
General Shape Grammar Interpreter for Intelligent Designs Generations

T. Trescak
Artificial Intelligence Research Institute
Spanish Council for Scientific Research

Barcelona, Spain
ttrescak@iiia.csic.es

I. Rodriguez
Applied Mathematics Department

University of Barcelona
Barcelona, Spain
inma@maia.ub.es

M. Esteva
Artificial Intelligence Research Institute
Spanish Council for Scientific Research

Barcelona, Spain
marc@iiia.csic.es

Abstract—Shape grammars play an important role in a new
generation of tools for the analysis and design of products. In
this work we present a general tool named Shape Grammar
Interpreter (SGI) for the automatic generation of designs.
The developed shape grammar framework allows designers
to obtain automatically generated designs and to participate in
the design process. In that way the generated design complies
with both the desired functionality and an attractive aspect.
Great effort has been devoted on having a comfortable way of
defining shapes and later using them in shape grammar rules
and designs’ generation process. We have also implemented
and incorporated in the tool an optimized subshape detection
algorithm. Hence, subshapes of the existing shapes can be
detected in the generation process obtaining more appealing
designs.

Keywords-shape grammars; electronic institution; virtual
world; 3D; interpreter;

I. INTRODUCTION

In recent years, ever-increasing advances in both 3D
computer visualization and artificial intelligent technologies
have motivated the evolution of traditional computer aided
design tools to more generic, useful and sophisticated ones.
Shape grammars play an important role in a new generation
of tools for the analysis and design of products.

Shape grammars in computation are a specific class of
production systems that generate geometric shapes or de-
signs [18][10]. Instead of using sequenced instructions as
basic unit of computation, production systems use unordered
and data-sensitive rules called production rules. Shape gram-
mars are capable to represent knowledge about both the
functionality and the form/shape of a product. Additionally,
shape grammars generate forms not defined previously, i.e
emergent shapes.

Production systems can be used for synthesis and classifi-
cation tasks. Our interest is centered on synthesis problems
which involve the generation of geometrical designs. Shape
grammars can be also used for analysis as the resulting
design can be used for purposes of explanation and what-
if analysis. In computer aided design, shape grammars
accelerate and simplify the development of prototypes.

In this research, we present a powerful tool named SGI
(Shape Grammar Interpreter) that allows users to create,

modify shape grammars and generate designs in an inter-
active way. Generated designs are two dimensional but the
framework will incorporate a transformation mechanism in
charge of creating the 3D counterpart and export it to several
3D formats. The main contribution of the framework is the
generic nature of the interpreter but other features, such
as usability, modularity and performance, are particularly
important from the user’s point of view. Potential applica-
tions of our research can be found in the educational field
(i.e architecture and arts) and in the automatic generation
of designs. We also present the use of this tool for the
design of the floor plan of Virtual Institutions, which are
virtual worlds where participants activities are regulated by
the defined institutional rules [1][9][4].

This paper is organized as follows. Section II presents
shape grammars and their history. Section III reviews the
related work on shape grammars and presents some state-of-
the-art solutions. Section IV gives an overview of the general
shape grammar interpreter including a detailed description of
the graphical user interface. Section V presents conclusions
and future work.

II. SHAPE GRAMMARS

Shape grammar is a method of generating designs by
using primitive shapes and the rules of interaction between
them. Shape Grammar rules are composed of left-side shapes
and right-side shapes. Right-side shapes are either trans-
formed left-side shapes or new additional shapes. Grammar
is executed as follows:

1) Recognition of a particular shape from the left-side
2) Replacement of the recognized shape to the right-side

shape of the rule.
As an example from we can take simple addition rule,

where we add a square to the top-right part of original
rectangle. In section IV-C we present this example. Later
this rule can be applied to this newly added rectangle and
to all its symmetries. To control how the rule is applied to
the left-side of the shape markers can be applied.

