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Abstract. Value alignment has emerged in recent years as a basic prin-
ciple to produce beneficial and mindful Artificial Intelligence systems.
It mainly states that autonomous entities should behave in a way that
is aligned with our human values. In this work, we summarize a previ-
ously developed model that considers values as preferences over states
of the world and defines alignment between the governing norms and
the values. We provide a use-case for this framework with the Iterated
Prisoner’s Dilemma model, which we use to exemplify the definitions we
review. We take advantage of this use-case to introduce new concepts
to be integrated with the established framework: alignment equilibrium
and Pareto optimal alignment. These are inspired on the classical Nash
equilibrium and Pareto optimality, but are designed to account for any
value we wish to model in the system.
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1 Introduction

In the last decades, research in Artificial Intelligence (AI) has been able to design
and deploy increasingly complex systems, from robots and software agents, to
recommendation algorithms and social networking apps [10]. Given that nowa-
days interaction with AI systems happens on a daily basis, a new challenge arises:
how to ensure that all these systems, with all their complexity and power, behave
in a way that is aligned with our human values. This requirement is referred to
as the Value-Alignment Problem (VAP) [16], and is the focus of this work.

In this paper, we summarise a previously developed value alignment model [19]
motivated by the assumption that we should be able to prove that any designed
system is actually complying with our values [15]. It uses norms as the essen-
tial tools to supervise and limit autonomous agents’ behaviour [11]. More impor-
tantly, it provides a precise definition of what it means for a norm to be aligned
with a given value. We then provide a use-case based on the benchmark Iterated
Prisoner’s Dilemma game [3]. Inspired by the concepts of Nash equilibria and
Pareto optimality in game theory, we introduce new concepts of value equilibria
and optimality that build on top of the formal framework in [19].
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2 Value Alignment Model

2.1 Revision of Our Background Formal Model

In order to introduce the necessary background, we provide a summary of the
value alignment model that constitutes the starting point of this paper [19].
Its main underlying assumption is a consequentialist view of values [20], which
expresses that the worthiness of any value is entirely determined by the outcomes
of the actions that it motivates. Values, then, can serve as numerical quantifiers
to assess how (un)desirable is a state in the world. In particular, we can use
values to compare any two states and decide which of the two is preferred.

In the reviewed framework, the common conception of the world as a labelled
transition system [8] is adopted. The world, then, is composed of a set of states
S, a set of actions A and a set of transitions T ⊆ S × A × S. We refer to any
transition (s, a, s′) ∈ T with the notation s

a−→ s′.
Values are conceived as mental constructs [12] that allow agents to decide

which state of the world they prefer, according to their most prioritised values.
This consideration motivates the following definition:

Definition 1 (from [19]). A value-based preference Prf is a function over pairs
of states that indicates how much preferred is one state over another in light of a
particular value: Prf : S ×S ×G×V → [−1, 1], where G is the set of agents and
V is the set of values. The notation Prfαv (s, s′) indicates how much does agent α
prefer state s′ over state s with respect to value v.

Value-based preferences, then, are bounded functions between −1 and +1.
Positive (negative) preference indicates the post-transition state is more (less)
desirable than the pre-transition state with respect to a specific value v. Prefer-
ences equal to 0 indicate that both states are identically preferred.

Values are held at the agent level. However, very rarely do agents’ belief sys-
tems consist of a single value [18]. Aggregations over subsets of values and/or
agents are also considered in [19]. However, we will not be employing any aggre-
gation functions in this work. The interested reader is referred to the original
paper for further details.

Now we have a clear view of the role of values when it comes to evaluating
states. However, the states that can arise when letting a multiagent system
evolve are dependent upon the norms in place, since these are the constructs
which govern behaviour and therefore limit the actions that can be taken. Thus,
value alignment is conceived as the alignment of a norm (or a set of norms)
with respect to a value that is held in high regard. When a set of norms N
is incorporated into the world (S,A, T ), it is modified into a new, normative
world (S,A, N, TN ) [1], where TN ⊆ T is the subset of all the original transitions
allowed by N .

