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Abstract.
When an agent receives a query from another agent, it tries to satisfy it by build-

ing an answer based on its current knowledge. Depending on the available time or
the urgency of the requirement the agent can produce answers with different levels
of quality. Answers can contain the best one, a provisional one because it can be
improved later, or a conditional answer because the agent ignores some informa-
tion needed to build the answer. Agents always depend on the availability of in-
formation obtained from perception or from the communication with other agents.
We assume that in the real world normally is better to receive an answer with poor
quality than no answer. The answer can be good enough for the receiver or the re-
ceiver can spend more time to wait for a better answer. Autonomy implies taking
the best decision with the available information, avoiding blocking situations and
no action. In this paper, we propose an architecture for deliberative agents using
anytime like reasoning to produce better answers as time increases.

Keywords. anytime algorithms, progressive reasoning, multi-agent systems, partial
deduction, multiple-valued logic.

Introduction

Dean and Boddy first used the term anytime algorithm in the late 1980’s [2]. The main
characteristic of these algorithms is that the quality of its results can be measured and
that it improves gradually as computation time increases. This kind of algorithms are
normally related to real time, where the time granularity is thinner than the long time
needed to calculate a complete solution. They are able to communicate the best result
obtained when interrupted or they can establish a compromise to deliver it in a given
time.

In the context of logics and knowledge-based systems some authors talks about pro-
gressive (or anytime) reasoning or deduction [3,6]. Anytime concepts are important for
the techniques to build intelligent systems, for instance in probabilistic reasoning, on-
tologies or constrain propagation [4,12,14]. In multiagent systems, agents have particular
goals. The conversations among deliberative agents aim to obtain information in order to
produce solutions to those goals. In [5] we described how conversational agents could be
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modeled. One important point not covered in that paper was related to the use of intervals
of truth-values and negation in the facts and in the conditions and conclusions of rules. In
our complete language [8] the value of a fact a is an interval of truth-values [α, β]. Rules
concluding a are responsible of α (the minimum of the interval) and rules concluding ¬a
of β (the maximum). Then we can introduce quality taking into account the precision of
the intervals. We will consider values are provisional when it is possible to improve its
precision using more information.

Another important issue not covered in that paper was time. It may be reasonable to
think in different strategies of specialization using provisional values, i.e. when a con-
crete timeout has been reached or when we need a value, we can use a less precise but
useful result. The pass of time gives an opportunity to increase the accuracy, and then the
agent’s goals can persist until it is no possible to obtain more precise values.

In this paper we will introduce how anytime or progressive reasoning based on spe-
cialization of rule-based systems can be the central mechanism to deliberate and also to
produce reasonable dialogs among conversational agents [1,5,10]. Agents can produce
answers with different levels of quality: containing the best, a provisional or a condi-
tional answer. We assume that in the real world normally is better to receive an answer
with poor quality than no answer. The answer can be good enough for the receiver or the
receiver can spend more time to wait for a better answer.

In Section 1 we formally describe the specialization as an anytime mechanism of
progressive reasoning. Section 2 is devoted to quality measures. We present the descrip-
tion of the agent and its pragmatics in Section 3. Comments on performance and vali-
dation of our approach are presented in Section 4. Finally, some conclusions and future
work are developed in Section 5.

1. Specialization and progressive reasoning

Specialization [7,8,9] can be considered as an anytime algorithm because it allows to
obtain information before the completion of the inference process. It can be considered
also a mechanism for progressive reasoning because it is a technique that successively
refines a solution while making available intermediate solutions. In the following we
introduce briefly a simplified version2 of the language and inference mechanism:

Definition 1 (Language and inference) L = 〈Tn,Σ,S〉 is defined by:

• Tn = {t1, t2, . . . , tn} is an ordered set of truth-values, where t1 and tn are the
booleans True (1) and False (0) respectively. Int(Tn) = {[ti, tj ]|i ≤ j} are
intervals of Tn.

• Σ is a set of propositional variables (atoms or facts).
• Sentences S composed by: literals (a, V ), (¬a, V ), with a ∈ Σ and V ∈ Int(Tn)

and rules of the form (p1 ∧ p2 ∧ · · · ∧ pn → q, [ti, 1]), where pi and q are literals,
and ∀i, j(pi 6= pj , pi 6= ¬pj , q 6= pj , q 6= ¬pj)

2For the sake of simplicity here we use min operation instead of a general triangular norms. For more
information please see [8].



