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Abstract. Multi-adjoint lattice logic (MLL) was introduced as a logic
focused on capturing multi-adjoint algebras, which are general and flexi-
ble algebraic structures used, for example, as truth-values set in different
formal tools to model data sets, such as, formal concept analysis, rough
sets, and fuzzy relation equations. This paper enriches this logic by ex-
panding it with two extra connectives, one associated with the Gödel
implication and the one associated with the Baaz-Monteiro projection
connective. As a consequence, the implication in MLL representing the
ordering in the lattice becomes definable from these two operators, and
vice versa.
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1 Introduction

This paper further explores and expands the multi-adjoint lattice logic (MLL)
introduced in [4]. In this logic, the intended semantics is given by the class of
order-right multi-adjoint algebras, and the axiomatization follows the philosophy
of Hájek’s Basic Fuzzy logic [10]. Due to the algebraic flexibility of multi-adjoint
algebras, a selected implication connective →d related to the ordering in the
lattice was required to be introduced. In this paper we expand this logic with
two new connectives, from which the selected order implication is definable.

More specifically, we add to MLL a new implication connective → with Gödel
fuzzy logic semantics and Baaz-Monteiro’s projection connective ∆, which is a
particular case of a truth-stressing hedge [11]. The resulting new logic, that we
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denote MGL∆, is an extension of the Gödel logic with the Baaz-Monteiro oper-
ator G∆ (see e.g. [10]), where the MLL order implication →d becomes definable
from Gödel implication and Baaz-Monteiro’s operator, and vice versa. The new
logic can also be related to a particular case of the logic MLL∨−vt presented
in [4] in which these two connectives have been selected to play a significant
role. Moreover, compared to MLL, an advantage of MGL∆ is that it is shown to
be complete with respect to the smaller class of linear order-right multi-adjoint
algebras.

2 Preliminaries

2.1 Gödel logic

Here we provide some preliminaries on Gödel logic G and its expansion with
Baaz-Monteiro operator ∆. To start with, the language of Gödel propositional
logic is built as usual from a countable set of propositional variables V , the
constant ⊥ and the binary connectives ∧ and →. Disjunction and negation are
defined as φ ∨ ψ := ((φ → ψ) → ψ) ∧ ((ψ → φ) → φ) and ¬φ := φ → ⊥,
respectively, equivalence is defined as φ ↔ ψ := (φ → ψ) ∧ (ψ → φ), and the
constant ⊤ is taken as ⊥ → ⊥.

As a many-valued logic, Gödel logic is the axiomatic extension of Hájek’s
Basic Fuzzy Logic BL [10] (which is the logic of continuous t-norms and their
residua [2]) by means of the contraction axiom (A7), see below. Then the fol-
lowing are the axioms of G:

(A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ)) (A4b) ((φ ∧ ψ) → χ) → (φ→ (ψ → χ))
(A2) (φ ∧ ψ) → φ (A5) (φ→ ψ) ∨ (ψ → φ)
(A3) (φ ∧ ψ) → (ψ ∧ φ) (A6) ⊥ → φ
(A4a) (φ→ (ψ → χ)) → ((φ ∧ ψ) → χ) (A7) φ→ (φ ∧ φ)

The deduction rule of G is modus ponens. The notion of proof for G, denoted
as ⊢G, is defined as usual from the above set of axioms and the inference rule.

Since the unique idempotent continuous t-norm is the minimum, this yields
that Gödel logic is strongly complete with respect to its standard fuzzy semantics
that interprets formulas over the structure [0, 1]G = ([0, 1],min,⇒G, 0, 1), called
standard Gödel algebra. i.e. semantics defined by truth-evaluations of formulas
e on [0, 1], where 1 is the only designated truth-value, such that e(φ ∧ ψ) =
min(e(φ), e(ψ)), e(φ → ψ) = e(φ) ⇒G e(ψ) and e(⊥) = 0, where ⇒G is the
binary operation on [0, 1] defined as

x⇒G y =

{
1, if x ≤ y
y, otherwise

As a consequence, e(φ ∨ ψ) = max(e(φ), e(ψ)) and e(¬φ) = e(φ) ⇒G 0.
Given a set of well-formed formulas Γ , we write Γ |=G φ to denote that φ
is a semantics consequence of Γ , that is, for every evaluation e over [0, 1]G, if
e(γ) = 1 for every γ ∈ Γ then e(φ) = 1. Then, the strong standard completeness
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for the logic G reads as follows: for every set of formulas Γ ∪ {φ}, Γ ⊢G φ iff
Γ |=G φ.

Gödel logic can also be seen as the axiomatic extension of intuitionistic propo-
sitional logic by the prelinearity axiom (A5). Its algebraic semantics is therefore
given by the variety of prelinear Heyting algebras, also known as Gödel algebras.
A Gödel algebra is thus a (bounded, integral, commutative) residuated lattice
A = (A,∧,∨, ∗,⇒, 0, 1) such that the monoidal operation ∗ coincides with the
lattice meet ∧, and such that the prelinearity equation (x ⇒ y) ∨ (y ⇒ x) = 1
is satisfied.