To evaluate how well or badly aligned is a norm n ∈ N , the transitions
that can happen when this norm is enforced have to be evaluated. A norm is
positively (negatively) aligned if it gives rise to transitions that move the system
towards more (less) preferred states. However, beyond single transitions, the
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long-term evolution of the world under the norms in place should be considered.
This necessity motivates the following definition:

Definition 2 (from [19]). A path p in the world (S,A, T ) is a finite sequence
of consecutive transitions {s0

a0−→ s1, s1
a1−→ s2, ..., si

ai−→ si+1, ..., sf
af −1−−−→ sf },

where pF [i] = pI [i + 1], and pI [i] and pF [i] denote the pre- and post-transition
states of the i-th transition.

Paths are used to evaluate preferences over consecutive transitions, and sup-
port the formal definition of value alignment:

Definition 3 (from [19]). The degree of alignment of norm n ∈ N with respect
to value v ∈ V in the world (S,A, T ) for agent α ∈ G is defined as the accu-
mulated preference over all the paths in the normative world that results from
implementing such norm:

Algnα
n,v (S,A, T ) =

∑

p∈paths

∑

d∈[1,|p|]
Prfαv (pI [d], pF [d])

∑

p∈paths

|p| (1)

where paths is the set of all paths in the normative world (S,A, {n}, Tn), and
|p| corresponds to the cardinality of p, i.e. the number of transitions in the path.

Note that we exclude the possibility of infinite transition systems by consid-
ering all paths to be finite.

In this approach, the same exact weight is given to every single transition.
Other suggestions are conceivable; for example one may want to consider whether
preferences remain approximately stable along the paths or, conversely, there are
large surges or sinks. In other fields, it is typical to consider a discount parameter
that reduces the weight of transitions that happen into the distant future [17]. We
acknowledge the existence of alternative approaches, but leave their exploration
for future work.

Another issue to note with Definition 3 is that its notation indicates the
alignment for a single agent α with respect to a single value v, since it takes the
individual preferences with respect to that one value. However, as previously
mentioned, preferences can be aggregated over agents and/or sets of values.
Using such aggregated preferences would, consequently, result in alignment for
sets of agents and/or with respect to sets of values.

Equation (1) states that alignment should take into account all possible tran-
sitions in the normative world. In general, this approach is not efficient, and to
solve this issue, Monte Carlo sampling over all possible paths is recommended.
Additionally, it is also advisable to keep the length of the paths fixed. These
modifications lead to the following reformulation for the alignment:

Algnα
n,v (S,A, T ) =

∑

p∈paths

∑

d∈[1,l]

Prfαv (pI [d], pF [d])

x × l
(2)
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where l is the number of transitions in all paths, and x is the number of sampled
paths.

In summary, the approach proposed in [19] provides a formal model to numer-
ically quantify how compliant is a certain normative world designed towards some
particular value. Differently to other works related to value alignment [2,7], such
a model is separate from the decision-making process of the participating agents
and their respective goals, and can hence be applied to any kind of agent and
social space architecture.

2.2 Value-Alignment Solution Concepts

In this work, we model agents’ interactions as normal-form games. In game
theory, a stage game refers to each of the identical rounds played in one iteration.
The Nash equilibrium is then defined as the set of players’ actions such that no
player can obtain a higher profit by unilaterally deviating from it, given the
actions of all other players are fixed [14, Chapter 2]. In formal terms, Nash
equilibria correspond to action profiles (a∗

1, ..., a
∗
|G|) such that, for all agents

i ∈ G, it holds that:

ri(a∗
1, ..., a

∗
i−1, a

∗
i , a

∗
i+1, ..., a

∗
|G|) ≥ ri(a∗

1, ..., a
∗
i−1, ai, a

∗
i+1, ..., a

∗
|G|) (3)

Nash equilibria may not represent the best option for players in terms of indi-
vidual revenues, but profiles of joint actions for which no player has an incentive
to unilaterally deviate. This solution concept represents status quo positions that
persist despite not necessarily being the best solutions from a social perspective.
In other terms, the Nash equilibria do not necessarily correspond with Pareto
optimal outcomes [5], as in the case of the classical Prisoner’s Dilemma game.

