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Abstract

In the last decade defeasible argumentation frameworks have evolved to become
a sound setting to formalize commonsense, qualitative reasoning. The logic pro-
gramming paradigm has shown to be particularly useful for developing different
argument-based frameworks on the basis of different variants of logic programming
which incorporate defeasible rules. Most of such frameworks, however, are unable to
deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly
encoded in the object language. This paper presents Possibilistic Defeasible Logic
Programming (P-DeLP), a new logic programming language which combines fea-
tures from argumentation theory and logic programming, incorporating as well the
treatment of possibilistic uncertainty. Such features are formalized on the basis of
PGL, a possibilistic logic based on Gödel fuzzy logic. One of the applications of P-
DeLP is providing an intelligent agent with non-monotonic, argumentative inference
capabilities. In this paper we also provide a better understanding of such capabili-
ties by defining two non-monotonic operators which model the expansion of a given
program P by adding new weighed facts associated with argument conclusions and
warranted literals, respectively. Different logical properties for the proposed opera-
tors are studied.

Key words: Possibilistic logic, vague knowledge, defeasible argumentation,
intelligent systems
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1 Introduction and motivations

In the last decade defeasible argumentation frameworks [19,36] have evolved
to become a sound setting to formalize commonsense, qualitative reasoning
from incomplete and potentially inconsistent knowledge. The logic program-
ming paradigm has shown to be particularly useful for developing different
argument-based frameworks on the basis of different variants of logic pro-
gramming which enrich their object language with defeasible rules (e.g. [27,8]).
Most of such frameworks, however, are unable to deal with explicit uncertainty,
nor with vague knowledge, as defeasibility is directly encoded in the object
language.

Possibilistic Defeasible Logic Programming (P-DeLP) is a new logic program-
ming language which combines features from argumentation theory and logic
programming, incorporating as well the treatment of possibilistic uncertainty.
These knowledge representation features are formalized on the basis of PGL,
a possibilistic logic based on Gödel fuzzy logic [2,4]. In PGL formulas are built
over fuzzy propositional variables and the certainty degree of formulas is ex-
pressed with a necessity measure. In a logic programming setting, the proof
method for PGL is based on a complete calculus for determining the maximum
degree of possibilistic entailment of a fuzzy goal. In P-DeLP formulas will be
supported by arguments, which will have an attached necessity measure asso-
ciated with the supported conclusion. The ultimate answer to queries will be
based on the existence of warranted arguments, computed through a qualita-
tive dialectical analysis. The top-down proof procedure of P-DeLP is based
on the one used in defeasible logic programming [27,16], which has already
been integrated in a number of real-world applications such as intelligent web
search [18,20], clustering [28], natural language processing [17] and knowledge
management [13], among others.

In the last years, argument-based approaches have proven to be an attractive
setting for modelling knowledge and inference in intelligent agents who need
to perform defeasible inferences in a computationally effective way [43,33,37].
Given its characteristics, P-DeLP is particularly useful as a tool to achieve
this goal, as dealing with uncertainty and fuzziness are common requirements
when formalizing Multiagent Systems (MAS). We show a case study where P-
DeLP is used in the context of formalizing an agent’s beliefs and perceptions,
along with an argumentative inference procedure to determine which of the
agent’s beliefs are ultimately accepted (or warranted). In order to provide a
better understanding of such reasoning capabilities, we also define two non-
monotonic expansion operators which model the expansion of a given program
P by adding new weighed facts associated with argument conclusions and
warranted literals, respectively. Different logical properties for the proposed
operators are studied and contrasted with a traditional SLD-based Horn logic.
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We show that this analysis provides useful comparison criteria that can be
extended and applied to other argumentation frameworks.

The rest of the paper is structured as follows. First in Section 2 we will dis-
cuss the knowledge representation features provided by P-DeLP, including its
syntax and semantics at object-language level. Section 3 presents the central
notion of argument in P-DeLP as well as an associated procedural mecha-
nism for obtaining them. In Section 4 we formalize the notions of attack among
arguments and the top-down proof procedure for computing ultimately unde-
feated arguments (or warrants). Section 5 presents a worked example, showing
how P-DeLP can be used to model beliefs and reasoning capabilities of an in-
telligent agent. Section 6 introduces two non-monotonic expansion operators
which will allow to analyze the behavior of the P-DeLP framework when a
given program is expanded by adding new weighed facts. Section 7 discusses
related work, and Section 8 concludes. To make this article self-contained,
appendix A provides a brief summary of the fundamentals of non-monotonic
inference relationships and their logical properties.

2 Preliminaries on possibilistic Gödel logic PGL

As already pointed out our objective is to formalize P-DeLP (for possibilistic
defeasible logic programming), a system that combines features from argu-
mentation theory, logic programming and a unified treatment of possibilistic
uncertainty and fuzziness. To achieve this objective we combine two logic
programming frameworks: possibilistic logic programming based on infinitely-
valued propositional Gödel logic [3,4] and defeasible logic programming [27].

In this section we describe the basis of the possibilistic logic programming
ingredient of P-DeLP. In a first step, as a suitable logical frame to treat (pos-
sibilistic) uncertainty and fuzziness, we consider PGL, a general possibilistic
logic on top of propositional Gödel fuzzy logic introduced in [3], and that
extends the well-known possibilistic logic (see e.g. [24]), defined on top of
classical logic. Then, in order to have at ones disposal an efficient proof pro-
cedure, based on a complete calculus and oriented to goals (positive literals),
we consider the Horn-rule fragment of PGL as the basis for the definition of
a possibilistic logic programming language built up with fuzzy propositional
variables [4].

There are three main reasons for choosing PGL as the underlying logic to
model both uncertainty and fuzziness. First, it has been proved that many-
valued Gödel logic is fully compatible with an already proposed and suitable
extension of necessity measures for fuzzy events, in the sense that Gödel logic
allows us to define a well behaved and featured possibilistic semantics on
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top of it. Second, like in classical (propositional) logic programming systems,
PGL enables us to define an efficient proof method by derivation based on
a complete calculus for determining the maximum degree of possibilistic be-
lief with which a fuzzy propositional variable can be entailed from a set of
formulas. Finally, PGL can be extended with a partial matching mechanism
between fuzzy propositional variables based on a necessity-like measure which
preserves completeness for a particular class of formulas [4]. This is a key fea-
ture that justifies by itself the interest of such a logic programming system for
defeasible argumentation under vague knowledge and possibilistic uncertainty.

We provide below a short description of main features of PGL and its Horn-
rule fragment.

The language LG of propositional infinitely-valued Gödel logic G is built in
the usual way from a (countable) set V ar of propositional variables {p, q, . . .},
connectives ∧ and →, and the truth constant 0. A negation connective ¬ is
definable as usual by stipulating that ¬ϕ stands for ϕ→ 0. A formula of LG

will be referred as a G-formula. The semantics of Gödel fuzzy logic is given
by interpretations I of propositional variables from V ar into the unit interval
[0, 1] which are extended to arbitrary formulas by means of the following rules:

I(0) = 0,

I(ϕ ∧ ψ) = min(I(ϕ), I(ψ)),

I(ϕ→ ψ) =

 1, if I(ϕ) ≤ I(ψ)

I(ψ), otherwise.

Gödel logic G was axiomatized (Hilbert-style) with respect to the given se-
mantics by Dummet in the fifties, but it can be also presented as the axiomatic
extension of Hájek’s fuzzy logic BL by the additional axiom ϕ→ ϕ∧ϕ, forcing
the conjunction to be idempotent.

Fuzzy logics, and in particular Gödel logic, are suitable for evaluation the
(partial) truth of vague expressions, as in the statement p =“the engine speed
is low”, in complete states of information. For instance, if we know that in a
given situation the speed is 330 r.p.m., and the concept of “low” is modelled by
a fuzzy set with membership function µlow : U → [0, 1], with e.g. U = [0, 1200],
then we can measure the truth of p by the value µlow(330), whatever this
value could be. But when there is incomplete information, one cannot evaluate
with certainty the truth of p. In order to allow an explicit representation
of uncertainty (on top of the fuzziness), an extension of Gödel logic with
possibilistic (meta) semantics, called PGL (for possibilistic Gödel logic), was
defined in [2]. An expression like

“it is almost certain that the engine speed is low”
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can be represented in the setting of PGL by a certainty-weighted fuzzy propo-
sition

(speed low, 0.9),

where the certainty value 0.9 expresses how much the fuzzy statement “the
engine speed is low” is believed in terms of necessity measures. In general,
certainty weights from [0, 1] are employed in PGL to model statements of the
form

“ϕ is certain with a necessity of at least α”

where ϕ is a G-formula which represents vague, incomplete or imprecise knowl-
edge about the real world, and that will be represented by a pair (ϕ, α).

Definition 1 A PGL formula is a pair of the form (ϕ, α), where ϕ is a G-
formula and α ∈ [0, 1] is a lower bound on the belief on ϕ in terms of necessity
measures. A PGL-theory will be just a set of G-formulas.

