y2 = b, y3 = a}.
G ={z0= f(21,21,20,23,2Z1), 21 = g(21,22), Z=U, z3=a, zo = b}.

Graphically:

The algorithm Gen(R) computes G, e.g., in the following way:

{uo : o = yo}; 0;0; {z0 = uo} =>step
{Uo : (w1, T2, @3, T, T3, T2, 3) = (Y1,Y0,Y3) }5 0; {20 : w0 = yo };
{z0 = f(2Zy), Zo = Us} =>Decs
(Choosing the common subsequence: g[1,1]f[4,2]a[5, 3]), corresponding to the
node pairs @1 and y1, o and yo, the second occurrence of x3 and ys.)
{ur : @y £ y1, up i 2o £ yo, us w3 = ysh; {Ur: (@a,@3) S €, Us: (2, 23) £ €}
{z0: 2o = wol;
{z0 = f(u1, Z1,us,us, Z>),
w1 =uy, Z1 = Uy, ug = ug, ug = ug, Zo = Us} =>step
{ug : o £ yo, us : 3 = y3, Us : (@1, 22) £ (y1,92)

{Ur : (z2,3) £ €, Uy : (z2,@3) 2 €}; {20: @0 = Yo, 21:T1 = Y1 };
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{20 = f(21, Z1,u2,u3, Z3),
z1 = g(Z3), Zy = Uy, uz = ug, uz = ug, Zo = Us, Z3 = Uz} =>spare
{us : xs £ y3, Us: (x1,22) = (y1,92) 5
{Ur: (zo,23) 2 ¢, Unt (@2,®3) £ ¢} {2020 £ yo, 21: 21 Sy}
{z0 = f(2z1, Z1, 20, u3, Z3),
z1 =9(Zs), Z1 = Uy, ug = u3, Zy = Us, Z3 = Uz} =>step
{Us : (@1, 22) = (y1,92) };
{Ur: (®2,23) 2 ¢, Uzt (z2,23) 2 €} {2020 2 4o, 21: 21 2 Y1, 23 %3 = ya s
{z0 = f(21, Z1, 20, 23, Z2),
z1 = 9(Z3), Z, = Uy, 23 = a, Zy = Uy, Z3 = Uz} =>Decs
(Choosing the common subsequence: g[1,1]b[2,2]), corresponding to the
node pairs 1 and y1, 2 and ys.)
{ug 1 21 £ Y1, Us : T2 £ Yol
{Uy : (o, 3) £ €, U : (x2,23) £ €}; {20: @0 S yo, 21:T1 £ Y1, 23 T3 = Ys);
{z0 = f(z1, Z1, 20, 23, Z2),
z1 = g(ug,us), Z1 = Uy, 23 = a, Zy = Us, ug = Uy, Us = Us} =Share
{us : x2 = Y2}
{UL: (m2,23) £ ¢, Us : (@2, 23) £ €}; {z0: @0 Lyo, 21T Eyp, 2z xz = Ys};
{20 = f(21, 21, 20, 23, Z2),
z1 =g(z1,us5), Z1 =Ur, z3 =0, Zy =Us, us = us} =—Step
0; {Uy : (22, 23) =€, Us: (T2, T3) = €}
{Zoiwoéyo, Z1 .21 éyh Zsiwséy& Z22$2éy2};
{z0 = f(2z1, Z1, 20, 23, Z>2),
z1 = g(21,22), Z1 = Uy, z3 = a, Zy = Us, 22 = b} = Merge
0; {Uy : (w2, 3) £ e}; {z0: @0 Sy, z1: @ Sy, 33 S Y3, 2w = Y2}
{z0 = f(z1, 21, 20,23, Z1), 21 = g(21,22), Z1 =U1, 23 =a, zo =b}.
The obtained generalization is equal to G modulo renaming variables. The store and the
trail suggest how to obtain the original term-graphs from the computed generalization. For
instance, to obtain G; from G, we just apply the substitution {U; — (22, z3)} to G. In the

obtained term-graph we will have x5 = b and x3 = a alongside to zo = b and z3 = a, but it
will be bisimilar to G;.

» Example 16. Let G1 = {xg = f(x1,22), 21 = g(x0,x3), X2 = a,x3 = b} and Gy = {yo =
f(y1>y2)7y1 = h(y07y3)7y2 = a,Ys = b} Then the algorithm ends with @, {Z T £ yl}a
{20 : o = Yo,22 : T2 = Ya},{z0 = f(21,22),21 = 2,22 = a}. Obtaining G; from the
computed generalization can be illustrated as {zo = f(21,22),21 = 2,220 = a}{z— @1} =

{z0 = f(®1,22), 22 = a, 1 = g(To, T3),x0 = f(x1,%2), T2 = a,x3 = b} ~ .