Shape Grammars were introduced by George Stiny and
James Gips in the early 1970s as a way of describing and
creating paintings and sculptures [18]. This first attempt
led to wide-spread use of grammars into multiple artistic,



scientific and industrial fields. It has been used to analyze
and recreate works of various artists like Piet Mondrian,
Georges Vantongerloo and Fritz Glarner and for many of
these artworks with great accuracy. In architecture, Frank
Lloyd Wright’s prairie houses [11], Palladio’s villas [20] or
Mughul gardens [21] were analyzed by the shape grammars
and new studies were presented according to original design.

The inventors of shape grammars showed that by using
simple geometrical shapes we can analyze and recreate
visual styles of complex original designs. We can regard
it as a way of an encapsulation of styles. It can be used
for educational purposes to better understand structure and
composition of original design and it also helps us to
discover principles behind the design. It is possible to also
generate new designs in the standard-defined style [14].

III. RELATED WORK

Shape grammars had their first applications in architecture
[19] but soon they had applications in engineering such
as in coffee-makers [2] and process plans [5] researches.
Shape grammars started to spread into lots of the fields
working with visual representations. Jose Duarte used them
to generate Siza’s Malagueira houses [7] and created an
online application that rendered houses depending on user
preferences. But shape grammars also entered non traditional
fields when they were used to derive cellular automata rule
patterns [22]. Sometimes those grammars were managed
manually (i.e with pencil and paper) or the computerized
approaches were done ad-hoc for a specific grammar. The
framework we present in this paper has been designed to
be a general tool to create and work with any 2D shape
grammar.

An early generic shape grammar system was implemented
in prolog [6]. Nevertheless, first attempts produced results
not visually attractive. Nowadays, shape grammars continue
being an interesting research topic and trends are oriented to
provide the designer both an attractive visual interface and
realistic results. Cityengine system was inspired by Linden-
mayer systems [17] where rules are codified using symbols.
This system introduced the CGA shape concept [16] [15].
Rather than building on string replacement as L-systems do,
cityengine rules replace shapes with shapes and we could
say it is an hybrid symbol-shape grammar. In contrast, our
approach is a pure shape grammar framework where the
rules and the process of rules application is performed using
directly geometrical shapes. A recent research, also using
CGA shape, has presented a real-time visual editor which
works on usability issues such as the possibility of doing
interactively local modifications on buildings [13].

IV. GENERAL SHAPE GRAMMAR
INTERPRETER (SGI)

Up until now there have been numerous attempts to create
a general shape grammar interpreter but most of existing

tools are either very specific on its purpose, had only limited
functionality, were programmed to one operational system
or had any other limitations such as speed of generation or
impossibility to detect sub-shapes.

We have focused on bringing complete and robust tool
that would allow user comfortably specify any shapes and
rules and also have complete control over grammar rendering
process. Another important aspect of this tool is the object-
oriented design that allows future programmers easily extend
current functionality.

A. Framework description

SGI is programmed in JAVA and we plan to offer this
software as open-source to provide possibilities of joint
development in different shape grammar communities. Great
effort has been devoted on having a comfortable way of
defining shapes and later using them in shape grammar rules.

User creates new shapes by drawing them on canvas
using a mouse. Rules are operated in similar manner, the
user creates rules by specifying the spatial relation either
parametrically or by mouse. All modifications of current
grammar are persisted in XML file for future use.

There exist predefined shapes such as rectangle or tri-
angle. It is also possible to use curves. Existing shapes are
used to create rules of a shape grammar. Currently supported
types of rules are:

• addition: adds new shape in spatial dependency to
another shape;

• substitution: substitutes existing shape by the new
shape; and

• modification: modifies existing shape to new propor-
tions.

We contemplate undeterministic shape grammars, charac-
terized by the possibility of applying several rules in one
generation step. Several mechanisms are implemented to
select a candidate shape and rule to proceed in generation
process. They are separated in two groups:

1) Tree-search mechanism stores state of current gener-
ation process in a tree structure and uses traditional
tree-search algorithms to find the next rule to apply
(e.g. breadth first, depth first).