Within the possibilistic model of uncertainty, belief states are modeled by nor-
malized possibility distributions on a set of Boolean interpretations. However,
in our framework, the truth evaluation of a G-formula ϕ in each interpretation
I is a value I(ϕ) ∈ [0, 1], and thus, each formula does not induce a crisp set of
interpretations, but a fuzzy set of interpretations [ϕ], defining µ[ϕ](I) = I(ϕ),
for each interpretation I. Therefore, in this setting, possibilistic models are nor-
malized possibility distributions π on the set I of all possible (many-valued)
Gödel interpretations I. Then, to measure the uncertainty induced on a Gödel
logic formula ϕ by a possibilistic model π : I → [0, 1], where I = {I | I is a
(many-valued) Gödel interpretation over the set of propositional variables of
ϕ}, we have to consider some extension of the notion of necessity measure for
fuzzy sets, in particular for fuzzy sets of interpretations. In [25] the authors
propose to define

N([ϕ] | π) = inf
I∈I
{π(I)⇒ µ[ϕ](I)},

where µ[ϕ](I) = I(ϕ) ∈ [0, 1] and ⇒ is the reciprocal of Gödel’s many-valued
implication, which is defined as x ⇒ y = 1 if x ≤ y and x ⇒ y = 1 − x,
otherwise. For simplify notation, we will simply write N(ϕ | π) instead of
N([ϕ] | π), when the set of interpretations I is fixed from the context. Note
that, like in classical possibilistic logic, this necessity measure satisfies that
N(ϕ ∧ ψ | π) = min(N(ϕ | π), N(ψ | π)) and N(ϕ ∧ ¬ϕ | π) = 0.

Next we will present some formal definitions which relate the underlying pos-
sibilistic model of PGL in the context of our framework.

Definition 2 Let I be the set of (many-valued) Gödel interpretations over
the set V ar of propositional variables. A possibilistic model is a normalized
possibility distribution π : I → [0, 1] on the set of interpretations I.
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A possibility distribution π is normalized when there is at least one I ∈ I such
that π(I) = 1. In other words, belief states modelled by normalized distribu-
tions are consistent belief states, in the sense that at least one interpretation
(or state or possible world) has to be fully plausible.

Next we define the notion of possibilistic entailment for PGL.

Definition 3 A possibilistic model π : I → [0, 1] satisfies a PGL formula
(ϕ, α), written π |= (ϕ, α), iff N([ϕ] | π) ≥ α. We say that a set of PGL
formulas K entails a PGL formula (ϕ, α), written K |= (ϕ, α), iff every pos-
sibilistic model π : I → [0, 1] satisfying all the formulas in K also satisfies
(ϕ, α).

When π |= (ψ, β) for each (ψ, β) ∈ K, we say that π is a model of K and
that K is satisfiable. Since weights in PGL formulas are understood as lower
bounds, given a PGL theory K and a formula ϕ, we may be interested in
knowing the maximum degree with which K possibilistically entails ϕ.

Definition 4 The maximum degree of possibilistic entailment of a formula
ϕ from a PGL theory K, is the value ‖ϕ‖K = sup{α ∈ [0, 1] | K |= (ϕ, α)}.

It is easy to show that ‖ϕ‖K = inf{N(ϕ | π) | π |= K}, i.e. the maximum
degree of possibilistic entailment of a G-formula ϕ from a set of PGL theory
K is just least necessity evaluation of ϕ given by the models of K.

In [2] the authors propose a Hilbert-style axiomatization of PGL, mimicking
the axiomatization of (classical) possibilistic logic [24]. Axioms of PGL are
axioms of Gödel fuzzy logic weighted by 1 plus the triviality axiom (ϕ, 0),
and PGL inference (deduction) rules are a generalized modus ponens rule for
necessity measures (from (ϕ, α) and (ϕ → ψ, β) derive (ψ,min(α, β)) and a
weight weakening rule (from (ϕ, α) derive (ϕ, β), for β ≤ α). The notion of
proof in PGL is defined as usual relative to the set of axioms and inference
rules. In [2] it is shown the soundness of this PGL axiomatic system, leaving
the question of whether it is also complete as an open problem.

In order to define a sublanguage suitable for logic programming, that is, en-
abling a proof algorithm both efficient and complete for computing the max-
imum degree of possibilistic entailment of atomic propositions (called goals),
the authors consider the Horn-rule sublanguage of PGL. We will refer to this
sublanguage as HornPGL, which consists of PGL formulas of the form:

(p1 ∧ · · · ∧ pk → q, α)

with k ≥ 0, where p1, . . . , pk, q are propositional variables, in the traditional
logic programming style. These weighted Horn rules of formulas will be called
PGL clauses. As usual, we will refer to the conclusion q and the set of premises
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p1, . . . , pk as the head and the body of the rule, respectively. We distinguish
between two types of formulas in this sublanguage: facts when k = 0 (empty
body) and are simply written (q, α); and rules , written as (p1∧· · ·∧pk → q, α)
otherwise.

For PGL clauses, a simple and efficient calculus is developed in [2] which does
not need the whole logical apparatus of the general possibilistic logic PGL.
Moreover, within the restricted framework of HornPGL a simple and complete
calculus for determining the maximum degree of possibilistic entailment of
atomic G-formulas can be defined only by means of the following particular
instance of the generalized modus ponens rule:

(p1 ∧ · · · ∧ pk → q, α)

(p1, β1), . . . , (pk, βk)

(q,min(α, β1, . . . , βk))
[GMP ].

Formally, we will write P `gmp (q, α), where P is a set of PGL clauses, q ∈ V ar
and α > 0, when there exists a finite sequence of PGL clauses C1, . . . , Cm

such that Cm = (q, α) and, for each i ∈ {1, . . . ,m}, either Ci ∈ P , or Ci

is obtained by applying the GMP rule to previous clauses in the sequence.
The corresponding syntactic counterpart of maximum degree of possibilistic
entailment is then as follows.

Definition 5 The maximum degree of deduction of a goal q from a set of
PGL clauses P is |q|P = sup{α ∈ [0, 1] | P `gmp (q, α)}.

As the only inference rule of our proof method is the generalized modus po-
nens, if P is a finite set of PGL clauses, there exists a finite number of proofs
of a propositional variable q from P , and thus, the above definition turns into
|q|P = max{α ∈ [0, 1] | P `gmp (q, α)}. Finally, following [2,4], completeness
reads as follows: for any finite set of PGL clauses P and any q ∈ V ar it holds
that

‖q‖P = |q|P .
Two important consequences of the completeness result are the following ones:

- if P = {(p, β), (p→ q, γ)}, ‖q‖P = min(β, γ), whenever p 6= q; and
- if for some P it holds that α = ‖r‖P , then ‖q‖P = ‖q‖{(r,α),(r→q,γ)}, whenever

(r → q, γ) ∈ P and ‖q‖P > ‖q‖P\{(r→q,γ)}.

3 Argumentation in P-DeLP

After recalling in the previous section the main features of the PGL logic and
its Horn rule fragmentHornPGL, we are ready to formalize P-DeLP by extend-
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ing HornPGL with defeasible logic programming argumentative capabilities.
In argumentation frameworks, the negation connective allows to identify con-
flicts among pieces of information, that will be the subject of a deliberative
process to determine which one ultimately prevails over the others. There-
fore, in order to formalize P-DeLP, we need to introduce in the language a
well-behaved negation connective ∼. By well-behaved we only mean that I(q)
and I(∼ q) cannot simultaneously take the value 1 for any interpretation I.
Remark that in Gödel logic, although the defined negation (¬ϕ is ϕ → 0) is
well-behaved, it is rather special, since ¬ϕ is always a crisp proposition. Our
aim of considering well-behaved negation connectives is that q and ∼ q model
contradictory information in the following sense.

Proposition 6 Let Γ be a set of satisfiable PGL clauses. For any well-behaved
negation ∼, Γ |= (q, α) and Γ |= (∼ q, β) iff either α = 0 or β = 0.

Proof: For any possibilistic model π such that π |= Γ, it must be that N(q |
π) ≥ α and N(∼ q | π) ≥ β. This means that, for each interpretation I ∈ I,
π(I) ⇒ I(q) ≥ α and π(I) ⇒ I(∼ q) ≥ β. Thus, π(I) ⇒ min(I(q), I(∼ q)) ≥
min(α, β). Since possibilistic models are normalized possibility distributions,
there exists at least one interpretation I0 ∈ I such that π(I0) = 1, but since
min(I(q), I(∼ q)) 6= 1 for all interpretation I ∈ I, we have that 1 − π(I0) ≥
min(α, β), and therefore it follows necessarily that min(α, β) = 0. 2

Because of this observation and the fact that we want to keep the simple
calculus of HornPGL, we adopt the following design decisions:

P-DeLP language: the language of P-DeLP is the one of HornPGL

but over an extended set V ar∗ of propositional variables where a new a
propositional variable “∼ p” is added for each p ∈ V ar. Note that the
symbol ∼, although intuitively standing for negation, is not considered
as a proper negation connective. It is only a syntactic sugar, as “∼ p” is
treated just as another propositional variable but with a particular status
with respect to p, since it will be only used to detect contradictions at the
syntactical level.

Conflict: a set of clauses Γ (in the extended language) will be deemed as
contradictory, denoted Γ ` ⊥, if Γ `gmp (q, α) and Γ `gmp (∼ q, β), with
α > 0 and β > 0, for some atom q ∈ V ar.