We will use the following inference rules:

• Not-introduction: from (a, [ti, tj ]) infer (¬a, [tn−j+1, tn−i+1])
• Not-elimination: from (¬a, [ti, tj ]) infer (a, [tn−j+1, tn−i+1])
• Parallel composition3: from (a, V1) and (a, V2) infer (a, V1 ∩ V2)
• Specialization: from (pi, [ti, tj ]) and (p1 ∧ · · · ∧ pn → q, [tk, 1])

infer (p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn → q, [min(ti, tk), 1])

The main component of the mental state of agents [13] is the knowledge base con-
taining beliefs (facts) and knowledge (rules) for deliberation. In our model, both facts
and rules are weighted with intervals of truth-values. Consider Rq = R+

q ∪R−q the set of
rules deducing the fact q. We can distinguish between the rules R+

q deducing (positive)
q and those R−q deducing (negative) ¬q. Positive rules contribute to the minimum of the
interval (positive evidences) and negative ones to the maximum (negative evidences).

The specialization rule above is the core of the progressive reasoning algorithm.
When a rule is specialized it produces a new rule with less conditions and a new updated
value. When a rule is totally specialized (there is no conditions) it produces a value for
the literal of the conclusion. Given (P → q, [tk, 1]) ∈ R+

q , the most precise value for
that literal will be [tk, 1] because we use the min function in the specialization rule.
Similarly, given (P → ¬q, [tk, 1]) ∈ R−q , the most precise value for that literal will be
[0, tn−k+1].

Fact q is initially unknown, that is, its value is the most imprecise interval [0, 1]. Us-
ing the values obtained from totally—positive and negative—specialized rules we will
obtain a more precise interval for q by means of the applications of parallel compo-
sition rule. Given a set of r rules R+

q with truth-values {[t1, 1], . . . , [tr, 1]} the most
precise interval will be [maxr

i=1(ti), 1]. Given a set of s rules R−q with truth-values
{[t1, 1], . . . , [ts, 1]} the most precise interval will be [0,mins

i=1(tn−i+1)]. Finally we
can say that the most precise interval for q will be [maxr

i=1(ti),mins
i=1(tn−i+1)]. We

have to take into account that each specialization step produces a new knowledge base
and then the expected most precise interval will be changed.

The new rules are provisional if they are deduced with provisional information oth-
erwise they are definitive. Facts are definitive if they are deduced with definitive infor-
mation and there are no more rules that can improve its value. Depending on this, rules
can be deleted or not, see Section 3.3.

2. Quality measures

Quality measures and their properties are important for anytime algorithms [15] . Quality
has to be (i) Measurable and recognizable: the quality of an approximate result has to be
determined precisely and easily at run time, and (ii) Monotonic: the quality of the result
is a non-decreasing function of time and input quality.

Quality is evaluated based on a three-dimensional criterion that measures the level
of certainty, precision and completeness of a given value, an interval of truth-values. The
quality is determined based on the following characteristics:

3When the intersection of values is empty, then it is considered to be a contradiction in the knowledge base.



Figure 1. Representation of the quality function where x, y, z ∈ [0, 1] are the middle point of the interval,
the amplitude of the interval and the quality respectively. It is a symmetric function with respect to the plane
x = 0.5

Certainty: In an approximate reasoning context we want to know the certainty and fal-
sity of propositions. Then, given a set of knowledge deducing a fact we are inter-
ested in using those relations that provides values close to true or false.

Precision: Values of facts are intervals of linguistic terms. The most precise interval is
when the difference between the maximum and the minimum is 0, and the least
precise is when that difference is 1, that is, the only case [0, 1], or unknown.

Completeness: To determine the value of a fact we need to know the values of other
related facts. Given two answers, with the same level of certainty and precision,
we will consider of more quality that with less number of definitive facts that could
improve the result.

Precision and certainty are directly related because a good precision is interesting
only when the value that represents is close to 0 or 1. Given a set of n truth-values, we
can use the following expression to calculate a quality measure between 0 and 1:

q([ti, tj ], n) =
∣∣∣∣ (i+ j − n− 1)(i− j + n− 1)

(n− 1)2

∣∣∣∣
The first term of the numerator corresponds to the value represented by the middle point
of the interval, better when more close to t1 or tn, that is, true or false. The second term
corresponds to the precisions of the interval. It is a symmetric function with respect to
the plane i + j = n + 1 and the divisor is a normalization constant. In Figure 1 we can
see the shape of the function.

