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Abstract. Some distributed constraint optimization algorithms use a linear number of messages in
the number of agents, but of exponential size. This is often the main limitation for their practical
applicability. Here we present some distributed algorithms for these problems when they are ar-
ranged in a tree of agents. The exact algorithm, DCTE, computes the optimal solution but requires
messages of size exp(s), where s is a structural parameter. Its approximate version, DMCTE(r),
requires smaller messages of size exp(r), r < s, at the cost of computing approximate solutions.
It provides a cost interval that bounds the error of the approximation. Using the technique of cost
function filtering, we obtain DMCTEf(r). Combining cost function filtering with bound reasoning,
we propose DIMCTEf, an algorithm based on repeated executions of DMCTEf(r) with increasing r.
DIMCTEf uses messages of previous iterations to decrease the size of messages in the current itera-
tion, which allows to alleviate their high size. We provide evidences of the benefits of our approach
on two benchmarks.

Keywords: Distributed constraint optimization, distributed cluster-tree elimination, function filter-
ing.

1. Introduction

In the last years, there is an increasing interest to solve constraint problems in a distributed form. This
happens when several agents, which are related by constraints, look for a global consistent assignment
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satisfying all constraints (or, in a different version, as many constraints as possible). Typically, the whole
problem can be seen as distributed constraint reasoning, where each agent owns a part of the instance
but no agent knows the whole instance. Agents want to achieve a global consistent solution without
joining all information into a single agent (there are several reasons for that: different formats, pri-
vacy requirements, etc.). New solving algorithms have been developed for this distributed model, where
communication between agents is done by message passing. As examples of algorithms for distributed
constraint reasoning, we mention ABT [25], ADOPT [14], DPOP [18]. As examples of problems re-
quiring distributed solving, we mention –among many others– distributed meeting scheduling [23] and
sensor networks [1].

Considering distributed constraint optimization, it is desirable that each agent, after some process,
is able to compute locally the global optimum and an optimal assignment which is part of the global
optimal assignment (although the global optimal assignment is known by no agent). The trivial approach,
exchanging all information among all agents, is forbidden by the problem definition. However, this is
not really needed. The contribution of this paper is to present some distributed algorithms that work on
a special structure, a tree decomposition of the constraint network, able to compute the above mentioned
goal. After their execution, it is enough to minimize a structure called cluster at each agent to obtain the
global optimum and an assignment that is part of the global one. Interestingly, a tree decomposition can
be computed in a distributed form.

Conceptually, DCTE is the simplest of the above mentioned algorithms. DCTE is able to achieve
the exact solution of the distributed optimization problem, but requires messages of size exp(s), where
s is a structural parameter (the maximum separator size of the tree decomposition). DCTE suffers from
the same drawback as DPOP [18], both use messages of exponential size (see section 7). This is of-
ten the main limitation for the practical applicability of these algorithms, so we try to decrease it. The
approximated version of DCTE is DMCTE(r), that performs approximated solving using messages of
size exp(r), r < s. DMCTE(r) also computes a cost interval that bounds the error of the approxi-
mated solution with respect to the optimum cost. Applying the idea of cost function filtering we obtain
DMCTEf(r), that performs the same kind of approximate solving using messages of shorter (or equal in
the worst case) size. Combining cost function filtering with bound reasoning, we present the DIMCTEf
algorithm. It is an iterative algorithm that executes DMCTEf(r) with increasing r, producing approx-
imated solutions of increasing quality, and uses messages of previous iterations to decrease the size of
messages at the current iteration. It keeps global lower and upper bounds during iterations, and it is
able to stop execution when these bounds are close enough, according to user specifications. We have
implemented and tested these algorithms on two different benchmarks. Experimental results show that
DIMCTEf causes substantial decrements in largest message size and total data exchanged with respect
to DCTE. We describe in detail a running example, which shows the benefits of our approach in message
size. In some cases we are trading memory (shorter message size) for time, since DIMCTEf may require
more computation than the exact algorithm. These algorithms can be seen as dynamic programming in
a distributed context. We have taken inspiration from dynamic programming methods developed for the
centralized case, adapted to a distributed context where each agent only knows its position in the tree
decomposition, its own variables and constraints.

Throughout this paper it is assumed the existence of a tree decomposition where the problem instance
is arranged. In the distributed case, there are algorithms able to build a tree decomposition in a distributed
form (for example, the ERP algorithm [15]).
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The paper is organized as follows. In section 2, we provide a precise definition of the problems
we consider, and we present the basic solving algorithm for the centralized case working on a tree
decomposition. In section 3, we describe its extension to the distributed case, the DCTE algorithm able to
compute the exact solution but requiring messages of size exp(s). In section 4, we describe DMCTE(r),
that computes approximate solutions using messages of size exp(r), r < s. The idea of function filtering
appears in section 5, with the DIMCTEf algorithm. In section 6, we provide experimental results on
two benchmarks. We summarize related approaches in section 7. Finally, we give a summary and a
discussion in section 8. A running example along sections 3, 4 and 5 shows how algorithms work on the
same instance.

2. Preliminaries

In a centralized setting, a Constraint Optimization Problem (COP) involves a finite set of variables, each
one taking a value in a finite domain. Variables are related by cost functions that specify the cost of value
tuples on some variable subsets. Costs are positive natural numbers (including zero and∞). Formally, a
finite COP is (X,D,C) where,

• X = {x1, . . . , xn} is a set of n variables;

• D = {D(x1), . . . , D(xn)} is a collection of finite domains; D(xi) is the initial set of xi possible
values;

• C is a set of cost functions; fi ∈ C on the ordered set of variables var(fi) = (xi1 , . . . , xir(i))

specifies the cost of every combination of values of var(fi), that is, fi :
∏iri
j=i1

D(xj) 7→ N+.
The arity of fi is |var(fi)|.

The overall cost of a complete tuple (involving all variables) is the addition of all individual cost functions
on that particular tuple. A solution is a complete tuple with acceptable overall cost, and it is optimal if
its overall cost is minimal.

2.1. Distributed WCSP

Previous COP definition does not make explicit that there is an upper bound in the cost of acceptable
value tuples, so those value tuples whose cost exceeds this upper bound can be safely removed. COP def-
inition is refined to produce the so called Weighted Constraint Satisfaction Problem (WCSP). A WCSP is
defined as a four tuple (X,D,C, S(k)), where X , D and C are as in the previous definition, and S(k) is
a valuation structure [9]. While in COPs, a cost function maps value combinations into the set of natural
numbers, in a WCSP a cost function maps value combinations into a special set {0, 1, ..., k}. That is,
fi :

∏iri
j=i1

D(xj) 7→ {0, 1, ..., k}. Costs are elements of the set {0, 1, ..., k}, where 0 is the minimum
cost and k is the minimum unacceptable cost. Costs lower than k are acceptable, while costs higher or
equal to k are equally unacceptable. Costs are combined with⊕: a⊕b = min{a+b, k}, meaning that if
the addition of two costs exceeds k, it automatically equals k. Costs are totally ordered with the standard
order in naturals. We store cost function f as a set Sf containing all pairs (t, f(t)) with cost less than
k. The size of f , denoted |f |, is the cardinal of Sf . This approach includes purely satisfaction instances,
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where tuples are either permitted or forbidden. A permitted tuple costs 0, a forbidden tuple costs 1, and
k is 1. For further details on the relation between COPs and WCSPs see [9, 13].

We extend this definition to a distributed context. A Distributed Weighted Constraint Satisfaction
Problem (DWCSP), is a WCSP where variables domains and cost functions are distributed among auto-
mated agents. Formally, a cost-function-based DWCSP is a 6-tuple (X , D, C, S(k), A, β), where X ,
D, C and S(k) define a WCSP, A is a set of p agents and β maps each cost function to one agent. Here
we assume the DWCSP model: it is a refined version of distributed constraint optimization, where the
notion of unacceptable cost is explicitly handled.