From now on we shall refer to positive and negative propositional variables
from V ar∗ as P-DeLP literals. Then, P-DeLP clauses will be just PGL clauses
defined over the extended set of variables V ar∗, and will be written in the
form (q ← p1 ∧ · · · ∧ pk, α) more in the style of logic programming languages.
The notion of proof for P-DeLP will be therefore the same as for HornPGL,
but will write simply ` instead of `gmp.
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In order to develop an argumentative framework for P-DeLP, we distinguish
between certain and uncertain clauses. A clause (ϕ, α) is referred as certain if
α = 1 and uncertain, otherwise. Moreover, a P-DeLP program is a set of P-
DeLP clauses in which we distinguish certain from uncertain information. As
additional requirement, certain knowledge is required to be non-contradictory.
Formally:

Definition 7 A P-DeLP program P (or just program P) is a pair (Π,∆),
where Π is a non-contradictory finite set of certain clauses, and ∆ is a finite
set of uncertain clauses.

Next we will introduce the notion of argument in P-DeLP. Informally, an
argument A is a tentative proof (as it relies to some extent on uncertain,
possibilistic information) from a consistent set of clauses supporting a given
conclusion Q with a necessity measure α.

Definition 8 Given a P-DeLP program P = (Π,∆), a set A ⊆ ∆ of uncer-
tain clauses is an argument for a goal Q with necessity degree α > 0, denoted
〈A, Q, α〉, iff:

(1) Π ∪ A is non contradictory;
(2) α = max{β ∈ [0, 1] | Π ∪ A ` (Q, β)}, i.e. α is the greatest degree of

deduction of Q from Π ∪ A;
(3) A is minimal w.r.t. set inclusion, i.e. there is no A1 ⊂ A such that

Π ∪ A1 ` (Q,α).

Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We will say that 〈S, R, β〉 is a
subargument of 〈A, Q, α〉 iff S ⊆ A. Notice that the goal R may be a subgoal
associated with the goal Q in the argument A.

Note that an argument must satisfy certain requirements. First, it should not
be the case that A together with Π turns out to be contradictory. Second, the
conclusion (Q,α) should follow from Π∪A and α is the maximum degree with
which this happens. The third requirement operates as a kind of Occam’s ra-
zor principle [39] on the uncertain information used for concluding Q. It must
be remarked that the three conditions in the above definition are inherited
from similar definitions in the argumentation literature [39,12,19]. Moreover
notice that from the above definition of argument, on the basis of a P-DeLP
program P , there may exist different arguments 〈A1, Q, α1〉, 〈A2, Q, α2〉, . . . ,
〈Ak, Q, αk〉 supporting a given goal Q, with (possibly) different necessity de-
grees α1, α2, . . . , αk.

Given a program P = (Π,∆), and from a procedural point of view, an argu-
ment 〈A, Q, α〉 for a given goal Q can be built by computing A and α through
the (recursive) application of the following construction rules:

9



(1) Building arguments from facts (INTF):
(a) If (Q, 1) ∈ Π

then A = ∅ and α = 1

(b) If (Q, β) ∈ ∆ and Π ∪ {(Q, β)} 6` ⊥ and Π 6` (Q, 1).
then A = {(Q,α)} and α = β

(2) Building arguments from program rules by applying the modus ponens
rule (MPA):
(a) If (Q ← L1 ∧ . . . ∧ Lk , 1) ∈ Π and 〈A1, L1, β1〉, . . . , 〈Ak, Lk, βk〉 are

arguments and Π ∪ ⋃k
i=1Ai 6` ⊥ and there is no B ⊂ ⋃k

i=1Ai such
that Π ∪ B ` (Q, γ) with γ ≥ min(β1, β2, . . . , βk)
then A =

⋃k
i=1Ai and α = min(β1, β2, . . . , βk)

(b) If (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) ∈ ∆ and 〈A1, L1, β1〉, . . . , 〈Ak, Lk, βk〉
are arguments and Π∪ {(Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β)} ∪⋃k

i=1Ai 6` ⊥
and there is no B ⊂ ⋃k

i=1Ai ∪ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) such that
Π ∪ B ` (Q, γ) with γ ≥ min(β, β1, β2, . . . , βk)
then A =

⋃k
i=1Ai∪ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , β) and α = min(β, β1,

β2, . . . , βk)

For simplicity, we will write P |∼
4
〈A, Q, α〉 to denote that there is a (finite)

sequence of applications of the INTF and MPA rules leading to the argument
〈A, Q, α〉.

The basic idea with the argument construction procedure is to keep a trace
of the set A of all uncertain information used to derive a given goal Q with
(maximum) necessity degree α. Appropriate preconditions ensure that the
obtained argument is in accordance with conditions (1), (2) and (3) in Defini-
tion 8. Namely, given a program P , rule INTF allows to construct arguments
from facts. An empty argument can be obtained for any certain fact in P . An
argument concluding an uncertain fact (Q,α) in P can be derived whenever
assuming (Q,α) is not contradictory w.r.t. the set Π in P and that Q can not
be proved from Π with a necessity degree greater or equal than α. Rule MPA
account for the use of modus ponens, both with certain and uncertain rules. It
assumes the existence of an argument for every literal in the antecedent of the
rule. Then, in a such a case, the MPA rule is applicable whenever no contradic-
tion results when putting together Π, the sets A1, . . . , Ak corresponding to the
arguments for the antecedents of the rule and the rule (Q ← L1 ∧ . . . ∧ Lk , β)
when β < 1, and whenever it is strictly necessary to consider all these clauses
in order to prove Q with a greater necessity degree.

The completeness of the INTF and MPA rules for constructing arguments is
formally stated in the next proposition.

Proposition 9 Let P = (Π,∆) be a P-DeLP program, let A ⊆ ∆ be a set of

10



uncertain clauses, let Q be a literal, and let α ∈ (0, 1]. Then, 〈A, Q, α〉 is an
argument if, and only if, P |∼

4
〈A, Q, α〉.

Proof: One direction is easy since, by definition, rules INTF and MPA yield
arguments as conclusions (notice that the pre-conditions of the rules ensure
this), hence if P |∼

4
〈A, Q, α〉 then 〈A, Q, α〉 is an argument. Conversely, let

us assume that 〈A, Q, α〉 is an argument. In particular then α is the greatest
degree of deduction of Q from Π∪A, that is, Π∪A ` (Q,α) and hence there
is a proof κ of (Q,α) from Π∪A using only the GMP rule. Moreover, we can
assume that the proof consists of sequence of clauses

κ := C1, . . . , Cm, Cm+1,

where Ci = (Ri, βi) for 1 ≤ i ≤ k and Cm+1 = (Q,α), such that:

- as usual, each clause Ci either belongs to Π ∪ A or it has been obtained
from previous ones by the application of the GMP rule,

- βi is the maximum degree of deduction of Ri from Π ∪ A,
- the sequence cannot be simplified, in the sense that all clauses Ci are nec-

essary.

For each i = 1, . . . , k, let the set Ai be a minimal subset of A such that
Π ∪ Ai ` Ci. Then Ai = 〈Ai, Ri, βi〉 is an argument. In particular, by this
construction, one has Am+1 =〈A, Q, α〉. And it is clear that then:

• for each clause Ci = (Ri, βi) ∈ ∆, the argument Ai can be built by the
INTF rule;
• for each application of the GMP rule in the proof κ to derive a clause Ci

(1 ≤ i ≤ m + 1) from clauses Ci1 , ..., Cij one can build the argument Ai

from arguments Ai1 , ..., Aij by the MPA rule.

Therefore, in this way we have shown that 〈A, Q, α〉 can be built by applica-
tions of the INTF and MPA rules, and hence that P |∼

4
〈A, Q, α〉. 2

4 Computing Warrant in P-DeLP

Given a program and a particular context, it can be the case that there exist
arguments supporting contradictory literals. This is formalized next by the
notions of counterargument and defeat. In what follows, for a given goal Q,
we will write ∼ Q as an abbreviation to denote “∼ q” if Q ≡ q and “q” if
Q ≡ ∼q.

Definition 10 Let P be a P-DeLP program, and let 〈A1, Q1, α1〉 and
〈A2, Q2, α2〉 be two arguments w.r.t. P. We will say that 〈A1, Q1, α1〉 counter-
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argues 〈A2, Q2, α2〉 iff there exists a subargument (called disagreement subar-
gument) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Q1 = ∼Q.

Since arguments rely on uncertain and hence defeasible information, conflicts
among arguments may be resolved by comparing their strength. Therefore,
a notion of defeat amounts to establish a preference criterion on conflicting
arguments. In our framework, it seems natural to define it on the basis of
necessity degrees associated with arguments [21].

Definition 11 Let P be a P-DeLP program and let the argument 〈A1, Q1, α1〉
counterargue the argument 〈A2, Q2, α2〉 with disagreement subargument
〈A, Q, β〉 We say that 〈A1, Q1, α1〉 is a proper (respectively blocking) defeater
for 〈A2, Q2, α2〉 when α1 > β (respectively α1 = β).

As already mentioned, argument-based inference involves a dialectical process
in which arguments are compared in order to determine which beliefs are
ultimately accepted (or warranted) on the basis of a given knowledge base. In
the case of argument-based logic programming, such knowledge base is given
by the underlying logic program (in our case, a P-DeLP program). Skeptical
argument-based semantics [26,36] are commonly used for computing warranted
arguments. The intuition behind such skeptical approaches to the notion of
warrant can be defined as follows:

(1) An argument 〈A, Q, α〉 is warranted if 〈A, Q, α〉 has no defeaters;
(2) An argument 〈A, Q, α〉 is warranted if it has defeaters 〈B1, Q1, β1〉,. . . ,
〈Bk, Qk, βk〉, such that every defeater 〈Bi, Qi, βi〉, (1 ≤ i ≤ k) is in turn
defeated by a warranted argument.