» Theorem 17 (Termination). The procedure Gen(R) terminates on any input and produces
a configuration 0; S; T'; G, where S is irreducible with respect to the merging rule.

Proof. Let the size of a hedge, size(§), be the number of symbols in it. the size of an AUT

x :t; 2ty be size(ty) + size(tz) + 1, and the size of X : 51 £ 55 be size(51) + size(32) + 2.

9:11
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The size of a set of AUTSs is the multiset of the sizes of its elements. Then the only rule
that increases the size of A is Step. However, this step can be applied only finitely many
times, since each time it strictly decreases the number of unvisited node pairs (x;,Xs), where
X1 € G1 and X, € Go. Any other rule strictly decreases the size of A or, in case of Merge, the
size of S. Moreover, Merge does not change the size of A. The rule Dec-S can introduce only
finite branching. Therefore, the algorithm terminates. |

» Definition 18. Given a set A of AUTs where all the generalization variables are pairwise
distinct. We define two substitutions that can be obtained from A:

op(A)={x—V|x:v20c A} or(A) ={x—V|x:vE0c A}

» Lemma 19 (Transformation Invariant). Let G1, Go be the two term graphs to be generalized
and let A; S;T;G be a configuration such that all the generalization variables from A, S,T
are unique among all the other variables from A, S, T, including those occurring in graphs or
hedges. Furthermore, let Gor,(T)or(S)orL(A) = G1 and Gor(T)or(S)or(A) = Ga, and let G
be a rigid generalization of G and G; where i € {1,2}.

If A; S;T;G = A';S;T'; G’ is a transformation step applying one of the defined rules
then all the generalization variables from A',S',T' are unique among all the other variables
from A, S, T'. Moreover, G'or (T )or.(S)or(A") = G1 and G'or(T")or(S)or(A") = Ga,
and G is a rigid generalization of G’ and G; where i € {1,2}.

Proof. We prove that each rule preserves those properties. We can omit the proof for
G'op(T")or(S")or(A") = Ga, since it is equivalent to proving G'or(T")or (S )or(A’) = G1.
For the same reason, we omit the proof that G’ is a rigid generalization of G’ and G,.

In Step we have two cases, namely (i) v =0 = ¢, and (ii) V # € or 0 # e. We only
illustrate the more general case (ii) since the two proofs are largely identical. Therefore,
we have A = {z:y 2 2} U (A \{X:v20}),S=8,Tu{u:y =z} =T, and
G{z = u} U{u =I(X)} = G, where y = (V) € G1, z = (V) € G2 and u, X are fresh.
Since w, X are fresh, all the generalization variables from A’, S, T are still unique among all
the other variables from A’, 8", T’. Obviously, Gor(T)oL(S)oL(A) = Gor(T)oL(S)or({z :
y 22z} U(A\{X :v270}) = G. From the uniqueness of x, and by definition of
substitution application follows that G; = G{x +— y}or(T)or(S")or(A'\{X : v £ ¥}) =
Glz = y}U{y = 1(V)DNor(T)or(S)or (A \ {X : v £ 0}). From the uniqueness of X
follows G; = (G{z — y} U{y = I(X)})or(T)or(S)or(A"). Finally, from the uniqueness
of u follows G; = (G{z — y} U{y = I(X)D{y = ulor,(TU{u:y = 2})or(S)or(4') =
gIO'L(T/)O’L(S/)O‘L(A/).

Since Step can’t lead to consecutive hedge variables and I[1, 1] € R(top(y, G1), top(z, G2)),
it follows that G’ is a rigid generalization of G’ and G;.

Now we analyze Dec-S, which is a bit more involved. We have A = {X : v £ 0}u(A"\ {ys :
o 20l [ 1<k <)), SO Yy 2 OV VT 2 O [ 1<k <
n— 1 U{Y, V[P 2P = ¢ T = T, and Go U {Zy = Y,..., Z, = Y} = G,
where R(top(v,G1), top(,Gs)) contains a sequence ly[i1, j1] - - ln[in, jn], n > 0, the y’s,
Y’s, and Z’s are fresh, and o = {X — (Zo,y1,Z1,--,Zn-1,Yn, Zn)}. Since all the vari-
ables introduced by the transformation are fresh, all the generalization variables from
A’ 8", T are still unique. We get Gop(T)op(S)or(A) = Gop(T)or(S"\ ({Yo : V|j 2
ORI U{Ys VT2 B 1 <k < -1 u{Y, s v 2 o e (X
v EOUYU A N\{w : Vi, 20, | 1 <k <n}) = G. By uniqueness of X, fol-