The concept of stage game Nash equilibrium is not directly applicable in
our theoretical framework for two main reasons. First, in general, agents inter-
act repeatedly. And second, we are interested in the alignment with respect to
values, not in the game rewards themselves, even if alignments may be com-
puted from rewards. However, Nash-like equilibria situations can be identified
when the alignment satisfies an adapted version of Eq. (3). When considering
this possibility, the argument a∗

i should not be identified as actions taken by
agents in a single round, but rather by the strategies that individuals follow for
the whole duration of the game. We conceive individual strategies as separate
from norms. While strategies are part of the agents’ internal decision process,
we understand norms to be externally imposed constraints on the system, whose
definition is the responsibility of the model’s designer and beyond the control of
the participating agents.

Therefore, given a set of norms N governing a multiagent system, agents
adopt a particular strategy to play the game. Strategies are functions that take
into account the past history of the game to return an action to be performed
next [14]. The set of all strategies being played is E = {e1, e2, ..., e|G|}, where
ei is the strategy followed by the i-th agent. Then, we can make the following
definition:
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Definition 4. Given a normative system N and an alignment function with
respect to the value of choice for agent i Algni

v, the alignment equilibrium is
defined as the tuple of all individual strategies

(
e∗
1, ..., e

∗
|G|

)
such that, for all

agents i ∈ G, it holds that:

Algni(
e∗
1 ,...,e∗

i−1,e∗
i ,e∗

i+1,...,e∗
|G|

)
,v

≥ Algni(
e∗
1 ,...,e∗

i−1,ei,e∗
i+1,...,e∗

|G|
)

,v
(4)

Note that the alignment equilibria depend on the alignment function of choice
and the norms constraining the system. Another point to note is that, despite Eq.
(4) is stated in terms of alignment with respect to individual agents, a natural
extension arises when applied to subsets of agents or even aggregated for the
whole society. Additionally, it can also be extended to sets of values.

Another important point is that, unlike the classical Nash equilibrium, whose
existence is guaranteed for games played by a finite number of agents following
mixed strategies [9], the properties of Eq. (4) have not been explored to the point
of establishing conditions for existence. This is left as future work.

It is worth trying to understand the motivation behind Eq. (4). Classical game
theory takes the view of trying to maximise one’s own reward while minimising
risks. The classical Nash equilibrium for a stage game is a possible response
to this approach for a game that is played once. Our definition of alignment
equilibrium, then, generalises the classical Nash equilibrium to account for games
and situations that are presented repeatedly.

More importantly, Eq. (4) allows to examine a game from a different perspec-
tive other than that of the individual payoffs ri, as we can analyse the alignment
equilibria with respect to as many values as alignment functions we are able to
come up with. Moreover, agents may consider different preferences or may take
into account different variables to compute their preferences, and thus Eq. (4)
need not be symmetric with respect to agents. By considering the particular
instance where a game is played for a path of length one (a single round) and
using the actual rewards as preferences, the classical concept of Nash equilibrium
can be recovered.

Previously, we have mentioned the concept of Pareto optimality [5]. This
solution concept from game theory can also be adapted to the value alignment
framework. Classically, an action profile (a∗

1, ..., a
∗
|G|) is said to lead to a Pareto

optimal outcome if there is no other profile (a1, ..., a|G|) such that:

rj

(
a1, ..., a|G|

)
> rj

(
a∗
1, ..., a

∗
|G|

)
for at least one agent j ∈ G, and (5)

ri

(
a1, ..., a|G|

)
≥ ri

(
a∗
1, ..., a

∗
|G|

)
for all agents i ∈ G (6)

In other words, in classical game theory a Pareto optimal outcome is one where
we cannot improve anyone’s reward without damaging someone else’s.