If all the facts used to deduce the goal would have a definitive value then the com-
pletenes will be of 100%. If all those facts would also have values—true of false with
the maximum precision—such that the premises of rules was true then we will obtain
the maximum quality degree. The current KB determines the maximum quality degree
that can be obtained for a given fact. It is easy to see when the current quality degree of
a given fact can be improved in the future.



3. Deliberative agents and anytime reasoning

The model of reasoning described above could take a long time to generate definitive
results. This is not a consequence of the complexity of the deductive process. We consider
that specialization time is irrelevant for our time restrictions, which are communication
time, availability of agents, collaborative behavior, etc. The time granularity depends on
the application but we have to take into account that the motivation is not classical real
time.

We consider that agents have a deadline to answer a question. When an agent accepts
a query, if necessary, it starts by asking other agents for information. But it cannot be
waiting forever for the answers. When it is not possible to obtain a definitive value for
a query and the deadline has been reached, it answers with less precision. Answers can
contain the best one, a provisional one because it can be improved later, or a conditional
answer because the agent ignores some information needed to build the answer.

3.1. Agents as anytime entities

Consider a multi-agent system with m agents Am = {A1, . . . , Am}. Each agent has the
following structure:

Definition 2 (Agents) A deliberative agent is a tuple Ai = 〈KBi, Gi, Ii, Oi, ti〉 where:

• KBi is the knowledge base of agent Ai.
• Gi is the set of goals of Ai. A goal g is a tuple 〈x,Aj , tb〉, where x ∈ Σ, Aj ∈ A

and tb is the remaining time for deadline.
• Ii is the input interface of Ai, the set of external facts that can be obtained by

querying other agents. These are tuples 〈x,Aj〉, where x ∈ Σ, Aj ∈ A and
Aj 6= Ai.

• Oi is the output interface of Ai; this is, the set of facts agent Ai can answer to
other agents.

• ti is the deadline for giving an answer.

There are two type of anytime algorithms [11]: an interruptible one may be halted
at any time and produces a result with a more or less good quality; a contract algorithm
has a contract time—it must know the total allocation of time in advance—if interrupted
at any point before the termination of the contract time, it might not produce results.
We can consider that our agents has both anytime behaviors. It is a contract algorithm
because the deadline is known in advance—autonomy gives agents freedom to define its
own deadline independently of other agent’s deadlines. It also could have an interruptible
behavior because it can be asked at any time giving the current value, in the worst case
unknown.

3.2. Agent architecture

An agent has a set of processes: (i) an interface communication manager, (ii) an spe-
cialization engine, (iii) an answering machine, (iv) an evaluation machine and (v) an
integration machine; and a set of data repositories: the KB are the facts and rules of
the problem domain, the current commitments (goals), and the data about other agents
(acquaintances) and data about self, abilities and capacities (competences). In Figure 2
you can see an scheme of the relations among all these components.



Figure 2. Agent architecture.

• Communication Interface manager (CIM) manages the input and output of
queries and answers:

∗ When it receives a query q and q ∈ Oi, a new goal is added to the goal list:
Gi := Gi ∪ {〈q, Aj , tf 〉}.

∗ When it receives an answer, it sends it to the integration machine.
∗ It sends the answers and queries to the other agents, following the correct pro-

tocols and reporting all the activity.

• The specialization engine receives as inputs fact values and performs a special-
ization cycle: S : KB × f → KB′ is a data-driven process that begins when the
input is a new fact value f . This triggers a complete specialization process over
the KB and a new specialized KB′ is generated.

• The integration machine receives as input a complete answer (facts and eventually
a set of rules) and incorporates them into the KB.

• The answering machine receives as input a trigger signal indicating:

i A goal deadline ends. If the goal doesn’t have a definitive value, then the an-
swering machine has to elaborate other kinds of answers (see Section 3.3)

ii The definitive value for a goal is found, and then the obvious response is the
definitive value.

• The evaluator machine is a goal-driven process I : KB × g → g∗ that begins
when the agent process a goal g. It triggers a complete exploring process obtaining
a set of new goals g∗, which are necessary to find values of g with better quality,
as seen in Section 2.



3.3. Responses

One of the most important topics in our model is the different variety of answers agents
can express:

Definition 3 (Responses) A response is a tuple R = 〈f, V, S,KB〉 where:

• f is the fact which is been answered.
• V is the value of fact f (an interval of truth-values or linguistic terms).
• S is the state of the fact f value, i.e. provisional, definitive or pending4.
• KB is a knowledge base useful to improve the value of f .