Next, some terminology used in the paper. An assignment or tuple tS with scope S is an ordered
sequence of values, each corresponding to a variable of S ⊆ X . The projection of tS on a subset
of variables T ⊆ S, written tS [T ], is formed from tS removing the values of variables that do not
appear in T . This idea can be extended to cost functions: the projection of f on T ⊂ var(f), is a new
cost function f [T ] formed by the tuples of f removing the values of variables that do not appear in T ,
removing duplicates and keeping the minimum cost of the original tuples in f . The cost of a tuple tX
(involving all variables) is ⊕f∈Cf(tX), that is, the addition of the individual cost functions evaluated on
tX (implicitly, it is assumed that, for each f ∈ C, f(tX) = f(tX [var(f)])). A solution is a tuple with
cost lower than k. A solution is optimal if its cost is minimal. The join of two tuples tS and t′T , written
tS · t′T , as a new tuple with scope S ∪ T , formed by the values appearing in tS and t′T . This join is only
defined when common variables have the same values in both tuples. Summing two functions f and g is
a new function f + g with scope var(f) ∪ var(g) and ∀t ∈

∏
xi∈var(f)D(xi), ∀t′ ∈

∏
xj∈var(g)D(xj)

such that t · t′ is defined, (f + g)(t · t′) = f(t) ⊕ g(t′). We say that function g is a lower bound of f ,
denoted g ≤ f , if var(g) ⊆ var(f) and for all possible tuples t of f , g(t) ≤ f(t). A set of functions G
is a lower bound of f iff (

∑
g∈G g) ≤ f . It is easy to check that for any f, Y ⊂ var(f), f [Y ] is a lower

bound of f , and
∑

f∈F f [Y ] ≤ (
∑

f∈F f)[Y ].

2.2. Cluster Tree Elimination

Centralized WCSPs can be solved using tree decomposition methods. A tree decomposition (TD) of a
WCSP 〈X,D,C, S(k)〉 is a triple 〈T, χ, ψ〉, where T = 〈V,E〉 is a tree, χ and ψ are labeling functions
which associate with each node v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ C such that

• for each function f ∈ C, there is exactly one node v ∈ V such that f ∈ ψ(v); in addition,
var(f) ⊆ χ(v);

• for each variable x ∈ X , the set {v ∈ V |x ∈ χ(v)} induces a connected subtree of T .

Its tree-width is tw = maxv∈V |χ(v)|. If u and v are adjacent nodes, its separator is sep(u, v) =
χ(u) ∩ χ(v) [5]. There are several methods to compute a TD (for a summary see [2]). Finding the TD
with the smallest tree width is NP-hard [5]. From now on, we will assume that a suitable TD exists for
the WCSP instance.

Cluster-Tree (umbrella term for names such as join-tree or clique-tree clustering, used in different
research areas) Elimination (CTE) is an algorithm that solves WCSP by sending messages along tree
decomposition edges [6, 5] . Edge (u, v) ∈ E has associated two CTE messages m(u,v), from u to v,
and m(v,u), from v to u. m(u,v) is a function computed summing all functions in ψ(v) with all incoming
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procedure CTE(T = (V,E), χ, ψ)
1 for each (u, v) ∈ E s.t. all m(i,u), i 6= v have arrived do
2 B ← ψ(u) ∪ {m(i,u) | (i, u) ∈ E, i 6= v};
3 m(u,v) ← (

∑
f∈B f)[sep(u, v)];

4 send m(u,v);

Figure 1. The CTE algorithm.

CTE messages except m(v,u) and projected on sep(u, v). CTE appears in Figure 1. CTE complexity is
time O(dtw) and space O(ds), where d is the largest domain size and s is the maximum separator size.

CTE does more than simply solving a WCSP instance. After CTE execution (obviously CTE ter-
minates), we define for node v ∈ V the cluster(v) = {mi,v|(i, v) ∈ E} ∪ ψ(v). Node v has enough
information in cluster(v) to be able to answer, at node level, different tasks that require knowledge of
the whole constraint network [6]. For instance, the number of different solutions of variables in χ(v)
with a particular global cost, or the global cost of a solution when a variable in χ(v) is forced to take a
particular value. CTE has been proven to be correct [10]. If we want to solve the WCSP only, we could
use the simpler Bucket Elimination algorithm [4], that sends cost functions up to the bucket tree (a spe-
cial case of tree decomposition), and propagates value assignments down the bucket tree [5]. However,
working with cost functions in both directions will alleviate its exponential memory complexity, as we
will see next.

Mini-Cluster-Tree Elimination (MCTE(r)) approximates CTE [5]. If the number of variables in u is
high, it may be impossible to compute m(u,v) due to memory limitations. MCTE(r) computes a lower
bound by limiting to r the maximum arity of the functions sent in the messages. A MCTE(r) message,
M(u,v), is a set of functions that approximate the corresponding CTE message m(u,v) (M(u,v) ≤ m(u,v)).
It is computed as m(u,v) but instead of summing all functions of set B (see Figure 1), it computes a par-
tition P = {P1, . . . , Pq} of B such that the arity of the sum of functions in every Pi does not exceed r.
The MCTE(r) algorithm is obtained replacing line 3 of CTE by the following lines (where the projection
is done on the variables of the separator that appear in the scope of the functions in the partition class),

3.1 {P1, ..., Pq} ← partition(B, r);
3.2 M(u,v) ← {(

∑
f∈Pi

f)[sep(u, v) ∩ (∪f∈Pi
var(f))] | i : 1...q};

3. Distributed Cluster Tree Elimination

The CTE algorithm can be adapted to the distributed case, producing the Distributed Cluster Tree Elim-
ination (DCTE) algorithm. We assume that the DWCSP instance (X,D,C,A, β) to solve is arranged
in a rooted TD (T, ψ, χ). Each node of the TD represents a different agent, so we will use these terms
interchangeably. Let us consider self , a generic agent. It owns a specific node in the tree: it knows
its neighbors (parent and children), the separators with them, variables in χ(self) and cost functions in
ψ(self).

DCTE exchanges messages among agents. There are two message types: CF and SS. DCTE
exchanges first CF messages, that contain cost functions, and second SS messages, to assure single
assignments of variables in separators. DCTE processes CF messages as follows. When self has
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received CF messages from all its neighbors except perhaps i, it performs the summation of the re-
ceived cost functions in these CF messages (excluding cost function from i) with the cost functions
of ψ(self), producing a new cost function, which is projected on sep(self, i) and sent to agent i (this
also applies to agents at the leaves of the TD, which in fact are those that start sending CF messages).
This process is repeated for all neighbors i. CF messages play the same role as function messages in
centralized CTE. For each edge (i, j) in the tree (i and j are neighboring agents) there are two CF mes-
sages: one CF (i, j) from i to j and other CF (j, i) from j to i. As in the centralized case, we define
cluster(v) = {CF (j, v)|∀j ∈ neighbors(v)} ∪ ψ(v). When all CF messages have been exchanged
for all edges in the tree, each agent v contains in cluster(v) enough information to locally answer some
tasks that require information from the whole constraint network. In particular, agent self can solve to
optimality the whole DWCSP instance by minimizing cluster(self). It happens that the minimum cost
of cluster(self) is equal to the global optimum, as stated by the following theorem.

Theorem 3.1. After DCTE exchanges all CF messages, each agent v verifies∑
g∈cluster(v)

g = minX−χ(v)(
∑

f∈∪ψ(u),u∈V

f)

Proof:
Direct application of CTE correctness from [10]. ut

From this theorem, when self minimizes cluster(self), it finds exactly the global minimum of
the sum of all initial functions

∑
f∈∪ψ(u),u∈V f . As a consequence, when self builds the tuple that

minimizes cluster(self), it will be part of a global optimal assignment (if O is such assignment, self
will find O[χ(self)]). After exchanging all CF messages, if there is a single global optimal assignment,
then any agent will compute an assignment that is part of it by minimizing its cluster. But it may happen
that several global optimal assignments exist, all sharing the global optimum cost. Let us assume that s1

and s2 are global optimal assignments of a DWCSP instance distributed between agents a1 and a2. If
a1 finds s1[χ(a1)] when minimizing cluster(a1), and a2 finds s2[χ(a2)] when minimizing cluster(a2),
it may happen that each agent will assign different values to variables in sep(a1, a2). To assure that a1

and a2 perform the same assignments to variables in sep(a1, a2), after CF messages DCTE exchanges
SS messages. The agent i at the root of the TD minimizes cluster(i) and sends a SS message to each
child j, with the values of variables in sep(i, j). When j receives such message, it minimizes cluster(j)
keeping unchanged the values of variables in sep(i, j). Because Theorem 3.1, this assignment exists and
it is globally optimal. Then, j repeats the process, which ends when SS messages reach tree leaves.