In a similar fashion to our extension from the classical Nash equilibrium to the
alignment equilibrium, we can adapt Pareto optimality to our value alignment
framework. Again, we need not consider actions for a single transition, but rather
strategies adopted during the whole duration of the game:
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Definition 5. Given a normative system N and an alignment function with
respect to the value of choice for agent i Algni

v, a tuple of individual strategies(
e∗
1, ..., e

∗
|G|

)
is said to lead to a Pareto optimal alignment if there is no other

tuple of individual strategies
(
e1, ..., e|G|

)
such that:

Algnj

(e1,...,e|G|),v
> Algnj(

e∗
1 ,...,e∗

|G|
)

,v
for at least one agent j ∈ G, and (7)

Algni

(e1,...,e|G|),v
≥ Algni(

e∗
1 ,...,e∗

|G|
)

,v
for all agents i ∈ G (8)

Therefore, a Pareto optimal alignment corresponds to a situation where no
agent can improve its alignment without hurting one or several other agent
alignments. The novel concept of Pareto optimal alignment allows us to make the
same generalisations than those when moving from the classical Nash equilibrium
to the alignment equilibrium. They have been explicitly described previously.

3 Use-Case: Two-Agent Iterated Prisoner’s Dilemma

Now, we consider a very simple two-agent system modelled after the benchmark
Iterated Prisoner’s Dilemma (IPD) game [3], and we use it to illustrate the
previously introduced concepts.

Table 1. Outcome matrix for the Prisoner’s Dilemma game.

β

Cooperate Defect

α Cooperate (6, 6) (0, 9)

Defect (9, 0) (3, 3)

In formal terms, this model consists of an agent set with two members,
G = {α, β}; the set of individual actions available to each of them is Ai =
{cooperate,defect}. The transitions between states are characterised by the joint
actions that α and β take, hence the set of actions is A = A2

i = {(aα, aβ)}. The
tuple of individual actions (aα, aβ) determines the outcome of the transition.
Such outcomes are tied to rewards agents receive, ri(aα, aβ),∀i ∈ G, via the
outcome matrix displayed in Table 1.

In this model, the game is played in an iterated way. We characterise states by
the agents’ wealth, which is defined as the accumulated rewards received since the
game started. The states of the world correspond to the tuple of agents’ wealth,
noted by (xα, xβ). Initially, both agents start with (xα, xβ) = (0, 0). After agents
have chosen their actions (aα, aβ) and the rewards (rα, rβ) are determined, the
transition s → s′ is completed by updating the values for agents’ wealth.

We formally lay out the main features of our model in the following terms:

Definition 6. We define the Two-Agent Iterative Prisoner’s Dilemma (2A-IPD)
model as a tuple (G,S,A, T ), where:
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Fig. 1. Labelled transition system representing a single transition of the 2A-IPD model.

– G = {α, β} is a set of two agents.
– S = {(xα, xβ)} is the set of states, composed by the tuples of all possible

combinations of agents’ wealth.
– A = {(aα, aβ)}, where ai ∈ {cooperate, defect}, is the set of joint actions.
– T : S × A × S is the set of transitions which relate the current state s =

(xα, xβ) and joint actions (aα, aβ) to the next state s′ = (x′
α, x′

β):

∀t ∈ T , t = (s, (aα, aβ), s′) such that

{
x′

α = xα + rα(aα, aβ)
x′

β = xβ + rβ(aα, aβ)
(9)

where ri(aα, aβ) are the rewards given by the outcome matrix (Table 1).

A labelled transition system representation for one transition of this model
is displayed in Fig. 1.

3.1 Preference Functions

Within this model, we wish to quantify the alignment of different agent
behaviours with respect to two apparently opposed values: equality and personal
gain. In [19] some preferences related to these values were already formulated.
However, we introduce new ones here that are less sensitive to the numerical
choice for the rewards in Table 1.