lows G1 = G{X — V}ior(T)or(S"\ ({Yo : \7|61 = f)|61} U{Y: : \7|l:’€+1 = 6\;:*1 | 1<

i
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B<n =130 (Y, P 2 9P o (A7 {y 1 V], 2 0], |1 <k < n}). Now
observe that G{X + v} is equivalent to G{X  (Yo,y1,Y1,..., Y0 1,90, Yo) H{Yo =
YEHYe = Y | 1<k <n— 1Y, = 97 Hye = i, | 1 < k < n}, therefore
G =G{X = (Yo,91, Y1, -, Yo 1, un, Yo ) Huw = Vi | 1 <k <ntor(T")or(S")or(A\{ys :
{,|ik = l~)|]k ‘ 1 S k S n}) = Q{X — (}/Oyylzyh--~7Yn—1;y'ruYn)}UL(T/)UL(S/)UL(A/) =
(g{X — (Zo,yl, Zl, ey Zn—hyny Zn)} U {ZO = Yb, ey Zn = Yn})O'L(T/)O'L(S/)O'L(A/) =
Gor(Thor(S)or(A).

Since Dec-S cannot lead to consecutive hedge variables, it follows that G’ is a rigid
generalization of G’ and G.

We omit the case of Solve because it is very similar to the case of Step.

In Share we have A = {z : y 2 2} U A, S =5, T =T, and G{z — u} = G,
where {u : y £ 2} € T. Uniqueness of generalization variables from A’,S’, T’ is obviously
maintained. We get Gor,(T)or(S)or(A) = Gor(T)or(S)or({z : y £ 2} U A') = G; and
by uniqueness of = follows G; = G{z + y}or(T")or(S)or(A"). The trail {u:y = 2} € T
tells us that there is already a recursion variable w in G that represents the node y in G;.
Therefore, instead of substituting x with y we may as well substitute it with w. This
consideration leads to G1 = G{z — u}o(T")or (S )oL(4).

The property that G’ is a rigid generalization of G’ and G; is obviously maintained during
this transformation.

In Merge we have A = A’ = (), S = {x2 : V2 O}US T =T, G = {w; =x1,ws =
Xt WG and G = G"{wy — w;i}U{w; = x1}, where {x1 : v £ 0} € §'. We get
gO'L(T)UL(S)O'L((Z)) = ({(Ul = X1, Wy = Xg} ] g//)O'L(T/)UL({XQ (v E f)} C] S/) = Gy and
by uniqueness of X2 follows G1 = ({w1 = x1, W2 =x2} UG ){x2 — V}IoL(T")or(S"). Since
or(S") also contains the mapping {x1 — v} we get G1 = ({w1 = x1, W2 = X2} UG ) {x2 —
x1}tor(T)or(8") = (¢"{ws = w1t U{wi =x1})or(T")or(S).

The property that G’ is a rigid generalization of G’ and G; is maintained because of the
condition that from x; € Vs follows X2 ¢ V; forbids the instantiation of a term variable by a
hedge variable. |

» Theorem 20 (Soundness). If {x : root(G1) £ root(G2)}; 0;0; {x = z} =* 0;S;T;G is a
derivation in Gen(R), then G is an R-generalization of G and Gs.

Proof. The assumptions of Lemma 19 hold for the initial configuration {z : root(G;) £
root(Ga)}; 0;0; {x = z}. Since Gen(R) terminates on any input (Theorem 17), it follows
that all the generalization variables from S and T are unique among all the other variables
from S and T. Moreover, Gor(T)or(S) = G1 and Gog(T)or(S) = G2, and G is a rigid
generalization of G and G; where i € {1,2}. Obviously G is a generalization of G; and G5. To
prove that G is an R-generalization, it remains to show that the recursion from Definition 13
item 2 has been applied exhaustively. This follows from the fact that the store is complete,
ie.,, Gor(T)or(S) = G1 and Gor(T)or(S) = Go, and from the condition of the rule Solve
that R(top(V,G1), top(V,Gs)) is either ) or {e}. <

» Corollary 21 (Soundness of the Store). If {z : r00t(G1) = root(Go)}; 0;0; {x = 2} =*
0; S;T; G is a derivation in Gen(R), then Gor(T)or(S) = G1 and Gor(T)or(S) = Go.

Notice that Gen(R) computes generalizations that do not have free term variables.
Therefore, they are not considered in the completeness theorem. However, we show in [12]
that this restriction can be lifted by adding an additional transformation rule.