DCTE algorithm appears in Figure 2. It is executed on every agent, taking as input the TD (T, χ, ψ)
and the agent identity (self ). When DCTE terminates, self knows the optimum cost and the value tuple
of variables in χ(self) causing that cost. This value tuple is coherent with values of variables taken by
other agents. The main procedure is DCTE, which works as follows. If self has a single neighbor, j,
self does not have to wait for any incoming cost function. So the ComputeSendFunction procedure
is called, summing all functions in ψ(self), projecting the result on sep(self, j) and sending the final
result to j. Next, there is a loop that processes CF messages and checks the end loop condition (if
self has received/sent a cost function from/to each neighbor). A CF message is processed by the
NewCostFunction procedure, that records the received cost function. If this cost function allows for
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procedure DCTE(T, χ, ψ)
if neighbors(self) = {j} then ComputeSendFunction(self, j);
while ¬ (received and sent one CF msg per neighbor) do
msg ← getMsg();
if msg.type = CF then NewCostFunction(msg);

PropagateSolution(T, χ, ψ);

procedure NewCostFunction(msg)
function[msg.sender]← msg.function;
for each j ∈ neighbors(self) s.t. self has not sent CF to j do

if self received CF from all i ∈ neighbors(self), i 6= j then
ComputeSendFunction(self, j);

procedure ComputeSendFunction(self, dest)
Function←

∑
i∈neighbors(self),i 6=dest function[i] +

∑
f∈ψ(self) f ;

sendMsg(CF, self, dest, Function[sep(self, dest)]);

procedure PropagateSolution(T, χ, ψ)
if self = root(T ) then
ComputeSolution(∅);
for each j ∈ children(self) do SendSolutionSeparator(self, j);

else
msg ← getMsg();
if msg.type = SS then
ComputeSolution(msg.solsep);
for each j ∈ children(self) do SendSolutionSeparator(self, j);

procedure SendSolutionSeparator(self, dest)
sendMsg(SS, self, dest, {sol[x] | x ∈ sep(self, dest)});

procedure ComputeSolution(vars)
compute sol minimizing cluster(self), but keeping unchanged in sol the values of variables passed in vars;

Figure 2. The Distributed CTE algorithm.

computing a new cost function to be sent to another neighbor, it is done by ComputeSendFunction.
When execution exits the loop, if self is at the root of the TD, it minimizes its cluster producing sol,
which is propagated downwards the TD via SS messages. Otherwise, self waits for a SS message from
its parent. Upon reception, self minimizes its cluster, keeping unchanged the values received in that SS
message for the variables in the separator, and informs its children. Execution ends.

As an example, let us consider the problem instance depicted in Figure 3. There are two agents
a1 and a2, each executing DCTE. Agent a1 computes function f1 ← fXY + fY Z + fZU + fUV +
fV T + fTX , projects it on sep(a1, a2) and sends the result, f2 = f1[ZUV T ], to a2 in a CF message.
Analogously, agent a2 computes function f3 ← fZR+fRS+fST +fRV +fRU , projects it on sep(a1, a2)
and sends the result, f4 = f3[ZUV T ], to a1 in a CF message (cost functions f1, f2, f3, f4 appear
in Figure 4). Then, cluster(a1) = {fXY , fY Z , fZU , fUV , fV T , fTX , f4}, and cluster(a2) = {fZR,
fRS , fST , fRV , fRU , f2}. In a1, the minimum of its cluster is 40, with the assignment XY ZUV T ←
abbaaa. In a2, the minimum of its cluster is again 40, with the assignment SRZUV T ← bbbaaa. There
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 a b 0
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b b  10 
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 a   a 0
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b   a 3

b b  6 
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 a   a 0

 a b 6

b   a 6

b b  0 

fVT

 R  U

 a   a 0

 a b   0 

b   a 0

b b   1 

fRU

Figure 3. Example instance, and a tree decomposition. The separator between a1 and a2 is {Z U V T}.

is one global optimal assignment, so SS exchange causes no changes: each agent keeps its optimum and
assignment. DCTE execution ends.

4. Distributed Mini-Cluster Tree Elimination

DCTE can be easily modified to produce its approximated version, the Distributed Mini-Cluster Tree
Elimination (DMCTE(r)) algorithm. It includes a new parameter, r, the maximum arity of the cost
functions exchanged between neighbors. While DCTE adds all cost functions of an agent and sends the
projection on the separator, exchanging messages with a single cost function of size ds (d is the domain
size and s is the separator size), DMCTE(r) limits by r the arity of the exchanged functions, although
several functions may appear in a CF message.

DMCTE(r) uses three message types: CF , SS and BB. CF and SS messages have the same
meaning than in DCTE, while the role of BB messages is explained below. DMCTE(r) exchanges first
CF messages, second SS messages and finally BB messages. In DMCTE(r), CF messages contain
approximations of the exact cost functions used by DCTE, and its communication schema is the same as
in DCTE. CF messages are computed as follows. When computing the function to be sent from self
to dest, let B be the set of functions received from all neighbors but dest, union the set of functions
ψ(self). B is partitioned in {P1, . . . , Pq} in such a way that the arity of the function resulting from the
addition of all functions of each class Pi, projected on the variables sep(self, dest) ∩ (∪g∈Pivar(g)),
does not exceed r (this is different from the criterion used in the centralized case, where the partition is
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f1:

X Y Z U V T

a/b a a a a a 29 / 34
a/b a a a a b 40 / 35
a/b a a a b a 38 / 43
a/b a a a b b 37 / 32
a/b a a b a a 30 / 35
a/b a a b a b 41 / 36
a/b a a b b a 39 / 44
a/b a a b b b 38 / 33
a/b a b a a a 37 / 42
a/b a b a a b 48 / 36
a/b a b a b a 46 / 51
a/b a b a b b 45 / 40
a/b a b b a a 38 / 43
a/b a b b a b 49 / 44
a/b a b b b a 47 / 52
a/b a b b b b 46 / 41
a/b b a a a a 21 / 26
a/b b a a a b 32 / 27
a/b b a a b a 30 / 35
a/b b a a b b 20 / 24
a/b b a b a a 23 / 27
a/b b a b a b 33 / 28
a/b b a b b a 31 / 36
a/b b a b b b 30 / 25
a/b b b a a a 25 / 30
a/b b b a a b 36 / 31
a/b b b a b a 34 / 39
a/b b b a b b 33 / 28
a/b b b b a a 26 / 31
a/b b b b a b 37 / 32
a/b b b b b a 35 / 40
a/b b b b b b 34 / 29

f3:

S R Z U V T

a/b a a a a a 43 / 39
a/b a a a a b 33 / 49
a/b a a a b a 45 / 41
a/b a a a b b 35 / 51
a/b a a b a a 43 / 39
a/b a a b a b 33 / 49
a/b a a b b a 45 / 41
a/b a a b b b 35 / 51
a/b a b a a a 28 / 24
a/b a b a a b 18 / 34
a/b a b a b a 30 / 26
a/b a b a b b 20 / 36
a/b a b b a a 28 / 24
a/b a b b a b 18 / 34
a/b a b b b a 30 / 26
a/b a b b b b 20 / 36
a/b b a a a a 45 / 20
a/b b a a a b 35 / 30
a/b b a a b a 45 / 20
a/b b a a b b 35 / 30
a/b b a b a a 46 / 21
a/b b a b a b 36 / 31
a/b b a b b a 46 / 21
a/b b a b b b 36 / 31
a/b b b a a a 40 / 15
a/b b b a a b 30 / 25
a/b b b a b a 40 / 15
a/b b b a b b 30 / 25
a/b b b b a a 41 / 16
a/b b b b a b 31 / 26
a/b b b b b a 41 / 16
a/b b b b b b 31 / 26

f2:

Z U V T

a a a a 21
a a a b 27
a a b a 30
a a b b 24
a b a a 22
a b a b 28
a b b a 31
a b b b 25
b a a a 25
b a a b 31
b a b a 34
b a b b 28
b b a a 26
b b a b 32
b b b a 35
b b b b 29

f4:

Z U V T

a a a a 20
a a a b 30
a a b a 20
a a b b 30
a b a a 21
a b a b 31
a b b a 21
a b b b 31
b a a a 15
b a a b 18
b a b a 15
b a b b 20
b b a a 16
b b a b 18
b b b a 16
b b b b 20

Figure 4. Functions computed by DCTE in the example.

done to obtain functions of up to arity r as result of the addition of all functions at each class). Functions
in each partition class are added, and the result is projected on sep(self, dest) ∩ (∪g∈Pivar(g)). With
all the functions built in this form (one per partition class), we construct a CF message, which is sent
to dest. So CF messages do not contain a single cost function (as in DCTE) but a set of cost functions,
each of arity lower or equal to r. When all CF messages of DMCTE(r) have been exchanged, there is
no guarantee that the minimum of cluster(self) will be the global optimum, as stated by the following
theorem.
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Theorem 4.1. After DMCTE(r) exchanges all CF messages, each agent v verifies∑
g∈cluster(v)

g ≤ minX−χ(v)(
∑

f∈∪ψ(u),u∈V

f)

Proof:
Direct application of MCTE correctness from [6]. ut

Different agents may compute different minimum costs when minimizing their clusters, and these values
are lower bounds of the exact cost.

After CF messages, DMCTE(r) needs to exchange some extra information. To assure that there
is a single value for variables in separators, DMCTE(r) follows the same strategy as DCTE using SS
messages: the root minimizes its cluster and sends an SS message to its children with the values of
the variables in separators. When a child receives such a message, it minimizes its cluster keeping
unchanged the received values, and it repeats the process with its children. Differently from DCTE,
there is not guarantee that the minima computed this way are globally optimal.

After SS messages, all agents have agreed on a global assignment of variables in separators. This
means that all agents have agreed on a global assignment, of which the values of variables in separators
are known to more than one agent (the other values are known by their owning agent). The cost of this
global assignment is an upper bound of the global optimum (the cost of any global assignment is an upper
bound of the global optimum). On the other hand, self minimizes cluster(self) without any restriction
on the values of variables in separators, obtaining a global lower bound lbself (by Theorem 4.1). We take
the maximum among all agents as lower bound of the instance lb = maxv∈V {lbv}. To compute these
bounds, DMCTE(r) uses BB messages with the same communication schema as CF messages. A BB
message from u to v contains two parts: an upper bound of the cost of the global optimum in the subtree
rooted at u that does not include v, and a global lower bound. When self has received BB messages
from all its neighbors except perhaps i, it adds the received upper bounds (excluding upper bound from
i) with the cost of ψ(self) on sol, producing a new upper bound. As lower bound, it takes the maximum
between its lower bound and the lower bound contained in the message. A new BB message is formed
containing these new upper and lower bounds, which is sent to agent i.

Summarizing, DMCTE(r) uses three message types: CF , SS and BB. CF and BB messages
follow the same synchronous communication pattern: for each tree edge (u, v), there are two messages
of each type associated with it, one from u to v and other from v to u. Agent u can send a message to v
when messages of the same type from all neighbors but v have been received. Agents having only one
neighbor start the process, sending its corresponding message to that neighbor. SS messages follow the
tree structure, from the root to leaves. There is one message per arc, and each agent has to wait for the
SS message from its parent to send SS messages to its children. Each message type has the following
meaning:

• CF : cost function messages. They contain a list of cost functions of arity lower or equal to r, that
are approximations of the single cost function sent by DCTE. They communicate as in DCTE.

• SS: solution separator messages. They contain the values of variables in the separator between
two adjacent agents in the TD. When an agent receives an SS message from its parent, it sends a
SS message to each child.
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• BB: bound messages. Once agents agreed on a global assignment (with single values for variables
in separators), agents exchange partial upper bounds on the cost of this assignment and global
lower bounds via BB messages. This is a new message type with respect to DCTE.

When all message types have been exchanged, self knows its part of a global assignment (the pro-
jection of a global assignment on χ(self)) and the global cost of this assignment. This global solution
may not be the optimal one, and its cost is an upper bound of the optimal cost.

DMCTE(r) appears in Figure 6, as a function that returns the pair (lower bound, upper bound) com-
puted for a particular r (obviously, r < s otherwise the exact DCTE applies). IncomingCF , SS and UB
messages are processed by NewCostFunctions, NewSolutionSeparator and NewBounds procedures,
that implement the processes described above. It is of interest to compare the ComputeSendFunction

procedure, that performs the addition of cost functions limiting the resulting arity, with the corresponding
procedure of DCTE (Figure 2) that performs the exact computation.

In the example of Figure 3, DMCTE(r = 3) works as follows. Agent a1 performs the partition
{{fY Z , fZU , fUV }, {fV T , fXY , fTX}} and computes functions g1 = fY Z + fZU + fUV and g2 =
fXY + fTX + fV T . It projects these functions on the corresponding variables, obtaining g3 = g1[ZUV ]
and g4 = g2[V T ]. It builds aCF message with g3 and g4, which sends to a2. Analogously, a2 partition is
{{fZR, fRU , fRV }, {fRS , fST }}. It computes g5 = fZR+fRU+fRV and g6 = fRS+fST , projects them
on the corresponding variables, obtaining g7 = g5[ZUV ] and g8 = g6[T ]. It builds a CF message with
g7 and g8, which sends to a1 (cost functions g1 to g8 appear in Figure 5). After reception, cluster(a1) =
{fXY , fY Z , fZU , fUV , fV T , fTX , g7, g8}, and cluster (a2) = {fZR, fRS , fST , fRV , fRU , g3, g4}. The
optimum of cluster(a1) is 40, with XY ZUV T ← abbaaa, while the optimum of cluster(a2) is 39,

g1:

Y Z U V

a/b a a a 4 / 6
a/b a a b 7 / 9
a/b a b a 5 / 7
a/b a b b 8 / 10
a/b b a a 12 / 10
a/b b a b 15 / 13
a/b b b a 13 / 11
a/b b b b 16 / 14

g2:

X Y V T

a/b a a a 25 / 30
a/b a a b 36 / 31
a/b a b a 31 / 36
a/b a b b 30 / 25
a/b b a a 15 / 20
a/b b a b 26 / 21
a/b b b a 21 / 26
a/b b b b 20 / 21

g3:

Z U V

a a a 4
a a b 7
a b a 5
a b b 8
b a a 10
b a b 13
b b a 11
b b b 14

g4:

V T

a a 15
a b 21
b a 21
b b 20

g5:

Z R U V

a/b a a a 20 / 5
a/b a a b 23 / 8
a/b a b a 23 / 9
a/b a b b 26 / 12
a/b b a a 15 / 10
a/b b a b 18 / 13
a/b b b a 18 / 14
a/b b b b 21 / 17

g6:

R S T

a a a 19
a a b 9
a b a 15
a b b 25
b a a 30
b a b 20
b b a 5
b b b 15

g7 :

Z U V

a a a 15
a a b 18
a b a 18
a b b 21
b a a 5
b a b 8
b b a 9
b b b 12

g8:
T

a 5
b 9

Figure 5. Functions computed by DMCTE(r = 3) in the example.
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function DMCTE(T, χ, ψ, r)
thereIsSol← false;
if neighbors(self) = {j} then ComputeSendFunction(self, j, r);
while ¬ (received-sent one CF per neighbor) ∧ (received one SS from parent) ∧