In order to quantify alignment with respect to equality, we will assess it in
each state by making use of the well-known Gini Index (GI) [6]. In our two-agent
model, the GI is computed for state s by taking the values of agents’ wealth at



196 N. Montes and C. Sierra

that particular point in the repeated game, (xα, xβ). For |G| = 2, the Gini Index
for our system becomes:

GI(s) =
|xα − xβ |

2 (xα + xβ)
(10)

The lower bound for the GI is always 0, indicating perfect equality among
all participants. In the case of two agents, the maximum possible value is 1

2 [4].
Then, in order to map perfect equality (GI = 0) to maximum preference (+1)
and perfect inequality (GI = 1

2 ) to minimum preference (−1), the interval for the
Gini Index

[
0, 1

2

]
is linearly mapped to the interval of definition of preferences

[−1, 1]. This transformation results in the following definition for the preference
function over the value equality:

Prfiequality(s, s
′) = 1 − 4 · GI(s′) = 1 − 2 ·

|x′
α − x′

β |
x′

α + x′
β

(11)

where i = α, β.
There are two important points to be noted about this preference func-

tion. First, it is numerically equivalent for both agents, since x′
α and x′

β are
interchangeable. It is an intuitive property of the preference with respect to
the value equality that it should be indeed identical for both agents. Second,
Prfiequality(s, s

′) is a function of only the properties of the system in the post-
transition state s′. Hence, states with high (low) equality are (not) preferred
regardless of the parity in the previous state s.

The latter property is not a requirement of preference functions. Other for-
mulae could be devised that depend on the increase/decrease of the Gini Index
or some other indicator. Since our model starts off from a very peculiar position
of perfect equality, we have considered that it is more helpful to monitor the
eventual disparity that may arise as the game proceeds, rather than comparing
consecutive states.

The other value under consideration, personal gain, is quantified through the
following preference function:

Prfigain(s, s
′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if x′
i − xi = 0

− 1
3 if x′

i − xi = 3
1
3 if x′

i − xi = 6
1 if x′

i − xi = 9

(12)

According to this definition, states are preferred with respect to personal gain
by ranking the possible rewards in any given transition and mapping them to
equally spaced points in the preference interval [−1, 1]. This choice is made to
reflect the greediness of this value, since the preference is only dependent on
immediate gains, regardless of how well off the agent may already be or the
circumstances of her peer.

Now, we have the preference functions to evaluate the alignment of the system
for the two agents. In order to compute the alignment from preferences, Eq. (2)
is employed, with x = 10, 000 sampled paths of length l = 10 (the number of
game iterations).



Value-Alignment Equilibrium in Multiagent Systems 197

3.2 Individual Strategies

Now that we have encoded values into two different preference functions, our
purpose, then, is to find which agent strategies in the 2A-IPD model result
in alignment equilibrium and Pareto optimal alignment positions with respect
to equality and personal gain. The set of all possible strategies for a single
agent is a vast space of logical formulae, dictating whether past actions should
be taken into account to decide the future action, how far back to look and
many other considerations. In order to work with the alignment equilibrium
without the burden of considering all possible strategies, we restrict ourselves
to two subspaces of possible strategy profiles, from which we will determine the
alignment equilibria and Pareto optimal alignments:

1. Random-action profiles: Both α and β choose at each round the action to take
randomly, according to independent and fixed probabilities of cooperation.
These are analogous to mixed strategies in game theory, where actions are
taken based on a fixed probability.

2. Heterogeneous profiles: β cooperates randomly following a fixed probability.
α, in contrast, either cooperates or defects with probability 0.5 in the first
round. In subsequent rounds, it follows one of these strategies:

– Tit-for-tat: α’s action in the current round is β’s action in the previous
round.

– Mostly cooperate: α defects if in the previous round both agents defected.
Otherwise, it cooperates.

– Mostly defect: α cooperates if in the previous round both players cooper-
ated. Otherwise, it defects.

These are some of the most common strategies in non-cooperative game the-
ory. We set that only one agent follows them in order not to condition the
outcome of all transitions on the result of the first one.