Gödel logic can be expanded with the Baaz-Monteiro projection connec-
tive ∆ while preserving the strong standard completeness [1]. Standard truth-
evaluations of Gödel logic are extended adding the clause

e(∆φ) =

{
1, if e(φ) = 1
0, otherwise

Note that despite φ is many-valued, ∆φ is a two-valued formula that is to be
understood as a kind of precisification of φ. Axioms and rules of this new logic,
denoted as G∆, are those of Gödel logic G plus the following axioms for ∆:

(∆1) ∆φ ∨ ¬∆φ (∆4) ∆φ→ ∆∆φ
(∆2) ∆(φ ∨ ψ) → (∆φ ∨∆ψ) (∆5) ∆(φ→ ψ) → (∆φ→ ∆ψ)
(∆3) ∆φ→ φ

and the ∆-necessitation rule: from φ derive ∆φ.
So defined, G∆ keeps being algebraizable and its equivalent algebraic se-

mantics is given by the variety of G∆-algebras. Automatically, G∆ is strongly
complete with respect to the equational class of G∆-algebras which, in fact, is
a semilinear variety, and hence G∆ is also complete with respect to the class of
linearly-ordered G∆-algebras. Moreover, in [10] it is proved that G∆ still enjoys
strong standard completeness: Γ ⊢G∆

φ iff Γ |=G∆
φ, for any set Γ and formula

φ, where ⊢G∆
and |=G∆

stand respectively for the notions of proof and semantic
consequence for G∆ defined in the natural way as for G.

2.2 Multi-adjoint lattice logic

Multi-adjoint lattice logic (MLL) was introduced in [4] as a many-valued propo-
sitional logic framework related to multi-adjoint algebras. In this section, we
provide a brief summary with the main notions related to the syntax and se-
mantics of MLL. The language LAML of MLL (set of well-formed formulas) is
built in the usual way from a countable set of propositional symbols Π together
with the set of binary connective symbols {→d,∧,∨,∧1,→1, . . . ,∧n,→n} and
the constant ⊥.

Definition 1 (MLL axiomatization). Given the language LAML , the multi-
adjoint lattice logic (MLL) is defined from the following axioms:

L1. (φ ∧ ψ) →d φ
L2. (φ ∧ ψ) →d ψ
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L3. (χ→d φ) →d ((χ→d ψ) →d (χ→d (φ ∧ ψ)))
L4. φ→d (φ ∨ ψ)
L5. ψ →d (φ ∨ ψ)
L6. (φ→d χ) →d ((ψ →d χ) →d ((φ ∨ ψ) →d χ)))
L7. φ→d φ
L8. (φ→d ψ) →d ((ψ →d χ) →d (φ→d χ))
L9. (ψ →d χ) →d ((φ→d ψ) →d (φ→d χ))
L10. ⊥ →d φ
L11. φ→d (⊥ →d ⊥)
M1. (φ→d (ψ →i χ)) →d ((φ ∧i ψ) →d χ)
M2. ((φ ∧i ψ) →d χ) →d (φ→d (ψ →i χ))
M3. (ψ →d χ)→d((φ ∧i ψ) →d (φ ∧i χ))

and modus ponens for the implication symbol →d as the only inference rule.

Now, as for the semantics of MLL, we recall the notion of truth-evaluation
of formulas with respect to a given bounded order-right multi-adjoint lattice.

Definition 2. Let (L,⪯) be a lattice. An bounded order-right multi-adjoint lat-
tice is an algebra L = (L, inf, sup, 0, 1,&1,↙1, . . . ,&n,↙n) where (L, inf, sup, 0, 1)
is a bounded lattice, and each (&i,↙i) is an order-right adjoint pair with re-
spect to L, that is, satisfying the corresponding monotonic properties, and the
adjoint property: x&iy ⪯ z iff x ⪯ z ↙i y, for all x, y, z ∈ L. Moreover, if
this algebra also includes the binary operator ↙d on L, defined as z ↙d y
is 1, if y = inf{y, z}, and 0 otherwise, for all y, z ∈ L, then we say that
L = (L, inf, sup, 0, 1,↙d,&1,↙1, . . . ,&n,↙n) is a d-bounded order-right multi-
adjoint lattice.

These algebraic structures provides an extra level of flexibility in those frame-
works where they are used [6–8, 12–14]. For example, in formal concept analy-
sis [6], considering several adjoint pairs allows to associate different degrees of
preference on the attributes/objects of a database. Finally, the notion of evalu-
ation is introduced as usual.

Definition 3. Let L = (L, inf, sup, 0, 1,↙d,&1,↙1, . . . ,&n,↙n) be a d-bounded
order-right multi-adjoint lattice. An L-evaluation of formulas is a mapping
e : LAML → L defined inductively as usual from the propositional variables of the
language, interpreting the connectives by the operations of L.

The axiomatic system of MLL is sound with respect to these algebraic struc-
tures, i.e. for any evaluation on these algebras, the axioms are evaluated to 1
and modus ponens preserves validity. More details can be found in [4, 5].