(sent one SS per child) ∧ (received-sent one BB per neighbor) do
msg ← getMsg();
switch (msg.type)
CF : NewCostFunction(msg, r); SS: NewSolutionSeparator(msg); BB: NewBounds(msg);

return (LB,
∑
j∈neighbors(self) ub[j] +

∑
f∈ψ(self) f(sol))

procedure NewCostFunction(msg, r)
functions[msg.sender]← msg.functions;
for each j ∈ neighbors(self) s.t. self has not sent CF to j do

if self has received CF msg from all i ∈ neighbors(self), i 6= j then
ComputeSendFunction(self, j, r);

if (by first time, received and sent one CF msg/neighbor) then
if self = root(T ) then
ComputeSolution(∅);
for each j ∈ children(self) do SendSolutionSeparator(self, j);

procedure NewSolutionSeparator(msg)
sol← ComputeSolution(msg.solsep);
for each j ∈ children(self) do SendSolutionSeparator(self, j);
if neighbors(self) = {k} then
lb← minimum cluster(self); ComputeSendBounds(self, k);

procedure NewBounds(msg)
ub[msg.sender]← msg.upperBound; LB ← max{msg.lowerBound, LB};
if thereIsSol then

for each j ∈ neighbors(self) s.t. self has not sent BB to j do
if self has received BB msg from all i ∈ neighbors(self), i 6= j then
ComputeSendBounds(self, j);

procedure ComputeSendFunction(self, dest, r)
B ← {functions[i]|i ∈ neighbors(self), i 6= dest}

⋃
ψ(self);

{P1...Pq} ← partition(B, r, sep(self, dest));
sendMsg(CF, self, dest, {(

∑
g∈Pk

g)[sep(self, dest) ∩ (∪g∈Pkvar(g))]|k : 1...q});

procedure SendSolutionSeparator(self, dest)
sendMsg(SS, self, dest, {sol[x] | x ∈ sep(self, dest)});

procedure ComputeSendBounds(self, dest)
UB ←

∑
j∈neighbors(self),j 6=dest ub[j] +

∑
f∈ψ(self) f(sol);

sendMsg(BB, self, dest, UB,LB);

function ComputeSolution(vars)
thereIsSol← true;
return assignment minimizing cluster(self), keeping the values of vars;

Figure 6. The Distributed MCTE algorithm.
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with SRZUV T ← bbaaaa (observe that Z takes different values in these two local optima). Assuming
that a2 is the root of the tree, it imposes the values of variables in the separator ZUV T ← aaaa with
an SS message. a1 computes the minimum in its cluster, keeping these values unchanged, obtaining
XY ZUV T ← abaaaa. Each agent i computes the cost of these assignments in its ψ(i), obtaining
costs of 21 and 20 for a1 and a2 respectively. These costs are exchanged using BB(a1 → a2, UB =
21, LB = 40) and BB(a2 → a1, UB = 20, LB = 39). DMCTE(r = 3) returns the interval [40, 41] in
both agents and ends.

5. Distributed Iterative Mini-Cluster Tree Elimination with Filtering

5.1. Cost Function Filtering

The idea of cost function filtering is a clever strategy to decrease the size of CF messages. It was
introduced for the centralized case in [19]. The basic idea is to detect tuples that, although having
acceptable cost when generated by an agent, they will always generate tuples with unacceptable cost
when combined with cost functions coming from other agents. These initial tuples are removed before
they are sent, decreasing the size of exchanged cost functions.

Imagine that we know that cost function f will be added (in the future) with cost function g, var(g) ⊆
var(f), and we know that the set of functions G is a lower bound of g. We define the filtering of f from
G, noted f

G
, as

f
G

(t) =

{
f(t) if (

⊕
h∈G h(t))⊕ f(t) < UB

UB otherwise

where UB is the upper bound on the maximum acceptable cost. A cost function f is defined by the set of
pairs (t, f(t)) that do not reach the upper bound UB. The basic result that allows cost function filtering
is stated next.

Theorem 5.1. Let f and g be two cost functions, var(g) ⊆ var(f), and G a set of functions that is a
lower bound of g. Filtering f with G before adding with g is equal to f + g,

f + g = f
G

+ g

Proof:
Function f is

f = {(t1, f(t1))|t1 ∈ P} ∪ {(t2, f(t2))|t2 ∈ Q}

where P = {t|t ∈
∏
xi∈var(f)D(xi) ∧ (

⊕
h∈G h(t))⊕ f(t) < UB}, Q = {t|t ∈

∏
xi∈var(f)D(xi) ∧

(
⊕

h∈G h(t))⊕ f(t) ≥ UB}. Function f + g is

f + g = {(t, f(t)⊕ g(t))} =

{(t1, f(t1)⊕ g(t1))|t1 ∈ P} ∪ {(t2, f(t2)⊕ g(t2))|t2 ∈ Q}
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but the second set is empty because f(t2) ⊕ (
⊕

h∈G h(t2)) ≤ f(t2) ⊕ g(t2), since G is a lower bound
of g, so f(t2)⊕ g(t2) ≥ UB, ∀t2 ∈ Q. Then, f + g is,

{(t1, f(t1)⊕ g(t1))|t1 ∈ P}

which is exactly f
G

+ g. ut

How often do we know that function f will be added with function g? Let us consider agents au
and av, that exchange messages CF (u, v) and CF (v, u). Upon reception, CF (u, v) is included in
cluster(v), where all cost functions are added to compute the minimization. Therefore, any of the
functions in cluster(v) before arriving CF (u, v) can filter CF (u, v). A similar situation happens in
agent u with message CF (v, u).

The idea of cost function filtering can be integrated in DMCTE(r), producing the DMCTEf(r) algo-
rithm whose only difference with original DMCTE(r) is that cost function summation is done with fil-
tering, using the addfiltering procedure that appears in Figure 7, where a set of functions {f1, ..., fs}
is added filtered with a set of functions {g1, ..., gt}. In DMCTE(r), the set of cost functions in a CF
message is a lower bound of the exact cost function (the one computed by DCTE), so CF (v, u) can
be used to filter the computation of CF (u, v) and vice versa. This suggests a possible filter selection:
before computing a CF (u, v) message, check if the opposite message CF (v, u) has arrived. If so, use it
as filter for computing CF (u, v), otherwise CF (u, v) is computed without filtering.

Considering DMCTE(r), an interesting observation is that CF (v, u) in iteration r − 1 is a lower
bound of the exact cost function [19]. This suggests an iterative algorithm with increasing r, where
CF messages of the previous iteration are used as filters of the current iteration. This new algorithm
is Distributed Iterative Mini-Cluster Tree Elimination with Filtering (DIMCTEf). Obviously, the above
mentioned idea can also be used here: at iteration r when computing CF (u, v), check if CF (v, u) has
arrived; if so, use it as filter, otherwise use CF (v, u) of iteration r − 1. In addition, the upper bound
computed at the previous iteration is taken as the upper bound for the current iteration, used for function
filtering.

In the example of Figure 3, DIMCTEf works as follows. To save space, we start with r = 3, ub =∞.
In the first iteration, this algorithm works exactly as DMCTE(r = 3) of section 4. In the second iteration,
r = 4, ub = 41. Agent a1 computes f1 filtering with g7 and g8, obtaining h1 where tuples with cost≥ ub
are removed. It happens that h1 has 3 tuples only, in contrast with the 64 tuples of f1! The 61 missing
tuples have been removed by the filtering effect: they generate tuples with costs higher than or equal
to the upper bound. The projection of h1 on the separator is h2, which has 2 tuples. Analogously, a2

computes f2 filtering with g3 and g4, resulting h3 which has 2 tuples only. Its projection on the separator

function addfiltering({f1, ..., fs}, {g1, ..., gt}, ub)
result← ∅; F ←

⊕s
i=1 fi; G←

⊕t
i=1 gi;

for each t = t1 · ... · ts · t′1 · ... · t′t
where ti = t[var(fi)], t

′
i = t[var(gi)] do

if F (t1 · ... · ts)⊕G(t′1 · ... · t′t) < ub then result← result ∪ {((t1 · ... · ts)F (t1 · ... · ts))};
return result;

Figure 7. The addfiltering function.
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is h4, which has 2 tuples (functions h1, h2, h3, h4 appear in Figures 8 and 9). a1 sends a CF message
containing h2 to a2, which sends a CF message with h4 to a1. Upon reception, a1 minimizes its cluster,
obtaining 40 with the assignment XY ZUV T ← abbaaa. a2 minimizes its cluster, obtaining 40 with
the assignment SRZUV T ← bbbaaa. a2 sends a SS message to a1 but this causes no change in the
assignments of variables in the separator. Agents exchange their costs of their local optimal assignment,
25 and 15, achieving an upper bound of 40. Since r = |sep(a1, a2)|, the solution computed in this
iteration is the exact solution. We have computed the exact solution exchanging functions of 2 tuples,
instead of the complete functions of 24 = 16 tuples.