» Theorem 22 (Completeness). Let G be an R-generalization of G1 and Ga. Then Gen(R)
computes an R-generalization G' of G1 and G such that G < G'.

9:13
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Proof. By our assumption, G; and G, do not contain free variables. If G has a form {root(G) =
x}, then 2 must be a fresh variable and any generalization computed by Gen(R) satisfies
the theorem. Now assume root(G) = f(0) € G. Then we should have root(G1) = f(x) € G1
and root(Gs) = f(V) € G2 and we can start the derivation with Step. We can make the next
step immediately by Dec-S rule, taking the same alignment (from R(top(X,G1), top(V,G2)))
which is used in f(U) (since G is an R-generalization, such an alignment exists). Further, if
Merge is applicable, we make this step as long as possible.

After these steps, in the set of new AUTs we will have only those which have counterparts
for term variables occurring in v. In the store there will be those AUTSs which are generalized
by hedge variables in U. It can be that we merged more variables than it is done in v, but it
does not harm, since we are going to compute a generalization that is less general than G.
The trail will store the seen pair of the nodes (in this case the roots of G; and Gs). The
generalization graph will contain the equation root(G’) = f(@), that corresponds to the root
equation of G, maybe with more shared variables. The bound term variables from v will
have their counterparts in @, but the equations which correspond to those variables in the
current version of G’ will have fresh free variables in the right hand side.

Next, we will pick an AUT in the new configuration. Its generalization variable has a
unique counterpart in G, which suggests how to make the next step, basically repeating the
reasoning as above, unless the AUT has the form z : £ y and 2’ : & £ y is already in the
trail. We will use the Sharing rule to make the step. It can be horizontal or vertical sharing.

If it is a horizontal sharing, then it does not matter whether those nodes in G which
correspond to z and z’ are shared. If they are, then our construction of G’ at this place
directly imitates the structure of G. If they are not, the G at this place is an expansion of G,
but this operation preserves bisimilarity. In the vertical sharing, in addition to the above
considered ones, it is also possible that at this place G is a collapsed version of G’. But again,
bisimilarity is preserved. Note that the construction of our derivation is not influenced by
whether a particular node of G has already been seen or not. They are used to guide the
construction, and the same node might guide more than one steps.

Iterating this process, eventually we stop with a generalization G’ such that G < G'. <«

» Theorem 23. For two bisimilar term-graphs, Gen(R) computes their join in the lattice
generated by functional bisimulation.

Proof. It is easy to see that our algorithm returns only one answer for bisimilar graphs (since
there is no branching at Dec-S rule) and the computed generalization contains no new free
variables (the store is empty). Then the set T gives exactly a bisimulation, which justifies
bisimilarity between the original term-graphs: Ry = {(v,v) | x : v £ v € T for some x}.
The computed generalization G is the same as the term-graph gﬁT associated to Ry. (The
node x € G can be seen as the node (v,v) € QQT for each x : v £ v € T.) By construction
of T, for each (v,v) € Ry, the access paths are not disjoint: acc(v) N acc(v) # 0 (otherwise
there would be a new free variable in the generalization introduced by Dec-S). By Proposition
3.13 in [4], it implies that Ry is a minimal bisimulation. Therefore, from the constructive
proof of Theorem 3.19 in [4] we conclude that QQT (i.e. G) is the join of G; and Gs. >

» Example 24. Let G = {xo = f(x1),21 = f(x2), 22 = f(x3), 23 = f(x4), 24 = f(x5),
x5 = f(xs)} and Go = {yo = f(y1),y1 = [(Y2),¥2 = f(y3), Y3 = f(ya), Y2 = f(y5),y5 =
f(ye),y6 = f(y7),y7 = f(y2)}. They are bisimilar. The algorithm computes their lgg

G ={z0 = f(z1), 21 = f(22), 22 = [(23), 23 = f(24), 20 = [(25), 25 = [(26), 26 = f(27),
z7 = f(zs),2z8 = f(z3)}. It is the join in the lattice of the bisimilarity class of G; and Ga [4].
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6

Conclusion

We have presented an anti-unification algorithm for (unranked) term-graphs, which are given
as systems of recursion equations. The algorithm is sound, complete, and terminating, and
uses a parameter, called rigidity function. The function selects common edges outgoing
from the pair of nodes to be generalized. While longest common subsequence is the most
intuitive instance of the rigidity function, the properties of the algorithm hold for any concrete

rigid instance of the parameter. As a future work, extending simply typed lambda term

anti-unification [11] to cyclic lambda terms [5] would provide a generalization of our results

from a first-order language to a higher-order one.
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