Let’s define now the kinds of responses the agent can give:

1. Definitive valueR = 〈f, V, def, ∅〉: this is the most useful result because it means
that there is no more information that can improve the result, this is the most
precise. After the specialization we can substitute a rule using it by its specialized
version.

2. Provisional value R = 〈f, V, prov, ∅〉: this is not a definitive value, it can be
improved later. We can use it to produce only more provisional values. We can
not delete rules that use it because they will be useful to produce more precise
values.

3. Provisional value and a set of knowledge related to it, R = 〈f, V, prov,KBf 〉:
this is similar to the case above but the answer includes all the information needed
for improving the value. We can use this provisional value and start the mecha-
nism to find more information.

4. A set of rules related to the question R = 〈f, [0, 1], pending,KBf 〉: the same
that the case above but without a provisional value.

3.4. Evaluation cycle

When an agent’s life begins and receives a simple query, the agent begins a goal-driven—
backward chaining style—work. This task will produce new goals that have to be solved.
The evaluation machine judges the impact of these new goals in the quality of the original
one. Some of them can be internal and others have to be obtained from other agents.
Internal goals are considered a self-commitment and the agent starts a search process in
order to find which are the new goals it needs.

When new facts are known—maybe from other agents answers—it is started a data-
driven task of specialization—forward chaining style. The transition from one solution
to a more precise one happens in this specialization step.

An incomplete answer to a query is generated when there is no enough time to
complete the query processing or there are agents that do not answer. Each agent goal
could achieve a definitive or a provisional value. The evaluation machine decides if this
value is enough. If further reasoning is required to improve the quality, new requirements
are sent to the corresponding agents.

Agents can send and receive facts and rules as conditional answers or knowledge
communication. When the deadline of a goal ends and it has a provisional value, the agent

4A pending fact is a fact that is provisionally unknown [5].



can send rules as part of the answer (see Section 3.3). There are sets of criteria that are out
of the scope of this paper like privacy or protocol constraints that can limit the contents
of rules in an answer. It is not necessary to send the provisional rules because with the
provisional values of facts and the original rules we can easily deduce the provisional
ones.

4. On performance and validation

Performance profiles [15] are used to measure how the quality of the output is improved
over time. The simplest performance profile is a functionQ(t) representing the evolution
of the quality with respect to time. Normally they have to be calculated using statistics
over a set of inputs and they are normally monotonic functions. In our case it is easy to
see that given the quality measures in Section 2 and the parallel composition rule (inter-
section) the performance profile of an agent is a monotonically non-decreasing function.
New information improves the completeness and precision of the results.

There are other forms of performance profiles. For instance the conditional perfor-
mance profile, where P (qout|qin, t) is the probability of obtaining a result with quality
qout, given an input of quality qin at time t. It is desirable that when the input quality im-
proves the output quality also will do. From the specialization and parallel compositions
rules we can see that it is true.

We have to study other type of performance profiles taking into account that our
system is a multiagents system. We can think in social or join performance profiles and
in the dependency of performance profile measures with respect to the deadline time of
agents and other parameters.

It is obvious that an anytime system can produce answers before a standard one. The
problem is to determine when this is or not an advantage. An agent can make a decision
or execute an action depending on information of different quality. Depending on the
available time or the urgency, the agent can accept a level of quality enough to exceed
a particular threshold and then take action. Autonomy implies taking the best decision
with the available information, avoiding blocking situations and no action.

Performance profiles can be objective measures of validation, but we are also in-
terested in experimenting on subjective aspects of agent’s behavior as the emergence
of conversations among agents. We are interested in seeing if a very simple rule-based
mechanism—as presented above—can produce conversations similar to humans.

5. Conclusions

In this paper we have presented an anytime mechanism for deliberative agents based
on a monotonous reasoning over intervals of linguistic terms. There is a lot of things
we plan to consider in the future. Deadline is considered fix for the sake of simplicity,
but it could be variable and be calculated to improve agent’s performance. Criteria like
communication channels cost, confidence and agent’s capacity can be considered for its
estimation and effects on performance profiles. We have said that when an agent receives
a provisional value it can be used to produce more provisional values, but we can think in
a timeout or other rational subjective criteria to consider that a provisional value becomes
definitive.



We are also designing a protocol to deal with provisional values and the knowledge
received. It is reasonable to think that when a provisional value is received, agents can
insist later in order to improve the value or use their own means to obtain that informa-
tion.
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