In P-DeLP, as in most argumentation systems [19,36], this intuition is for-
malized in terms of an exhaustive dialectical analysis of all possible argu-
mentation lines rooted in a given argument. An argumentation line starting
in an argument 〈A0, Q0, α0〉 is a sequence of arguments λ = [〈A0, Q0, α0〉,
〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . . ] that can be thought of as an exchange of
arguments between two parties, a proponent (evenly-indexed arguments) and
an opponent (oddly-indexed arguments). Each 〈Ai, Qi, αi〉 is a defeater for
the previous argument 〈Ai−1, Qi−1, αi−1〉 in the sequence, i > 0. Moreover, in
order to avoid fallacious reasoning, argumentation theory imposes three addi-
tional constraints on such an argument exchange to be considered rationally
acceptable w.r.t. a P-DeLP program P , namely:

(1) Non-contradiction: given an argumentation line λ, the set of arguments
of the proponent (respectively opponent) should be non-contradictory
w.r.t. P . 2

2 Non-contradiction for a set of arguments is defined as follows: a set S =⋃n
i=1{〈Ai, Qi, αi〉 } is contradictory w.r.t. P iff Π ∪

⋃n
i=1Ai is contradictory.
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(2) Progressive argumentation: (i) every blocking defeater 〈Ai, Qi, αi〉 in
λ with i > 0 is defeated by a proper defeater 3 〈Ai+1, Qi+1, αi+1〉 in λ; and
(ii) each argument 〈Ai, Qi, αi〉 in λ, with i ≥ 2, is such that Qi 6=∼Qi−1.

The non-contradiction condition disallows the use of contradictory informa-
tion on either side (proponent or opponent). The first condition of progressive
argumentation enforces the use of a proper defeater to defeat an argument
which acts as a blocking defeater, while the second condition avoids non op-
timal arguments in the presence of a conflict. Indeed, if we had a sequence of
successively defeated arguments of the form

λ = [. . . , 〈Ai, Q, αi〉, 〈Ai+1,∼ Q,αi+1〉, 〈Ai+2, Q, αi+2〉, . . .],

it would mean that 〈Ai, Q, αi〉 could have been in fact replaced by a stronger
argument taking into the information in 〈Ai+2, Q, αi+2〉. An argumentation
line satisfying the above restrictions is called acceptable, and can be proven
to be finite. Given a program P and an argument 〈A0, Q0, α0〉, the set of
all acceptable argumentation lines starting in 〈A0, Q0, α0〉 accounts for a
whole dialectical analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogues rooted
in 〈A0, Q0, α0〉) that leads to the following definition of warranted goal with
a necessity degree. This set is usually represented in a tree structure called
dialectical tree for the argument 〈A0, Q0, α0〉. In this dialectical tree every
branch corresponds to a possible dialogue starting with 〈A0, Q0, α0〉.

Definition 12 Given a program P = (Π,∆) and a goal Q, we will say that
Q is warranted w.r.t. P with a maximum necessity degree α iff there exists
an argument 〈A, Q, α〉, for some A ⊆ ∆, such that:

(1) every acceptable argumentation line starting with 〈A, Q, α〉 has an
odd number of arguments; i.e. every argumentation line starting with
〈A, Q, α〉 finishes with an argument proposed by the proponent which is
in favor of Q with at least a necessity degree α; and

(2) there is no other argument of the form 〈A1, Q, β〉, with β > α, satisfying
the above.

We will generalize the use of the term “warranted” for applying it to both
goals and arguments: whenever a goal Q is warranted on the basis of a given
argument 〈A, Q, α〉 as specified in Definition 12, we will also say that the
argument 〈A, Q, α〉 is warranted. Moreover, we will write P |∼

w
〈A, Q, α〉 to

denote that the argument 〈A, Q, α〉 is warranted w.r.t. P .

For a given program P , a P-DeLP interpreter will find an answer for a
goal Q by determining whether Q is supported by some warranted argument

3 It must be noted that the last argument in an argumentation line is allowed to
be a blocking defeater for the previous one.
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〈A, Q, α〉. Different doxastic attitudes are distinguished when providing an
answer for the goal Q (according to the associated status of warrant), and
additional refinements have been also studied to speed up the inference pro-
cedure. An in-depth discussion of these aspects can be found elsewhere [22].

5 A Case Study: modelling an intelligent agent in P-DeLP

Next we will present an example which illustrates how P-DeLP can be used to
model the beliefs and reasoning capabilities of an agent. Consider an intelligent
agent controlling an engine with three switches sw1, sw2 and sw3. These
switches regulate different features of the engine, such as pumping system,
speed, etc. This agent may have the following certain and uncertain knowledge
about how this engine works, e.g.:

(1) When sw1 is on, normally fuel is pumped properly.
(2) When fuel is pumped properly, fuel seems to work ok.
(3) When sw2 is on, usually oil is pumped.
(4) When oil is pumped, usually it works ok.
(5) When there is oil and fuel, usually the engine works ok.
(6) When there is heat, then the engine is usually not ok.
(7) When there is heat, normally there are oil problems.
(8) When fuel is pumped and speed is low, then there are reasons to believe that

the pump is clogged.
(9) When sw2 is on, usually speed is low.

(10) When sw2 and sw3 are on, usually speed is not low.
(11) When sw3 is on, usually fuel is ok.
(12) If the pump is clogged, then the engine gets no fuel.

Suppose also that the agent knows some particular facts: sw1, sw2 and sw3
are on, and there is heat. The knowledge of such an agent can be modelled
by the program Peng shown in Figure 1, where the finite set of certain clauses
(i.e. Π) is from clause (12) to (16), and the finite set of uncertain clauses (i.e.
∆) is from clause (1) to (11). Note that uncertainty is assessed in terms of
different necessity measures. From the P-DeLP program in Figure 1 different
arguments can be derived using the procedural rules defined in Section 3.
Thus, for example, the argument 〈B, fuel ok, 0.3〉 can be derived from Peng

as follows:

i) 〈∅, sw1, 1〉 from (13) via INTF.

ii) 〈B′, pump fuel, 0.6〉 from (1) and i) via MPA.

iii) 〈B, fuel ok, 0.3〉 from (2) and ii) via MPA.
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(1) (pump fuel ← sw1 , 0.6)
(2) (fuel ok ← pump fuel , 0.3)
(3) (pump oil ← sw2 , 0.8)
(4) (oil ok ← pump oil , 0.8)
(5) (engine ok ← fuel ok ∧ oil ok , 0.3)
(6) (∼engine ok ← heat , 0.95)
(7) (∼oil ok ← heat , 0.9)
(8) (pump clog ← pump fuel ∧ low speed , 0.7)
(9) (low speed ← sw2 , 0.8)
(10) (∼ low speed ← sw2 ∧ sw3 , 0.8)
(11) (fuel ok ← sw3 , 0.6)
(12) (∼ fuel ok ← pump clog , 1)
(13) (sw1, 1)
(14) (sw2, 1)
(15) (sw3, 1)
(16) (heat, 1)

Fig. 1. P-DeLP program Peng

where

B′ = {(pump fuel ← sw1 , 0.6)} and

B = {(pump fuel ← sw1 , 0.6) ; (fuel ok ← pump fuel , 0.3)}.

Similarly, an argument 〈C, oil ok, 0.8〉 can be derived from Peng using the rules
(14), (3) and (4) via INTF, MPA, and MPA, respectively, with 4

C = {(pump oil ← sw2 , 0.8); (oil ok ← pump oil , 0.8)}

Finally, an argument 〈A1, engine ok, 0.3〉 can be derived from Peng as follows:

i) 〈B, fuel ok, 0.3〉 as shown above.

ii) 〈C, oil ok, 0.8〉 as shown above.

iii) 〈A1, engine ok, 0.3〉 from i), ii) and (5) via MPA.

where A1={(engine ok ← fuel ok ∧ oil ok , 0.3) }∪B ∪ C. Note that the argu-
ments 〈C, oil ok, 0.8〉 and 〈B, fuel ok, 0.3〉 are subarguments of the argument
〈A1, engine ok, 0.3〉 (see Definition 8).

Let us assume that the agent is in charge of controlling the engine, answering
queries from other agents (e.g. a supervisor agent) about the status of the

4 For the sake of clarity, we use semicolons to separate elements in an argument A
= {e1 ; e2 ; . . . ; ek }.
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engine. For instance, the query ?− (engine ok, 0.8) corresponds with proving
whether the engine works ok with a certainty degree of at least 0.8. In order to
answer this query, the agent will apply the procedure described in the previous
sections: first will compute an argument supporting engine ok, and then will
perform a recursive analysis of defeaters for these arguments, computing its
associated dialectical tree.

In this particular example, the agent will find an argument supporting the
conclusion engine ok, namely 〈A1, engine ok, 0.3〉. A counterargument (see
Definition 10) for the argument 〈A1, engine ok, 0.3〉 can be found, namely the
argument 〈A2,∼ fuel ok, 0.6〉, obtained from (13), (14), (1), (9), (8) and (12)
by applying INTF, INTF, MPA, MPA, MPA, and MPA, respectively, with

A2 = {(pump fuel ← sw1 , 0.6),

(low speed ← sw2 , 0.8),

(pump clog ← pump fuel ∧ low speed , 0.7)}.