5.2. Termination Conditions

While the basics of the DIMCTEf algorithm have been stated in the subsection 5.1, here we present in
detail its termination conditions to produce a non-ambiguous description.

Looking for the optimum of a DWCSP instance arranged in a TD (T, ψ, χ), DIMCTEf iteratively ex-
ecutes DMCTEf(r) with increasing r, filtering CF messages of the current iteration with CF messages
of the previous iteration. DIMCTEf terminates when one of the following conditions is satisfied:

1. r = s. When r is equal to the maximum separator size of the TD, the algorithm computes the
exact solution as the UB at the end of the current iteration in the same conditions as DCTE, so
it terminates. Since DIMCTEf is executed in every agent, the maximum separator size has to be
known by each agent prior to the algorithm execution (for instance, agents may be informed of it
after distributively compute the TD).

2. UB = LB. When the upper bound is equal to the lower bound, the optimum has been reached
so the algorithm terminates (no matter the current value of r). Since LB is a true lower bound
(Theorem 4.1), more iterations cannot improve it further. The upper bound UB is the global
optimum and the assignment from which it was computed is an optimal global assignment.

3. Empty f . Imagine that in iteration r agent au computes an empty function f (a function where
every tuple has been pruned), when adding all functions in class Pi. This means that allowed
tuples of variables in Pi functions, when added with tuples coming from other cost functions, will
have a cost greater than or equal to the upper bound. Some functions of Pi that arrived to au in
CF messages may have some tuples pruned by other agents different from au. Since previously
pruned tuples of variables in Pi functions had a cost greater than or equal to the upper bound, we
can conclude that all tuples of variables in Pi functions reach or surpass the upper bound with Pi
functions only. Obviously, when these tuples appear in a larger tuple (imagine a tuple formed by
values of every variable), the cost of the larger tuple is greater than or equal to the upper bound.
Therefore, in an empty function there is no tuple with cost lower than the current upper bound. In
this case, the upper bound computed at the end of previous iteration is the global optimum and the
assignment from which it was computed is an optimal global assignment.

While DCTE computes the exact cost of the optimal solution, DMCTEf(r) computes an interval
[lb, ub] that includes the optimum cost, where ub corresponds to the cost of a global assignment. If the
user is willing to accept a solution with cost exceeding the optimum up to ∆ units, termination condition
2 above is replaced by the condition UB − ∆ ≤ LB, providing the assignment that produces the UB
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h1:

X Y Z U V T

a/b a a a a a 29 + 15 + 5≥ ub / 34 + 15 +5≥ ub
a/b a a a a b 40 + 15 + 9≥ ub / 35 + 15 +9≥ ub
a/b a a a b a 38 + 18 + 5≥ ub / 43 + 18 +5≥ ub
a/b a a a b b 37 + 18 + 9≥ ub / 32 + 18 +9≥ ub
a/b a a b a a 30 + 18 + 5≥ ub / 35 + 18 +5≥ ub
a/b a a b a b 41 + 18 + 9≥ ub / 36 + 18 +9≥ ub
a/b a a b b a 39 + 21 + 5≥ ub / 44 + 21 +5≥ ub
a/b a a b b b 38 + 21 + 9≥ ub / 33 + 21 +9≥ ub
a/b a b a a a 37 + 5 + 5≥ ub / 42 + 5 +5≥ ub
a/b a b a a b 48 + 5 + 9≥ ub / 36 + 5 +9≥ ub
a/b a b a b a 46 + 8 + 5≥ ub / 51 + 8 +5≥ ub
a/b a b a b b 45 + 8 + 9≥ ub / 40 + 8 +9≥ ub
a/b a b b a a 38 + 9 + 5≥ ub / 43 + 9 +5≥ ub
a/b a b b a b 49 + 9 + 9≥ ub / 44 + 9 +9≥ ub
a/b a b b b a 47 + 12 + 5≥ ub / 52 + 12 +5≥ ub
a/b a b b b b 46 + 12 + 9≥ ub / 41 + 12 +9≥ ub
a/b b a a a a 21 + 15 + 5≥ ub / 26 + 15 +5≥ ub
a/b b a a a b 32 + 15 + 9≥ ub / 27 + 15 +9≥ ub
a/b b a a b a 30 + 18 + 5≥ ub / 35 + 18 +5≥ ub
a/b b a a b b 20 + 18 + 9≥ ub / 24 + 18 +9≥ ub
a/b b a b a a 23 + 18 + 5≥ ub / 27 + 18 +5≥ ub
a/b b a b a b 33 + 18 + 9≥ ub / 28 + 18 +9≥ ub
a/b b a b b a 31 + 21 + 5≥ ub / 36 + 21 +5≥ ub
a/b b a b b b 30 + 21 +9≥ ub / 25 + 21 +9≥ ub
a/b b b a a a 25 + 5 + 5 / 30 + 5 +5
a/b b b a a b 36 + 5 + 9≥ ub / 31 + 5 +9≥ ub
a/b b b a b a 34 + 8 + 5≥ ub / 39 + 8 +5≥ ub
a/b b b a b b 33 + 8 + 9≥ ub / 28 + 8 +9≥ ub
a/b b b b a a 26 + 9 + 5 / 31 + 9 +5≥ ub
a/b b b b a b 37 + 9 + 9≥ ub / 32 + 9 +9≥ ub
a/b b b b b a 35 + 12 + 5≥ ub / 40 + 12 +5≥ ub
a/b b b b b b 34 + 12 + 9≥ ub / 29 + 12 +9≥ ub

h3:

S R Z U V T

a/b a a a a a 43 + 4 + 15≥ ub / 39 + 4 + 15≥ ub
a/b a a a a b 33 + 4 + 21≥ ub / 49 + 4 + 21≥ ub
a/b a a a b a 45 + 7 + 21≥ ub / 41 + 7 + 21≥ ub
a/b a a a b b 35 + 7 + 20≥ ub / 51 + 7 + 20≥ ub
a/b a a b a a 43 + 5 + 15≥ ub / 39 + 5 + 15≥ ub
a/b a a b a b 33 + 5 + 21≥ ub / 49 + 5 + 21≥ ub
a/b a a b b a 45 + 8 + 21≥ ub / 41 + 8 + 21≥ ub
a/b a a b b b 35 + 8 + 20≥ ub / 51 + 8 + 20≥ ub
a/b a b a a a 28 + 10 + 15≥ ub / 24 + 10 + 15≥ ub
a/b a b a a b 18 + 10 + 21≥ ub / 34 + 10 + 21≥ ub
a/b a b a b a 30 + 13 + 21≥ ub / 26 + 13 + 21≥ ub
a/b a b a b b 20 + 13 + 20≥ ub / 36 + 13 + 20≥ ub
a/b a b b a a 28 + 11 + 15≥ ub / 24 + 11 + 15≥ ub
a/b a b b a b 18 + 11 + 21≥ ub / 34 + 11 + 21≥ ub
a/b a b b b a 30 + 14 + 21≥ ub / 26 + 14 + 21≥ ub
a/b a b b b b 20 + 14 + 20≥ ub / 36 + 14 + 20≥ ub
a/b b a a a a 45 + 4 + 15≥ ub / 20 + 4 + 15
a/b b a a a b 35 + 4 + 21≥ ub / 30 + 4 + 21≥ ub
a/b b a a b a 45 + 7 + 21≥ ub / 20 + 7 + 21≥ ub
a/b b a a b b 35 + 7 + 20≥ ub / 30 + 7 + 20≥ ub
a/b b a b a a 46 + 5 + 15≥ ub / 21 + 5 + 15≥ ub
a/b b a b a b 36 + 5 + 21≥ ub / 31 + 5 + 21≥ ub
a/b b a b b a 46 + 8 + 21≥ ub / 21 + 8 + 21≥ ub
a/b b a b b b 36 + 8 + 20≥ ub / 31 + 8 + 20≥ ub
a/b b b a a a 40 + 10 + 15≥ ub / 15 + 10 + 15
a/b b b a a b 30 + 10 + 21≥ ub / 25 + 10 + 21≥ ub
a/b b b a b a 40 + 13 + 21≥ ub / 15 + 13 + 21≥ ub
a/b b b a b b 30 + 13 + 20≥ ub / 25 + 13 + 20≥ ub
a/b b b b a a 41 + 11 + 15≥ ub / 16 + 11 + 15≥ ub
a/b b b b a b 31 + 11 + 21≥ ub / 26 + 11 + 21≥ ub
a/b b b b b a 41 + 14 + 21≥ ub / 16 + 14 + 21≥ ub
a/b b b b b b 31 + 14 + 20≥ ub / 26 + 14 + 20≥ ub