Note that all of the strategies presented here are included in the set of reactive
strategies [13], where behaviour is only dependent on the opponent’s immediate
past action.

4 Results

First, the results for the alignment under random-action profiles with respect
to equality and personal gain are presented in Figs. 2 and 3 respectively. They
are plotted as a function of the cooperation probabilities of both agents, which
specify concrete instances of the individual random strategies eα and eβ .

According to the definition of alignment equilibrium in Eq. (4), in Fig. 2
there is an infinite number of alignment equilibria corresponding to strategies
satisfying eα = eβ (here we only plot 10 × 10 strategy pairs). To see this, if we
consider that the cooperation probability of agent β is eβ , then α’s alignment is
maximal when eα is equal to eβ , and α has no incentive to deviate. Similarly if
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Fig. 2. Alignment of agents α and β with respect to value equality, Eq. (11), under
random-action profiles.

we fix the cooperation probability of agent α, given the symmetry of Eq. (11).
Therefore, an infinite number of alignment equilibria are found at e∗

α = e∗
β .

It is unsurprising that the status quo with respect to equality corresponds
to both agents having the same cooperation probability. It is worth noting that
this result does not encourage any agent to increase its cooperation probability
to enhance equality, but rather to act similarly to her peer.

The Pareto optimal alignment with respect to equality is found when either
both agents always cooperate or always defect, since they always receive identical
rewards and the Gini Index is kept to zero. So, actually, alignment equilibrium
strategies with respect to equality do include Pareto optimal strategies.

As for alignment with respect to gain in Fig. 3, the maximum alignment for
any agent is obtained when she defects and the other player follows a complete
cooperation strategy. The alignment equilibrium, again considering only random-
action profiles, is found at the position where both agents never cooperate. This
is a consequence of the single Nash equilibrium of the stage game at the position
(defect, defect), in combination with the definition of preference with respect
to personal gain in Eq. (12) being directly related to the individual gains for a
single round.

Differently from the results obtained for value equality where equilibrium
positions were Pareto optimal, for value personal gain this is not the case. Start-
ing from constant mutual defection, both agents could improve their alignment
by turning to constant mutual cooperation instead, since they would attain larger
gains at each round. This result is also due to the direct relationship between
preferences with respect to personal gain and the actual rewards in each round,
see Eq. (12).

This pair of strategies (both agents always defecting for all repetitions of the
game) is the alignment equilibrium when both agents’ alignments are computed
with respect to value personal gain. An interesting observation is that this is also
the alignment equilibrium when one player’s alignment is computed with respect
to equality, and the other with respect to gain. Let’s consider the case where
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Fig. 3. Alignment of agent α (left) and β (right) with respect to value personal gain,
Eq. (12), under random-action profiles. Note that Algnα

gain and Algnβ
gain are mutually

transposed.

α’s alignment is computed with respect to gain, Fig. 3 left, and β’s alignment is
computed with respect to equality, Fig. 2.

Regardless of β’s actions, α’s alignment is always maximised under null coop-
eration probability, so the preferred strategy to take is to defect in every round.
Then, β maximises her alignment with respect to equality by imitating α, that
is, always defecting as well. The result is that the only alignment equilibrium
satisfying Eq. (4) for random-actions profiles is found at e∗

α = e∗
β = 0. It is

worth noting that the calculation for the alignment is specific to each agent in
order to reflect their different priority values. Again, this alignment is not Pareto
optimal. If both agents switched to eα = eβ = 1, α could enhance her alignment
with respect to personal gain while maintaining β’s alignment with respect to
equality at 1.

A summary of the results presented so far for random-action profiles is dis-
played in Table 2.

Now, we look into the alignment with respect to a single value under het-
erogeneous profiles. The alignment for both players is plotted as a function of
the cooperation probability of β, under the various possible strategies for α, for
value equality in Fig. 4 and for value personal gain in Fig. 5.

Table 2. Summary of the results obtained for two randomly-behaving players, high-
lighting the position of alignment equilibrium strategies and their Pareto optimality.