The argument 〈A2,∼ fuel ok, 0.6〉 is a counterargument for the argument
〈A1, engine ok, 0.3〉 as there exists a subargument 〈B, fuel ok, 0.3〉 associated
with argument 〈A1, engine ok, 0.3〉 such that the set

Π ∪ {(fuel ok, 0.3), (∼ fuel ok, 0.6)}

is contradictory. It must be remarked as well that 〈A2,∼ fuel ok, 0.6〉 is a
proper defeater (Definition 11) for 〈A1, engine ok, 0.3〉, as 〈A2,∼ fuel ok, 0.6〉
counterargues the argument 〈A1, engine ok, 0.3〉 with 〈B, fuel ok, 0.3〉 as dis-
agreement subargument, and 0.6 > 0.3.

As the defeater 〈A2,∼ fuel ok, 0.6〉 is also an argument, a recursive analysis
can be carried out by the agent, computing an argumentation line rooted in
〈A1, engine ok, 0.3〉. In fact, note that the argument 〈A2,∼ fuel ok, 0.6〉 has
the subargument 〈A2

′, low speed, 0.8〉, with A2
′ = {(low speed ← sw2 , 0.8)}.

From the program Peng given in Figure 1 a blocking defeater for the argument
〈A2,∼ fuel ok, 0.6〉 can be derived, namely 〈A3,∼ low speed, 0.8〉, obtained
from (14), (15) and (10) via INTF, INTF and MPA, respectively. In this case
we have:

A3 = { (∼ low speed ← sw2 ∧ sw3 , 0.8) }

This third defeater 〈A3,∼ low speed, 0.8〉 can be thought of as an answer
of the proponent to the opponent which reinstates 〈A1, engine ok, 0.3〉, as it
defeats the opponent’s defeater 〈A2,∼ fuel ok, 0.6〉. The above situation can
be expressed in the following argumentation line: 5

5 Note that the proponent’s last defeater in the above sequence could be on its turn
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[ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉 ]

In order for the preceding analysis to be exhaustive, every possible argumen-
tation line rooted in 〈A1, engine ok, 0.3〉 should be analysed. In this particu-
lar case, note that the argument 〈A2,∼ fuel ok, 0.6〉 has a second (blocking)
defeater 〈A4, fuel ok, 0.6〉, computed from (15), (11) via INTF and MPA,
respectively. The argument 〈A1, engine ok, 0.3〉 has also a second defeater
〈A5,∼ engine ok, 0.95〉, computed from (16), (6) via INTF and MPA, respec-
tively. In this case we have:

A4 = { (fuel ok ← sw3 , 0.9) }

A5 = { (∼ engine ok ← heat , 0.8) }

There are no more arguments to consider. As a consequence, there are three
acceptable argumentation lines rooted in 〈A1, engine ok, 0.3〉, namely:

• λ1 = [ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉 ]

• λ2 = [ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A4, fuel ok, 0.6〉 ]

• λ3 = [ 〈A1, engine ok, 0.3〉, 〈A5,∼ engine ok, 0.95〉 ]

The argument 〈A1, engine ok, 0.3〉 is the only possible argument the agent
can compute supporting the query engine ok. There are three argumenta-
tion lines rooted in the argument 〈A1, engine ok, 0.3〉, and one of them is
of even length. Therefore the argument 〈A1, engine ok, 0.3〉 is not warranted
(Definition 12). On the contrary, note that the agent can compute an ar-
gument 〈A5,∼ engine ok, 0.95〉 supporting ∼ engine ok, and such argument
has no defeaters. Consequently, there is only one argumentation line rooted in
〈A5,∼ engine ok, 0.95〉, namely λ = [〈A5,∼ engine ok, 0.95〉 ], which has odd
length. Therefore we can conclude that 〈A5,∼ engine ok, 0.95〉 is warranted.

In a MAS context, intelligent agents will encode their knowledge about the
world using a P-DeLP program. Figure 2 outlines the different elements associ-
ated with a P-DeLP-based agent. Clearly, our agent will be usually performing
its activities in a dynamic environment, so that it should also be able to reason,
plan, and act according to new perceptions from the outside world. Such per-
ceptions will be sensed by the agent, integrating them into its current beliefs.

defeated by a blocking defeater 〈A2
′, low speed, 0.8〉, resulting in

[〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉,
〈A2

′, low speed, 0.8〉 . . . ]
However, such line is not acceptable, as it violates the condition of non-circular
argumentation.
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Fig. 2. A P-DeLP-based agent in a MAS context

For the sake of simplicity, we will assume that such perceptions constitute
new facts to be added to the agent’s knowledge base. As already stated in
the introduction, fuzzy propositions provide us with a suitable representation
model as our agent will probably have vague or imprecise information about
the real world, as its sensors are not perfect devices.

Defining a generic procedure for updating the agent’s knowledge base is not
easy, as completely new incoming information (e.g. facts with new predicate
names) might result in the strict knowledge Π becoming contradictory (see
Definition 7). In some particular cases the agent will only perceive changes
in the necessity measure of the already known facts (e.g. the agent has a
fact (heat, 1) in the knowledge base, but the sensed temperature has changed,
modelled by a new fact (heat, 0.8)). In such cases, a simple but effective strat-
egy can be applied, similar as the one suggested in [15]. We will make the
assumption that new perceptions always supersede old ones, so that if a new
perception (p, value) is sensed at time t, and the agent has already a fact
(p, value′) in its strict knowledge base Π, then the updated knowledge base
will be computed as (Π \ {(p, value′)}) ∪ {(p, value)}.

6 Logical properties of argument and warrant in P-DeLP

As explained in the previous Section, intelligent agents can encode their knowl-
edge about the world in terms of a P-DeLP program P . New perceptions can
modify the agent’s current knowledge, altering the set of facts in P . In this
context, it is interesting to analyze the existing inference abilities of our agent
in terms of deduction, arguments and warrants.

In order to do this, we will define different inference operators associated with
deduction based on strict knowledge, argument derivation and computation of
warranted goals. We refer to such operators as expansion operators in order to
stress the fact that their output is associated with considering all new weighted
facts that can be obtained by computing deductions based on strict knowl-
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edge, arguments or warrants from a given program P . Our aim is to study
the inference abilities of a P-DeLP agent in terms of the logical properties
associated with these operators.

For our characterization, we will identify three distinguished sets Lit` , Lit4 ,
and Litw associated with any program P , corresponding to those literals which
are supported by deduction from strict knowledge, supported by arguments,
and supported by warranted arguments, respectively. Formally:

Definition 13 Let P be a P-DeLP program. We define the sets Lit`(P),
Lit4(P), and Litw(P) associated with P as follows:

Lit`(P) = { (Q, 1) | P ` (Q, 1) }

Lit4(P) = { (Q,α) | P |∼
4
〈A, Q, α〉 for some argument A for a goal Q

with necessity degree α }

Litw(P) = { (Q,α) | P |∼
w
〈A, Q, α〉 for some argument A for a goal Q

with necessity degree α }

On the basis of these distinguished sets, we will define three expansion oper-
ators which, given a program P , compute a new P-DeLP program P ′ whose
facts are precisely those given by the three distinguished sets given in Defini-
tion 13, while the existing rules in P are maintained.

Definition 14 Let P be a P-DeLP program. We define the expansion opera-
tors C`, C4 and Cw associated with P as follows:

C`(P) = rules(P) ∪ Lit`(P)

C4(P) = rules(P) ∪ Lit4(P)

Cw(P) = rules(P) ∪ Litw(P)

Operator C` computes a new program P ′ based on the rules of P along with
those facts (Q, 1) which can be deduced from the strict knowledge in P . 6

Operator C4 computes a new program P ′ based on the rules of P along with
those facts which are supported by arguments based on P . The output P ′
incorporates a new uncertain fact (Q,α) whenever there exists an argument
〈A, Q, α〉 in P . Finally, operator Cw computes a subset of C4 , namely the
program resulting from the rules in P along with all those new facts which
correspond to conclusions of warranted arguments in P . Notice that C4 may

6 Operator C` defines in fact a consequence relationship, as it satisfies idempotence,
cut and monotonicity. It can be seen as the SLD Horn resolution counterpart in the
context of P-DeLP restricted to certain clauses.
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contain contradictory knowledge (i.e. it may be the case that two arguments
〈A1, Q, α〉 and 〈A2,∼Q, β〉 could be inferred from a given program P).

Proposition 15 Operators C`, C4 and Cw are well-defined (i.e., given a P-
DeLP program P as input, the associated output is also a P-DeLP program
P’). Besides, they satisfy the following relationship: C`(P) ⊆ Cw(P) ⊆ C4(P).

Proof: Given a P-DeLP program P = (Π,∆), we want to determine that
C`(P), C4(P) and Cw(P) are also programs. From Definition 13 and Defini-
tion 14, it is clear that all operators return syntactically valid programs as
their output, as Lit` , Lit4 and Litw correspond always to facts in P-DeLP.
From Definition 7, it remains to check that the strict knowledge of the out-
put of C`(P) (analogously for C4(P) and Cw(P)), written C`(P)Π, is not a
contradictory set of P-DeLP clauses. Let us suppose that C`(P)Π is contra-
dictory. By definition of C` , this is only possible if Π is itself contradictory,
which cannot be the case, as P is a P-DeLP program (absurd). Consequently,
C`(P) is a P-DeLP program. The same line of reasoning applies for C4(P)
and Cw(P).

The inclusion relationship C`(P) ⊆ C4(P) holds as it is straightforward to
see that P ` (Q, 1) iff P|∼

4
〈∅, Q, 1〉. Since every warranted argument is an

argument w.r.t. P , a similar analysis applies to conclude that Cw(P) ⊆ C4(P).
2

Next we will analyze different logical properties for deduction from strict
knowledge, argument construction and warrant in P-DeLP, on the basis of
the operators defined before. A summary of the logical properties under con-
sideration can be found in the Appendix A.