Figure 8. Functions computed by DIMCTEf in the example.
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h2:
Z U V T

b a a a 25
b b a a 26

h4:
Z U V T

a a a a 20
b a a a 15

Figure 9. Functions computed by DIMCTEf in the example (cont.).

as the solution. Effectively, if UB − ∆ ≤ LB the optimum cannot be at a distance higher than ∆
(otherwise the LB will not be a true lower bound, something proved in Theorem 4.1). Therefore, this is
a legal termination condition for DMCTEf(r). DIMCTEf computes a sequence of intervals [lbr, ubr] one
for each r. In most cases, this sequence will be monotonically shrinking (that is, the interval computed
at iteration r will be included in the interval computed at iteration r−1). However, in some special cases
this may not be the case. Since lbr and ubr are true lower and upper bounds, no matter the r value, we
can take as LB the highest lbr computed so far, and as UB the lowest ubr. Then, the previous condition
is a legal termination condition for this algorithm. It is worth noting that this approach includes absolute
and relative distances to the optimum. While the previous description considers an absolute distance
∆, we can also specify the percentage δ over the optimum that we are willing to accept. At the end of
each iteration we apply this percentage to UB, obtaining an absolute distance ∆, on which we can apply
the termination condition previously discussed. DIMCTEf is an anytime algorithm, able to provide an
increasingly better solution as r increases. If no more resources (CPU time, memory, bandwidth) are
available, it can be stopped getting the last UB found as solution and taking UB − LB as the error
bound for this approximation.

Combining the use of functions exchanged in the previous iteration as function filters with the ter-
mination conditions explained above, we obtain the DIMCTEf algorithm that appears in Figure 10. We
assume that the user specifies a δ percentage, stating the relative distance between the cost of an accept-
able solution and the optimum cost.

6. Experimental Results

We tested DCTE and DIMCTEf on two benchmarks: distributed random problems and distributed meet-
ing scheduling problems. Random problems have no structure, while meeting scheduling are structured
problems. We generated random instances according to the following parameters: number of agents,
number of variables, size of domains and number of unary and binary cost functions. We uniformly

function DIMCTEf(T, χ, ψ, δ)
for each j ∈ neighbors(self) do filter[j]← ∅;
UB ←∞; ∆← 0; r ← 0;
repeat
r ← r + 1;
[lbr, ubr]← DMCTEf(T, χ, ψ, r, UB −∆);
if not received an empty function then
LB ← maxk{lbk|k : 1, ..., r}; UB ← mink{ubk|k : 1, ..., r}; ∆← UB×δ

100
;

for each j ∈ neighbors(self) do filter[j]← functions[j];
until r = s ∨ UB −∆ ≤ LB ∨ received an empty function;
return UB;

Figure 10. The DIMCTEf algorithm.
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spread variables and cost functions among agents and variables, respectively. We randomly filled out
cost functions with costs taken from the natural interval {0, . . . , 9}. For that problem, a solution is to
assign values to variables in such a way the overall cost be minimal.

We generated instances of the distributed meeting scheduling problem considering department hier-
archies [11]. Each department consists of a set of people working on it, which have to participate in a
set of meetings. For the distributed meeting scheduling problem, a solution is to schedule the meetings
in such a way the overall cost be minimal according to the preferences that people have of meetings and
time-slots on their own agendas. Every agent represents one person. An agent has multiple variables:
one for the start time of each meeting the agent takes part in. Variable domains have 8 time-slots as
values. All meetings last one time-slot. There exist two meeting types: internal meetings, involving
people working on the same department, and external ones, involving people from different departments.
Variables of an agent share mutual exclusion constraints and variables of all agents involved in the same
meetings share equality constraints. Unary constraints represent agents’ personal preferences. For all
instances, the number of attendants for meetings is at most 4.

Experiments have been performed on the FRODO [17] simulation platform, designed for implemen-
tation and testing of distributed optimization algorithms. FRODO simulates a multiagent system where
agents execute asynchronously. Each agent is simulated by a Java thread, and communicates with other
agents via message passing. FRODO is publicly available at http://liawww.epfl.ch/Research/
sensornets/. On top of FRODO, our algorithms have been implemented in Java, and executed on a
laptop PC, with a 2Ghz CPU, with 1GB RAM.

Experimental results on distributed random instances appear in Figure 11. We provide the largest
message size and the total data exchanged (both in Kbytes) for DCTE, the exact algorithm, and DIMCTEf
for each iteration (until one of the termination conditions is satisfied). We consider two scenarios: one
where we accept optimal solutions only (δ = 0%), and other where we accept solutions which are at
most 5% distant from the optimum (δ = 5%). In addition, for each DIMCTEf iteration, we provide
the returned interval [lb, ub]. When lb is higher or equal ub(1 − δ

100), the computed solution is within δ
distance from the optimum so DIMCTEf terminates.

Considering optimal solutions (δ = 0%), we provide largest message size and total data exchanged.
Regarding largest message size, DIMCTEf causes a substantial improvement with respect to DCTE:
DIMCTEf largest messages are from 28% to 90% shorter than the corresponding DCTE largest mes-
sages. In addition, most instances tested present savings higher than 80%. Regarding total data ex-
changed (for DIMCTEf, we compute a grand total adding the data exchanged at the executed iterations,
to be compared with the total data exchanged by DCTE), we observe a similar picture: DIMCTEf causes
a substantial improvement with respect to DCTE, with the only exception of instance E for which DIM-
CTEf exchanges 16% more data than DCTE. For all other instances, DIMCTEf exchanges from 37%
to 90% less data than DCTE. We observe that savings in total data exchanged tends to be lower than
savings in largest message size, due to the following reasons. First, data exchanged may include tables
of dimensions lower than r (simply because the separator of a link is lower than r or as result of func-
tion partition). In tables with small dimensions, cost function filtering is not as effective as in tables of
higher dimensions (tables with small dimensions are produced from adding few cost functions and the
cost accumulated in their elements is often not enough for cost function filtering to prune), so the effect
of cost function filtering is not uniform. Second, while DCTE exchanges complete tables, with all their
elements, DIMCTEf exchanges partial tables which do not contain all their elements, due to the effect of
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cost function filtering. In these partial tables some extra pointers are needed in order to indicate the right
position of the elements in the table. This causes transferring some extra data, which are not needed
when transferring complete tables.

In several cases, DIMCTEf does not reach the iteration with r = s; it stops before either because
LB = UB or an empty function is computed. This causes substantial savings in communication cost
and in computation effort, since as r increases, both communication and computation requirements also
increase. Even in the cases where the last iteration of DIMCTEf reaches s, the DIMCTEf largest message
is lower than the DCTE largest message, by the effect of function filtering.