Value for α Value for β Alignment equilibrium Pareto optimal

Equality Equality e∗
α = e∗

β Included

Personal gain Personal gain e∗
α = e∗

β = 0 No

Personal gain Equality e∗
α = e∗

β = 0 No
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Fig. 4. Alignment of agents α and β with respect to value equality, Eq. (11), under
heterogeneous profiles, depending on the strategy followed by player α.

Fig. 5. Alignment of agent α (left) and β (right) with respect to value personal gain,
Eq. (12), under heterogeneous profiles, according to the strategy followed by player α.

First, we focus our attention on the alignment with respect to equality in
Fig. 4. In this case, the three strategies result in very distinct trends. Tit-for-
tat, equivalent to imitating the opponent, leads to a very stable alignment with
respect to equality, independently of the extend of collaboration of β. The other
two strategies, mostly cooperate and mostly defect, result in alignments that
are strongly dependent on β’s cooperation probability. When β defects often
(cooperation ∼0), mostly defect is the preferred individual strategy for α. In
contrast, when β cooperates often (cooperation ∼1), mostly cooperate is the
most suitable strategy for α. These results are in line with those obtained for
random-action profiles with respect to equality (Fig. 2), where we observed that
the alignment equilibrium was reached when both payers behaved similarly.

In order to find the alignment equilibrium from results presented as in Fig. 4,
we must look for the position(s) such that: (a) For constant cooperation prob-
ability of β, i.e. by fixing the position along the x axis, changing α’s strategy
by switching line colour leads to a decrease in alignment; and (b) for fixed α’s
strategy, i.e. maintaining the line colour, the cooperation probability of β (the
coordinate along the x axis) corresponds to a maximum along that line.
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For heterogeneous profiles, the alignment equilibrium with respect to equality
is found when β’s strategy along the iterated game settles in cooperation (prob-
ability of cooperation equals 1) and α applies the tit-for-tat or mostly cooperate
strategies, both of which result in α cooperating for all rounds of the game,
except possibly in the first one. Neither β nor α would then have any incentive
to unilaterally deviate.

Differently to the case of random strategies, where there was an infinite
number of alignment equilibria (the positive diagonal), in this case there is a
single alignment equilibrium that corresponds to the persistent collaboration of
both agents along the iterated game, which is something clearly desirable from a
social perspective. Then, the introduction of strategic directives for α has shifted
the equilibrium with respect to equality towards cooperation. It is also worth
noting that, in this case, the equilibrium strategy corresponds exactly with the
only Pareto optimal position.

Second, we concentrate on alignment with respect to personal gain, Fig. 5. In
this case, α’s alignment is strongly dependent on the cooperation probability of
β. The three strategies yield alignments for α that are monotonically increasing
with β’s collaboration. Also, the three strategies are always equally ranked. This
means that, given a fixed cooperation ratio for β, the most aligned strategy is
always mostly defect, followed by tit-for-tat and finally mostly cooperate. The
strategies are ordered from least to most cooperative.

As for β’s alignment, it increases linearly with its cooperation probability
when α follows tit-for-tat. It displays a peak at low collaboration rates when α
deploys mostly cooperates, and a valley at high cooperation probabilities when
α follows mostly defect.

Again, considering only the heterogeneous profiles that have generated these
results, there are two alignment equilibria with respect to personal gain corre-
sponding to β not cooperating at all and α following either mostly defect or
tit-for-tat. To achieve this conclusion, we first note that, for any cooperation
probability of β, α always enhances her alignment by following mostly defect.
Then, once α has settled for this strategy, the best choice for β is to always
defect. These two observations lead to α following either mostly defect or tit-for-
tat and β never cooperating. Given that β always defects, both these strategies
converge to α always defecting as well, except maybe at the first round. It is
worth noting that these equilibria are actually far from the maximum possible
alignment for either agent. Nor do they result in a Pareto optimal alignment,
since both agents could improve their alignment by having α follow tit-for-tat
and β increase her probability of cooperation.