6.1 Logical properties for C4

Clearly inclusion does not hold for C4 . A counterexample suffices; consider
P = {(p, 0.5), (∼p, 1)}. Then C4(P) = {(∼p, 1)}. Hence P 6⊆ C4(P).

Proposition 16 The operator C4 satisfies idempotence, i.e. C4(P) =
C4(C4(P)).

Proof: (By double inclusion)

1) By definition of C4 (Definition 14), C4(P) = rules(P) ∪ Lit4(P)
and C4(C4(P)) = rules(C4(P)) ∪ Lit4(C4(P)). Therefore, C4(C4(P)) =
rules(P) ∪ Lit4(rules(P) ∪ Lit4(P)). Obviously, Lit4(P) ⊆ Lit4(rules(P) ∪
Lit4(P)), and hence C4(P) ⊆ C4(C4(P)).
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2) We must prove that C4(C4(P)) ⊆ C4(P). In other words, we must prove
that if (R, β) ∈ C4(C4(P)), then (R, β) ∈ C4(P). By definition,

C4(C4(P)) = C4(P) ∪ {(Q,α)| C4(P)|∼
4
〈A1, Q, α〉} (1)

Clearly, if (R, β) ∈ C4(P), there is nothing to prove. We can reduce our
original problem to the following formulation:

if (R, β) ∈ {(Q,α)| C4(P)|∼
4
〈A1, Q, α〉} then (R, β) ∈ C4(P) (2)

We will prove this statement by induction on the number of steps required for
the proof in 〈A1, Q, α〉.

Base case: suppose that 〈A1, Q, α〉 is proven in one inference step. (i.e.,
C4(P)|∼

4

1〈A1, Q, α〉 via INTF). But note that from the definition of INTF, it
follows that

C4(P)|∼
4
〈A, Q, α〉 iff (Q,α) ∈ C4(P) (3)

Hence equation 2 holds.

Inductive hypothesis : Let us assume that equation 2 holds for all proofs of
length 1 < k. We will show that it also holds for proofs of length k. Let (R, β)
∈ { (Q,α) | C4(P) |∼

4

k+1 〈A1, Q, α〉 }. Then it is the case that 〈A1, Q, α〉 was
derived via MPA. If that is the case, then

C4(P) |∼
4

k〈A1, L1, α1〉, 〈A2, L2, α2〉 . . . , 〈Ak, Lk, αk〉, (4)

and there is a rule

(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) (5)

with γ ≤ 1, such that Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪
⋃k

i=1Ai 6` ⊥,
with β = min(α1, . . . , αk, γ). Clearly, 〈A1, Q, α〉 follows from Eq. 4 and 5. By
inductive hypothesis, this means that

(L1, α1), . . . (Lk, αk) ∈ C4(P) (6)

But the rule in Eq. 5 also applies here, and hence (L0, β) ∈ C4(P), with β =
min(α1, . . . , αk, γ), as we wanted to show. 2

Monotonicity does not hold for C4 , as expected. As a counterexample consider
the program P = { (q, 1), (p ← q , 0.9) }. Then (p, 0.9) ∈ C4(P), as there is
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an argument 〈A, p, 0.9〉 on the basis of P for concluding (p, 0.9), with A ={
(p ← q , 0.9) }. However, (p, 0.9) 6∈ C4(P ∪ {(∼p, 1)}) (as no argument for
(p, 0.9) could exist, as condition 2 in Definition 8 would be violated). Semi-
monotonicity is an interesting property for analyzing non-monotonic conse-
quence relationships. It is satisfied if all defeasible consequences from a given
theory are preserved when the theory is augmented with new defeasible infor-
mation.

Proposition 17 The operator C4 satisfies semi-monotonicity when new de-
feasible information is added, i.e. C4(P1 ) ⊆ C4(P1 ∪ P2 ) for P2 = (∅,∆).

Proof: Follows directly from the structure of the inference rules for |∼
4
. Sup-

pose P1 |∼4〈A, Q, α〉, and consider the program P1 ∪ P2 with P2 = (∅,∆).

Clearly, 〈A, Q, α〉 can be derived from P1 ∪ P2 by applying the same se-
quence of steps as in P1 |∼4〈A, Q, α〉, since all preconditions in inference rules

are defined w.r.t. PΠ
1 , the set of strict knowledge in P1 , and by hypothesis,

(P1 ∪ P2 )Π = PΠ
1 . 2

Proposition 18 The operator C4 satisfies cummulativity, i.e. γ ∈ C4(Γ) im-
plies φ ∈ C4(Γ ∪ {γ}) iff φ ∈ C4(Γ).

Proof: (Sketch) Without loss of generality, we can assume γ = (Q,α) is not
in Γ (otherwise the proof is straightforward). By hypothesis, (Q,α) ∈ C4(Γ)

and there is a sequence sQ
1 , s

Q
2 , . . . , s

Q
t of application of inference rules in

{INTF, MPA} such that Γ|∼
4
〈A1, Q, α〉. Let us assume now that (R, β) ∈

C4(Γ ∪ {(Q,α)}). This means that there is a sequence r1, r2, . . . , rn of ap-
plication of inference rules as before such that Γ|∼

4
〈A2, R, β〉. Suppose now

that 〈A2, R, β〉 does not include 〈A1, Q, α〉 as a subargument. This happens
iff from the structure of inference rules for |∼

4
, (Q,α) will not be required

as intermediate step in the proof of (R, β) iff (R, β) ∈ C4(Γ). Suppose now
that 〈A2, R, β〉 does include 〈A1, Q, α〉 as a subargument. This happens iff in
the sequence r1, r2, . . . , rn we have that ri+k = sQ

i , for i = 1 . . . t, for some
1 ≤ k ≤ n. But from the initial hypothesis this sequence can be built from Γ
alone. Hence Γ|∼

4
〈A2, R, β〉 or equivalently (R, β) ∈ C4(Γ). 2

Note that the property of right weakening cannot be considered (in a strict
sense) in P-DeLP, since the underlying logic does not allow the application of
the deduction theorem. Therefore, well formed formulas of the form (x ← y , α)
cannot be derived. However, an alternative approach can be intended, intro-
ducing a new property in which right weakening is restricted to Horn-like
clauses:

Proposition 19 The operator C4 satisfies (Horn) supraclassicality w.r.t. C`

(i.e. C`(P) ⊆ C4(P)), and (Horn) right weakening (i.e. if (Y, α) ∈ C4(P) and
(X ← Y , 1) ∈ C`(P), then (X,α) ∈ C4(P)).
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Proof: Supraclassicality follows from Proposition 15. For the case of right
weakening, let us suppose (Y, α) ∈ C4(P), i.e. P |∼

4
〈A1, Y, α〉, for some ar-

gument 〈A1, Y, α〉. If (X ← Y , 1) ∈ C`(P), by definition of C` , necessarily
(X ← Y , 1) ∈ PΠ, the set of strict knowledge in P . From (X ← Y , 1) ∈ P
and P |∼

4
〈A1, Y, α〉, by applying inference rule MPA we get 〈A1, X, α〉. 2

Proposition 20 The operator C4 satisfies subclassical cummulativity, i.e.
P1 ⊆ P2 ⊆ C`(P1 ) implies C4(P1 ) = C4(P2 ).

Proof: Clearly, by hypothesis and by the definition of C` , it holds that
rules(P1 ) = rules(P2 ). Therefore, since P1 ⊆ C`(P1 ), the program P1 con-
tains no uncertain facts, and hence P2 as well. This means that P1 and
P2 are of the form P1 = (Π1,∆1) and P2 = (Π2,∆2) with Π1 ⊆ Π2

and ∆1 = ∆2 only contain uncertain rules. Moreover one can show that
Lit`(P1 ) = Lit`(P2 ). Indeed, since C` satisfies monotonicity and idem-
potence, we have C`(P1 ) ⊆ C`(P2 ) ⊆ C`(C`(P1 )) = C`(P1 ), and since
rules(P1 ) = rules(P2 ), it follows that Lit`(P1 ) = Lit`(P2 ). Therefore, for
any A ⊆ ∆1(= ∆2), A is consistent with Π1 iff is consistent with Π2, and
A ∪ Π1 ` (Q,α) iff A ∪ Π2 ` (Q,α). In particular this holds for those sets A
which are minimal according to the conditions given in the definition of ar-
gument (Def. 8). Hence 〈A,Q, α〉 is an argument wrt P1 iff it is an argument
wrt P2 . 2

Most non-pure logical properties for C4 do not hold. In particular, C4 does
not satisfy the properties of (LL) left-logical equivalence, (CC) conjunction
of conclusions, (LA) left absorption, (RA) right absorption, (RN) rational
negation, (RM) rational monotonicity, (DR) disjunctive rationality, as shown
next.

LL: Given two programs P1 and P2 , C`(P1 ) = C`(P2 ) does not imply C4(P1 ) =
C4(P2 ). Consider P1 = { (y, 1) } and P2 = P1 ∪ { (x ← y , 0.9) }.

CC: Arguments supporting conjunctions of conclusions cannot be expressed in
P-DeLP language, as goals are restricted to literals.

LA: Consider P = {(Q,α)}, where Q is a literal, α < 1. Then C`(C4(P)) =
C`({(Q,α)}) = ∅ 6= C4(P).