If we allow for a solution with a cost within 5% of the optimum, benefits increase because the ter-
mination condition on bounds becomes looser: it pass from LB = UB to LB ≥ UB × 95

100 . For many
problem instances, DIMCTEf stops before than when computing the optimum, saving several iterations
for the highest values of r, which represents further savings in communication and computation. Regard-
ing largest message size, DIMCTEf savings with respect to DCTE are really good: they range from 88%
to 99%. Regarding total data exchanged, a similar picture appears: DIMCTEf exchanges from 27% to
98% less data than DCTE (even at the instance E, where total data exchanged were higher for DIMCTEf
when looking for optimal solutions). It is really illustrative to observe the capacity of reasoning with
bounds, able to stop execution when bounds are close enough and, in many cases, saving some of the
most costly iterations in largest message size and total data exchanged (marked with * in Figure 11).

Further experimental results on the distributed meeting scheduling benchmark appear in Figure 12.
Results solving these structured instances are similar to those observed solving random instances. When
computing the optimum (δ = 0%), the largest DIMCTEf messages are substantially shorter than the
corresponding largest DCTE messages: from 88% to 98% shorter (from 1 to 2 orders of magnitude
reduction in largest message size). In addition, in one of the eight tested instances, DCTE was unable to
compute the exact solution because it exhausted memory (messages of size 65536Kb cannot be handled
by our simulator). In this instance, DIMCTEf was able to compute the exact solution using substantially
smaller messages (with a saving of 98% in largest message size, with respect to the message size that
DCTE would have used). Regarding total data transferred, DIMCTEf exchanges from 19% to 94% less
data than DCTE, which represents a substantial improvement in communication.

As happens with random instances, allowing solutions with cost within 5% from the optimum causes
further benefits. Although there is no change in the smallest instance, in the other instances the last
iteration of DIMCTEf when computing the optimum (the two last iterations for instance 8), marked with
* in Figure 12, is not needed, with the corresponding savings in communication cost and communication
effort. It is worth noting that iterations tend to be more costly as r increases, so saving last iterations
usually causes important savings in largest message size and data exchanged. These results illustrate
clearly the value of our approach and show the applicability enhancements of DMCTEf with respect to
DCTE, which was unable to solve one of the eight instances considered.

These experiments demonstrate the benefits that DIMCTEf may cause when applied to practical
problems, with respect to the exact algorithm DCTE. First, using cost function filtering, DIMCTEf is
able to achieve the optimal solution requiring shorter messages and, in most cases, less data exchanged
than DCTE. These reductions are substantial. Second, DIMCTEf reasons on problem (lower/upper)
bounds. It stops execution when these bounds are close enough according to user specifications (which
causes further benefits, as shown in the experiments). Third, DIMCTEf terminates when it detects empty
functions (functions with all their tuples pruned by the current upper bound). Empty functions appear
in the last, more costly, iterations so its detection produces important savings. In a more general setting,
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DIMCTEf is an anytime algorithm, so it can be stopped at any time (for instance, broadcasting a special
message to all agents). Then, agents can take as best available solution the assignment computed at the
previous iteration, with the current upper bound as cost.

7. Related Work

In the last years several solving algorithms for DCOPs have been proposed. Broadly speaking, these
algorithms can be grouped in two main families: algorithms based on distributed search, and algorithms
based on distributed dynamic programming. Algorithms based on distributed search exchange messages
containing assignments and costs. These messages contain little information and they have a small
size, but their number can be quite high (in the worst case, proportional to the number of nodes of the
search tree). On the other hand, algorithms based on dynamic programming exchange cost functions,
These algorithms exchange a relatively low number of messages, but these messages may be of high
(exponential) size.

Considering distributed search algorithms, we mention the synchronous approaches SBB [8] and
NCBB [3]. About asynchronous approaches, we mention ADOPT [14] and its new versions ADOPT-
ng[20] and BnB-ADOPT [24]. We also mention AFB [7]. While ADOPT uses a best-first strategy, all
the others follow a depth-first branch-and-bound strategy. ADOPT discards a partial solution if another
potential solution looks more promising. But later, this second solution may appear less promising than
the discarded one, so ADOPT has to reconstruct previous partial solutions that were discarded before.
ADOPT is able to compute quality guarantees when providing approximate solutions.

Considering distributed dynamic programming, DPOP [18] has to be mentioned. It works on a
depth-first tree (similar to pseudotree) of the constraint graph. Basically, a DPOP agent waits for cost
functions computed by its children, adds these cost functions with its own ones and sends the result to
its parent, projecting out the variable contained in the agent. When this bottom-up information reaches
the root, it looks for the value that minimizes the received cost function, and informs its children and
pseudochildren, which repeat the process until this information flow reaches tree leaves. DPOP uses a
linear number of messages, but the size of the largest message is exponential in the induced width w∗ of
the pseudotree. We also mention Action-GDL [22], which performs a closely related process on a TD.

The approach presented here clearly belongs to the dynamic programming group. In that sense,
it is close to DPOP, with the aim of decreasing the high size of the largest message (exponential in the
induced widthw∗). DCTE has similar requirements to DPOP on largest message size: given a pseudotree
of induced width w∗, it is always possible to build a TD with maximum separator size w∗ (the bucket
tree, see [10]). In practice, with the use of cost function filtering DIMCTEf largely decreases the size of
the largest message exchanged, maintaining the optimality of the solution (as seen in the experimental
section).

Finally, we have to mention other approaches like OptAPO [12]. This algorithm is partially central-
ized so it cannot be easily related with the present approach.

8. Summary and Discussion

We have presented DCTE, DMCTE(r), DMCTEf(r) and DIMCTEf, four distributed synchronous al-
gorithms for solving DWCSPs (a more precise version of the well-known distributed COPs). First, a
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DWCSP instance can be arranged in a TD by a distributed algorithm. Working on such TD, DCTE
solves the DWCSP instance exactly: after exchanging some messages each agent minimizes its cluster
and finds the global optimum. DCTE requires a number of messages linear in the number of agents, but
message size can be up to exp(s), where s is the size of the largest separator in the TD. DMCTE(r)
limits message size to exp(r), r < s, at the extra cost of achieving approximate solutions. It also pro-
vides a cost interval where the optimum appears, bounding the error of the approximation. DMCTEf(r)
uses the function filtering technique to compute smaller messages (or of equal size, in the worst case)
than DMCTE(r), although both reach solutions of the same quality. DIMCTEf is an iterative algorithm
that executes DMCTEf(r) with increasing r, using cost functions received at the previous iteration as
filters for the computation of cost functions at the current iteration. Reasoning with bounds, it is able to
provide either exact or approximate solutions according with user specifications. The running example
shows clearly the benefits of DIMCTEf, that causes a drastic decrement in the number of exchanged
tuples.

DIMCTEf is a good example of exchanging memory for time, situation that often appears in AI.
While DMCTE(r) reaches an approximate solution, DIMCTEf is able to improve the solution quality, but
requires some extra computation. DIMCTEf is also a good example of dynamic programming strategies,
able to build up a solution of an instance working from solutions of its subinstances. It has some common
flavor with Russian Doll Search [21].

Let us assume that we are uniquely interested in solving the problem instance. If we are willing
to handle messages of size exp(s), DCTE messages from the root to leaves are not strictly needed to
compute a solution (it would be enough with sending the values of variables in the separator). However,
exchanging messages that contain more than needed to compute the optimal solution, allows us to define
the approximate versions of DCTE. Combined with the filtering strategy and adequately iterated, we
obtain the DIMCTEf algorithm, able to find approximated solutions using smaller messages than DCTE,
being able to find exact solutions in many cases. In addition, as the experimental results show, there are
instances with large separators for which the exact algorithm DCTE exhausts memory before reaching
the solution, so it is not a real solving option. For all these instances, DIMCTEf is able to compute the
exact solution using much shorter messages.
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