3 Multi-adjoint Gödel logic

In this section, we introduce a multi-adjoint logic over Gödel logic with ∆, de-
noted as MGL∆. The language LAMGL∆

of MGL∆ is obtained by explanding that
of MLL with two new symbols → and ∆, related to the logic G∆. In LAMGL∆

,
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we have the following definable connectives: ⊤ := ⊥ → ⊥, ¬φ := φ → ⊥, and
φ ↔ ψ := (φ → ψ) ∧ (ψ → φ), for all well-formed formulas φ and ψ. Actually,
in this new language we will see that the order implication connective →d be-
comes definable from the two newly introduced symbols → and ∆, namely as
φ→d ψ := ∆(φ→ ψ).

The algebraic semantics for MGL∆ will be given by the class of MGL∆-
algebras introduced next.

Definition 4. A MGL∆-algebra is a tuple A = (A, inf, sup,→, ∆, 0, 1,&1,↙1

, . . . ,&n,↙n), where (A, inf, sup, 0, 1,&1,↙1, . . . ,&n,↙n) is a bounded order-
right multi-adjoint lattice, and (A,→, inf, sup, ∆, 0, 1) is a G∆-algebra.

Notice that, in this extended algebraic framework, the order implication →d

is definable in linear structures. Specifically, we have the following result.

Proposition 1. If (A, inf, sup, 0, 1) is a bounded linearly-ordered lattice, then
the order implication ↙d and the pair composed of the Gödel implication ↙ and
∆ are inter-definable, that is

– z ↙d y = ∆(z ↙ y), for all y, z ∈ A.
– z ↙ y = sup{z ↙d y, z} and ∆(z) = z ↙d 1, for all y, z ∈ A.

The truth-evaluations of MGL∆-formulas in a MGL∆-algebra A are also
defined as usual by mappings e : LAMGL∆

→ A respecting the interpretation
rules of MLL and G∆.

Definition 5. Given a set of formulas Γ ∪{φ}, φ is a semantic consequence of
Γ , denoted as Γ |=MGL∆

φ, whenever, for any MGL∆-algebra A and evaluation
e on A, if e(ψ) = 1 for every ψ ∈ Γ , then e(φ) = 1 as well.

From a syntactical point of view, the following is the Hilbert-style definition
of the logic MGL∆.

Definition 6. Axioms and rules of MGL∆ are those of MLL plus the axioms
(A4a), (A4b), (A5) and (∆1) − (∆5) from G∆. The inference rules are modus
ponens for →, and the ∆-necessitation rule.

The corresponding notion of proof for MGL∆, denoted as ⊢MGL∆
, is the usual

one from the above axioms and inference rules. Note that modus ponens for →d

is now a derivable rule. Namely, from φ→d ψ := ∆(φ→ ψ) it follows φ→ ψ, by
Axiom (∆3), and hence, by modus ponens for →, we have φ,φ→d ψ ⊢MGL∆

ψ.
It is important to note that MGL∆ can be seen as a strengthening (expansion)

of a particular case of the logic MLL∨−vt defined in [4], in which an adjoint triple
(the Gödel one) and a truth-stressing hedge (the Baaz-Monteiro operator) have
been fixed.

If we denote by LL+ the logic given by axioms L1− L11 plus (A4a), (A4b),
(A5) and modus ponens, we observe that LL+ is equivalent to Gödel logic itself
because axioms (A6) and (A7) are theorems of the logic, so MGL∆ is in fact
an axiomatic expansion of G∆. Moreover, it can be shown that MGL∆ is an
algebraizable logic.
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Proposition 2. MGL∆ is algebraizable.

This follows from observing that the new connectives are well-behaved with
respect to the logical equivalence [4]. Therefore, since MGL∆ is an algebraizable
axiomatic expansion of G∆, by general results on algebraic logic, see e.g. [3],
MGL∆ keeps being semilinear. In other words, the variety of MGL∆-algebras is
generated by its linearly-ordered members. This means that to check whether an
equation is valid in the whole variety, it is enough to check its validity in all the
linearly-ordered MGL∆-algebras. Or equivalently, if an equation does not hold
in the variety then there is a linearly ordered MGL∆-algebra where the equation
does not hold either.

These observations immediately lead to present the following soundness and
completeness results for MGL∆ with respect to the class of linearly-ordered
MGL∆-algebras.

Theorem 1. For any set of formulas Γ ∪{φ}, Γ ⊢MLG∆
φ iff for any linearly-

ordered MGL∆-algebra A and evaluation e on A, if e(ψ) = 1 for every ψ ∈ Γ ,
then e(φ) = 1 as well.

4 Conclusions

In this paper we have extended the multi-adjoint lattice logic MLL with Gödel
logic implication and the ∆ operator obtaining completeness results with respect
to linear multi-adjoint lattices. Future work will be devoted to study complete-
ness with respect to multi-adjoint structures on the real unit interval [0, 1]. More-
over, we will apply the approach presented in this paper to real-world scenarios,
such as those in Digital Forensic, taking advantage of the authors’ participation
in the DigForASP network [9].
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