RA: Consider the same counterexample given for LA. Analogously, C4(C`(P))
= C4(∅) = ∅ 6= C4(P).

RN: Consider P1 = { (∼p ← x , 1), (∼p ← ∼x , 1), (r, 1), (z ← p, 1),
(p ← r , 0.9) }. Then P1 |∼4〈A1, z, 0.9〉, with A1 = { (p ← r , 0.9) } How-

ever, P1 ∪ { (x, 1) } 6 |∼
4
〈A1, z, 0.9〉, and P1 ∪ { (∼x, 1) } 6 |∼

4
〈A1, z, 0.9〉.

RM: Consider the same counterexample as given for RN. Then P1 |∼4〈A1, z, 0.9〉,
but it is not the case that P1 ∪ { (x, 1) } |∼

4
〈A1, z, 0.9〉 nor P1 |∼4 (∼x, 1).

DR: Actually, the property of disjunctive rationality falls out of the scope of C4
as disjunctions cannot be expressed as well formed formulas in the P-DeLP
object language.
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6.2 Logical properties for Cw

In this section we will analyze the behavior of the Cw operator for capturing
warrant. In fact, the Cw operator only satisfies (Horn) supraclassicality, as it
is a direct consequence of Proposition 15, and subclassical cummulativity.

Proposition 21 The operator Cw satisfies (Horn) supraclassicality w.r.t. C`,
i.e. C`(P) ⊆ Cw(P).

Proof: It suffices to show that Lit`P ⊆ LitwP , or equivalently, we want to
show that if (Q, 1) ∈ Lit`P then (Q, 1) ∈ LitwP .

Clearly, if (Q, 1) ∈ Lit`P then it can be obtained by successive applications
of INTF and MPA which do not involve any uncertain clause (otherwise, we
would obtain (Q,α), with α < 1). As (Q, 1) follows directly from the certain
clauses in the program P , it follows that (Q, 1) is supported by an empty
argument 〈∅, Q, 1〉.

Suppose there is a defeater for 〈∅, Q, 1〉, let us say 〈A′,∼ Q,α′〉. Clearly α′

must be 1 (otherwise 〈A′,∼ Q,α′〉 would not be a defeater). But from the
same line of reasoning as above, A′ should be empty. Therefore the only pos-
sible defeater is 〈∅,∼ Q, 1〉. But this implies that (∼ Q, 1) ∈ Lit`P and by
hypothesis (Q, 1) ∈ Lit`P . But this implies that the set Π of certain clauses
is contradictory, and hence P is not a program (absurd). Consequently, the
argument 〈∅, Q, 1〉 has no defeaters, and therefore it is warranted, so that it
follows that (Q, 1) ∈ LitwP . 2

Proposition 22 The operator Cw satisfies subclassical cummulativity, i.e.
P1 ⊆ P2 ⊆ C`(P1 ) implies Cw(P1 ) = Cw(P2 ).

Proof: The proof follows the same line of reasoning as in Proposition 20. 2

Next we will see, through different counterexamples, that other logical prop-
erties do not hold for Cw .

Proposition 23 The operator Cw does not satisfy inclusion, monotonicity
nor semi-monotonicity.

Proof: Different counterexamples suffice.

• Inclusion: Let P = { (p, 0.7), (∼p, 0.9) }. Then Cw(P) = { (∼p, 0.9) }, and
clearly P 6⊆ Cw(P).
• Monotonicity: Monotonicity does not hold, as can be seen from the coun-

terexample used for monotonicity in C4 ; in that case, (q, 0.9) ∈ Cw(P), but
(q, 0.9) 6∈ Cw(P ∪ {(∼p, 1)}).
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(1) (∼y ← p∧ ∼r , 1)

(2) (y, 1)

(3) (p, 0.7)

(4) (r, 0.8)

(5) (q ← z , 0.7)

(6) (z ← p, 0.7)

(7) (∼q ← r , 0.8)

(8) (∼r, 0.9)

Fig. 3. Program Pidem (see examples 24-26)

• Semi-monotonicity: Semi-monotonicity does not hold either for Cw , as
adding new defeasible clauses cannot invalidate already derivable argu-
ments, but it can enable new ones that were not present before, thus mod-
ifying the dialectical relationships among arguments. Arguments that were
warranted may therefore no longer keep that epistemic status. Consider a
variant of the previous counterexample: let P = { (q, 1), (p ← q , 0.9) }.
Then (p, 0.9) ∈ Cw(P), as there is an argument 〈A, p, 0.9〉 on the basis
of P . However, (p, 0.9) 6∈ Cw(P ∪ {(∼p, 0.95)}), as 〈A, p, 0.9〉 is defeated
by 〈B,∼p, 0.95〉, with B ={(∼p, 0.95)}. There are no more arguments to
consider, and hence 〈A, p, 0.9〉 is not warranted.

2

Moreover, cummulativity, idempotence and right-weakening do not hold for
Cw , as shown in the following counterexamples.

Example 24 Operator Cw does not satisfy idempotence. Consider program
Pidem given in Figure 3. Note that q 6∈ Cw(Pidem): there is an argument
〈A, q, 0.7〉, with A ={ (q ← z , 0.7), (z ← p, 0.7), (p, 0.7) } supporting (q, 0.7).
In this case, argument 〈A, q, 0.7〉 is defeated by 〈B,∼q, 0.8〉, with B ={
(∼q ← r , 0.8), (r, 0.8) }. There is a third argument 〈C,∼r, 0.9〉, with C ={
(∼r, 0.9) }. Even though this argument defeats 〈B,∼q, 0.8〉, it cannot be in-
troduced as a defeater in the above analysis, as it would be in conflict with
argument 〈A, q, 0.7〉, violating the non-contradiction consistency constraint in
argumentation lines (since (∼y, 1) and (y, 0.7) would follow from PΠ

idem∪A∪B,
where PΠ

idem stands for the certain knowledge in Pidem. The set of all warranted
literals supported by Pidem is W = { (p, 0.7), (z, 0.7), (∼r, 0.9) }. Consider
now the program P ′ = Pidem ∪W . Let us analyze whether q is warranted or
not w.r.t. P ′. There is an argument 〈A′, q, 0.7〉, with A′ = {(q ← z , 0.7)},
which is defeated by 〈B,∼q, 0.8〉 (as before). This defeater is defeated by
〈C ′,∼r, 0.9〉, with C ′ = ∅. There are no more arguments to consider, and
therefore (q, 0.7) is warranted. Hence q ∈ Cw(P ′) = Cw(Cw(Pidem)), and as
shown above q 6∈ Cw(Pidem). Therefore Cw does not satisfy idempotence.

Example 25 Operator Cw does not satisfy cummulativity. We must show that
there exists a weighed literal for some program P such that if (Q,α) ∈ Cw(P),
then (R, β) ∈ Cw(P ∪ {(Q,α)}) does not imply (R, β) ∈ Cw(P). Consider
program Pidem in Figure 3. As shown in Example 24, (z, 0.7) ∈ Cw(Pidem),
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and (q, 0.7) ∈ Cw(Pidem ∪ {(z, 0.7)}). However, (q, 0.7) 6∈ Cw(Pidem). Hence
cummulativity does not hold for Cw .

Example 26 Operator Cw does not satisfy right weakening. Consider program
Pidem in Figure 3. Note that (p, 0.7) ∈ Cw(Pidem) and (∼r, 0.9) ∈ Cw(Pidem).
Besides, (∼y ← p,∼r , 1) ∈ PΠ

idem, the set of strict knowledge in Pidem. How-
ever, the conclusion of this certain rule is not warranted, i.e. (∼y, 0.7) 6∈
Cw(Pidem), since (y, 1) ∈ PΠ

idem, and thus there exists no argument with con-
clusion (∼y, 0.7) (as it would violate condition 2 in Definition 8).

Finally, as for C4 , most non-pure logical properties for Cw do not hold. In
particular, Cw does not satisfy the properties of LL, CC, LA, RA, RN, RM
and DR. In all cases this is based on the existence of counterexamples following
the same line of reasoning as for C4 .

6.3 Discussion

Let us briefly discuss the most relevant results provided by the properties pre-
sented before. When analyzing argumentative inference under the operator
C4 , idempotence shows us that adding argument conclusions as new facts to
a given program does not add any new inference capabilities. Cummulativity
shows us that any argument obtained from a program P can be kept as an
intermediate proof (lemma) to be used in building more complex arguments.
(Horn) supraclassicality indicates that every conclusion that follows via tra-
ditional SLD inference (involving only certain clauses) can be considered as a
special form of argument (namely, an empty argument), whereas Horn right
weakening tells us that certain rules in P-DeLP preserve the usual seman-
tics for Horn rules (the existence of a certain rule X ← Y causes that every
argument concluding Y is also an argument for X).