Finally, in an exercise similar to that performed for random-action profiles,
we find the alignment equilibrium position when agents prioritise different values.
Since players in this strategy profiles are not equivalent (α behaves in a conscious
way while β behaves completely randomly), we must examine two possibilities:
α prioritises personal gain while β prioritises equality, and vice-versa.
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Table 3. Summary of the results obtained under heterogeneous profiles, highlighting
the position of alignment equilibrium strategies and their Pareto optimality (Nomen-
clature for strategies: TfT: tit-for-tat; MC: mostly cooperate; MD: mostly defect).

Value for α Value for β Alignment equilibrium Pareto optimal

Equality Equality e∗
α = TfT/MC; e∗

β = 1 Yes

Personal gain Personal gain e∗
α = TfT/MD; e∗

β = 0 No

Personal gain Equality e∗
α = TfT/MD; e∗

β = 0 No

Equality Personal gain e∗
α = TfT/MC; e∗

β = 1 Yes

For the first possibility, α will always need to follow mostly defect to ensure
that her alignment with respect to personal gain is maximised, regardless of β’s
probability of cooperation. Then, in order to attain maximum alignment with
respect to equality, β will settle on constant defection. Hence, the alignment
equilibrium when α prioritises personal gain and β prioritises equality is the same
as when both prioritised personal gain. Yet again, these strategies do not lead to
a Pareto optimal alignment, since both agents could improve the alignment with
respect to their prioritised values by having α follow tit-for-tat and β increase
her probability of cooperation.

For the second possibility, α will follow tit-for-tat, since this strategy dom-
inates the two others when it comes to equality, regardless of the cooperation
probability of β. Given this observation, β will then enhance her alignment with
respect to personal gain by always cooperating. At this position, α can resort
to tit-for-tat or mostly cooperate indistinctly. This strategy profile is equal to
the equilibrium found when both agents prioritised equality. In this case, it also
corresponds to a Pareto optimal alignment, since α has achieved the maximum
possible alignment with respect to equality.

It is worth pointing out that the alignment equilibrium positions under agents
prioritising different values are driven by the player following the more conscious
strategy, α in this case. That is to say that when α focuses on personal gain,
the solution concepts are identical regardless of the value that β (the randomly
behaving agent) holds in high regard. The same result is found when α focuses
on equality instead.

A summary with the results analysed for the model under heterogeneous
profiles is provided in Table 3.

5 Conclusions and Future Work

In this work, we have reviewed a formal framework that establishes preferences
over the states in the world, and we have specified the computation of value
alignment through the increase or decrease in preferences over states in a nor-
mative world. Some further study needs to be done in the theoretical front, but
for the time being we have been able to implement this framework in the Iterated
Prisoner’s Dilemma model.
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Inspired by the classical Nash equilibrium and Pareto optimality in game the-
ory, we have introduced the novel notions of alignment equilibrium and Pareto
optimal alignment. These solution concepts extend the existing definitions to
account for different values beyond individual rewards and generalise to cases
where agents may have different priorities. We have been able to identify both
equilibria and Pareto optimal alignments in our Two-Agent Iterated Prisoner’s
Dilemma model, with respect to the values equality and personal gain. An inter-
esting finding is that, under both strategy subsets under consideration, alignment
equilibria positions with respect to equality include Pareto optimal outcomes,
while equilibrium positions with respect to value gain do not.

This work intends to exemplify an application of the proposed model for
the value alignment problem. Further work, built on it, remains to be done.
First, on the analytical side, formal properties of the alignment equilibrium and
its relationship with Pareto optimal alignments should be explored. Second,
the model can be naturally extended to account for the introduction of norms,
such as taxes, fines or the banning/enforcement of behaviour. An interesting
outcome from such research should be the shift, if any, in the alignment equilibria
positions. Finally, a third line of work should be focused on the development of
methodologies to synthesise norms with optimal alignment with respect to values
of choice.
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