Computing warrant also can be better understood in the light of the logical
properties for Cw . There are only two properties (supraclassicality and subclas-
sical cummulativity) which hold for this operator. Next we will briefly discuss
some of the relevant properties which do not hold for Cw and their relationship
with argument-based inference. In [36] some examples are informally presented
to show that argumentation systems should assign facts a special status, and
therefore should not be cumulative. In the particular case of cummulativity
(traditionally the most defended property associated with non-monotonic in-
ference), we have shown that it does not hold for Cw even when warranted
conclusions are assigned the epistemic status of uncertain facts of the form
(Q,α), α < 1, which provides an even stronger result than the one suggested
originally in [36]. From Horn supraclassicality it follows that every conclusion
obtained from certain clauses is a particular case of warranted literal.
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The failure of Horn right weakening indicates that a certain rule of the form
(Y ← X , 1) does not ensure that every warranted argument for (X,α) (with
α < 1) implies that (Y, α) is also warranted. In fact, it can be the case that the
certain fact (∼Y , 1) is present in a given program, so that an argument for the
goal Y cannot be even computed (as shown in Example 26). In a recent pa-
per [14], Caminada & Amgoud identify this situation as a particular anomaly
in several argumentation formalisms (e.g. [35,27]) and provide an interesting
solution in terms of rationality postulates which –the authors claim– should
hold in any well-defined argumentative system. In the case of P-DeLP the
problem seems to require a different conceptualization, as the necessity degree
1 of the rule (Y ← X , 1) is attached to the rule itself, and the necessity degree
of the conclusion Y depends on the necessity degree α of the antecedent X.
As an example, consider the program P = { (∼g ← a, 1), (a, 0.7), (g ← b, 1),
(b, 0.4) }. In this case, (a, 0.7) and (b, 0.4) are warranted conclusions. However,
we cannot warrant g and ∼ g with necessity degree 1. In fact, only (∼g, 0.7)
can be warranted. In this respect, we have started a preliminary analysis for
this problem in the context of P-DeLP, and currently part of our research
is focused on this issue. In particular, we are formalizing a new conceptual-
ization of what warranted and blocked goals with respect a program should
be. This new approach, where warranted and blocked goals are attached with
degrees in a similar way of [34], addresses all rationality postulates proposed
in [14] without the need of extending the original program with the transposed
versions of all strict rules.

7 Related work

In the last years the development of combined approaches based on qualitative
reasoning and uncertainty has deserved much research work [32]. Preference-
based approaches to argumentation have been developed, many of them ori-
ented towards formalizing conflicting desires in multiagent systems [5–7]. In
contrast with these preference-based approaches, the P-DeLP framework in-
volves necessity measures explicitly attached to fuzzy formulas and the proof
procedure of the underlying possibilistic fuzzy logic is used for computing the
necessity measure for arguments.

There have also been generic approaches connecting defeasible reasoning and
possibilistic logic (e.g.[11]), and recently a number of hybrid approaches con-
necting argumentation and uncertainty have been developed. Probabilistic Ar-
gumentation Systems [29,30] use probabilities to compute degrees of support
and plausibility of goals, related to Dempster-Shafer belief and plausibility
functions. However this is not a dialectics-based framework as opposed to the
one presented in this paper. In [38] a fuzzy argumentation system based on
extended logic programming is proposed. In contrast with our framework, this
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approach relies only on fuzzy values applied to literals and there is no explicit
treatment of possibilistic uncertainty.

Research in logical properties for defeasible argumentation can be traced back
to Benferhat et al. [9,10] and Vreeswijk [41,42]. In the context of his abstract
argumentation systems, Vreeswijk showed that many logical properties for
non-monotonic inference relationships turned out to be counter-intuitive for
argument-based systems. Benferhat et al. [9] were the first who studied ar-
gumentative inference in uncertain and inconsistent knowledge bases. They
defined an argumentative consequence relationship `A taking into account
the existence of arguments favoring a given conclusion against the absence of
arguments in favor of its contrary. In contrast, the |∼

w
relationship proposed

in this paper takes into account the whole dialectical analysis for arguments
derivable from the program for any given goal.

In [9,10] the authors also extend the argumentative relation `A to prioritized
knowledge bases, assessing weights to conclusions on the basis of the `π en-
tailment relationship from possibilistic logic [24]. A direct comparison to our
|∼

w
relationship is not easy since we are using a logic programming framework

and not general propositional logic, but roughly speaking while `π takes into
account the inconsistency degree associated with the whole knowledge base,
our logic programming framework allows us to perform a dialectical analysis
restricted only to conflicting arguments related with the goal being solved.

8 Conclusions and future work

In this paper we have described how to model an agent’s beliefs and percep-
tions using P-DeLP. A salient feature of P-DeLP is that it is based on two
logical frameworks that have already been implemented (namely PGL [4] and
DeLP [27]). Several features leading to efficient implementations of the argu-
mentative proof procedure described in this paper have been also recently stud-
ied, particularly those related to comparing conflicting arguments by speci-
ficity [40] and defining transformation properties for DeLP programs [16].

In this context, P-DeLP keeps all the original features of DeLP while incorpo-
rating more expressivity and representation capabilities by means of possibilis-
tic uncertainty and fuzzy knowledge. One particularly interesting feature of
P-DeLP is the possibility of defining aggregated preference criteria by combin-
ing the necessity measures associated with arguments with other syntax-based
criteria (e.g. specificity [39,40]).

Part of our current research work will be developed into different directions.
First, we will extend the existing implementation of DeLP to incorporate the
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new features of P-DeLP. Second, we will apply the resulting implementation
of P-DeLP to improve existing real-world applications of DeLP and to de-
velop new ones. Finally, we will analyze extending P-DeLP to first order. It
must be remarked that the Generalized Modus Ponens rule used in P-DeLP
is syntactically the same as the one used in possibilistic logic [24]. As a con-
sequence, to implement the machinery of P-DeLP the underlying possibilistic
fuzzy logic PGL can be replaced by the possibilistic logic. The advantage of
this approach is that the current logic programming system can be extended to
first order, incorporating fuzzy unification between fuzzy constants [4]. In this
respect, in [1] we have extended P-DeLP through the use of fuzzy constants
and fuzzy unification at the object language and we have proposed a way to
handle conflicting arguments in the context of the extended framework.
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A Non-monotonic Inference Relationships and their Properties

A.1 Fundamentals

In classical logic, inference rules allow us to determine whether a given well
formed formula γ follows via “`” from a set Γ of well formed formulas, where
“`” is a consequence relationship (satisfying idempotence, cut and monotonic-
ity). As non-monotonic and defeasible logics evolved into a valid alternative
to formalize commonsense reasoning a similar concept was needed to capture
the notion of logical consequence without demanding some of these require-
ments (e.g. monotonicity). This led to the definition of a more generic notion
of inference in terms of inference relationships. Given a set Γ of well formed
formulas in an arbitrary logical language L, we write Γ|∼ γ to denote an in-
ference relationship “|∼ ”, where γ is a (non-monotonic) consequence of Γ.
We define an inference operator C|∼ associated with an inference relationship,
with C|∼(Γ) = {γ | Γ|∼ γ}. Given an inference relationship “|∼ ” and a set
Γ of sentences, the following are called basic (or pure) properties associated
with the inference operator C|∼(Γ):
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(1) Inclusion (IN): Γ ⊆ C(Γ)
(2) Idempotence (ID): C(Γ) = C(C(Γ))
(3) Cut (CT): Γ ⊆ Φ ⊆ C(Γ) implies C(Φ) ⊆ C(Γ)
(4) Cautious monotonicity (CM): Γ ⊆ Φ ⊆ C(Γ) implies C(Γ) ⊆ C(Φ).
(5) Cummulativity (CU): γ ∈ C(Γ) implies φ ∈ C(Γ ∪ {γ}) iff φ ∈ C(Γ),

for any well formed formulas γ, φ ∈ L.
(6) Monotonicity (MO): Γ ⊆ Φ implies C(Γ) ⊆ C(Φ)

These properties are called pure, since they can be applied to any language
L, and are abstractly defined for an arbitrary inference relationship “|∼ ”.
Nevertheless, other properties which link a classical inference operator Th
with an arbitrary inference relationship can be stated. In what follows we will
assume that Th stands for an operator that characterizes classical inference,
whereas C corresponds to some (non-monotonic) inference relationship “|∼ ”.

A.2 Horn and non-Horn logical properties

A common name for cataloging these non-pure properties is the distinction
between Horn properties and non-Horn properties. 7 Next we summarize the
most important non-pure properties. An in-depth discussion of these proper-
ties can be found elsewhere [31].

Horn properties

(1) Supraclassicality: Th(A) ⊆ C(A)
(2) Left logical equivalence (LL): Th(A) = Th(B) implies C(A) = C(B)
(3) Right weakening (RW): If x ⊃ y ∈ Th(A) and x ∈ C(A) then y ∈

C(A). 8

(4) Conjunction of conclusions (CC): If x ∈ C(A) and y ∈ C(A) then
x ∧ y ∈ C(A).

(5) Subclassical cummulativity (SC): If A ⊆ B ⊆ Th(A) then C(A) =
C(B).

(6) Left absorption (LA): Th(C(Γ)) = C(Γ).
(7) Right absorption (RA): C(Th(Γ)) = C(Γ).

7 Horn properties have the form “from the presence of some particular inferences,
the presence of some other inferences can be assured”. Non-Horn properties, on
the other hand, have the form “from the absence of some particular inferences, the
absence of some other inferences can be assured”.
8 It should be noted that “⊃” stands for material implication, to be distinguished
from the symbol “← ” used in a logic programming setting.
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Non-Horn properties

(1) Rationality of negation (RN): if A|∼ z then either A ∪ {x}|∼ z or
A ∪ {∼x}|∼ z.

(2) Disjunctive rationality (DR): if A∪ {x∨ y}|∼ z then A∪{x}|∼ z or
A ∪ {y}|∼ z.

(3) Rational monotonicity (RM): if A|∼ z then either A ∪ {x}|∼ z or
A|∼ ∼x.
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