2) Sub-shape detection mechanism detects sub-shapes
emerging from current generation process. This
means, that after each step of design generation all
sub-shapes that exist on the left side of any rule are
detected so they can be used in the next step.

User has the possibility to either select next rule of current
generation process or lets computer to decide by selecting
different levels (e.g. low, medium, high) of randomization.
This allows user to generate either all possible designs in
the next step or select random design processed in n steps.
Implementation of tree-search mechanism is trivial and it
does not result into shape emergence. Because of this we



will focus on sub-shape detection meachnism which brings
much more possibilities into shape generation process.

B. Subshapes detection algorithm

Shape Grammar Interpreter implements modified version
of Ramesh Krishnamurti algorithm for subshape detection
[12]. This algorithm processes rules as the euclidean trans-
formations of a left side of the rule to the right side of the
rule.

Krishnamurtis algorithm is capable of solving most of
the problems related with subshape detection but it also
has some limitations. Due to missing detection of infinite
subshape (such as finding line subshapes in line segment),
it processes only shapes with at least three points. However,
the biggest drawback of this algorithm is performance. To
overcome this problem we have modified the algorithm by
allowing detection of subshapes with at least one intersec-
tion. This provides real-time capability of rendering designs
using subshape detection. Algorithm structure is presented
next. As it works with specific terms of maximal shape,
maximal line and viable intersections, we explain them next.

1) Maximal shape and maximal line: Maximal shape is
a new shape created from original one using its maximal
lines, that is the minimum set of lines maintaining the
original form of the shape (function CreateMaxLns in the
algorithm). Figure 1 shows how the maximal shape is created
by joining lines into maximal lines. In original shape a) lines
a and b, or c and d are joined by algorithm to maximal
line e and f to create maximal shape b). This allows the
algorithm to work with minimal set of intersections and
also to correctly detect if subshape is within boundaries of
original shape (as explained in section IV-B3 below).

Figure 1. Maximal lines: a) original shape b) maximal shape

2) Viable intersections: Viable intersection is any internal
or external intersection of the two segments of the shape (this
process is done by function CreateInts in the algorithm). By
outer intersection we mean intersection which is positioned
on the line containing the segment, but outside of its
boundaries.

In Figure 2a) we see all viable intersections of the
shape. The internal intersections are shown as black boxes,
external as white boxes and dotted line displays containing
line of segments. Figure 2b) emphasizes the importance of
finding external intersections as without them the subshape

(represented in grey) would not be detected in input shape
(black).

3) Algorithm: Below we present naive representation of
the Krishnamurtis subshape detection algorithm.

Algorithm 1: Subshape detection algorithm
Input: inputShape, subShape
Output: Collection of subshapes
begin

maxLines ← CreateMaxLns (inputShape)
subMaxLines ← CreateMaxLns (subShape)
inters ← CreateInts (maxLines)
transfs ← FindTransfs (subshape, inters)
forall transfs do

if ∀subMaxLines ⊆ maxLines then
subshapes ← TransShape (subshape)

end

Let us explain step by step, over a simple example, the
execution of the algorithm and what modifications we have
performed. In this example we will be detecting subShape
b) in inputShape b) displayed in Figure 3.

In the first step, maximal shapes (sets of maximal lines)
are created from both of the shapes as presented in previous
section. When this process is finished we find all the viable
intersections in both shapes as shown in Figure 4.

The most time-consuming part of the algorithm is find-
ing correct transformations (function FindTransfs) of the
subShape to the inputShape. In the original version of the
algorithm, any three points are taken from subShape to cre-
ate the transformation to any three points in the inputShape.
This transformation is used to check if remaining points
of the subShape are transformed to some points of the

Figure 2. Intersections

Figure 3. Algorithm input: a) subShape b) inputShape



Figure 4. Intersections: a) subShape b) inputshape

inputShape. This search space is exponential to the amount
of intersections in inputShape. Our proposal reduces this
search space by using intersection triplets, that is a structure
containing intersection point, two guiding points, the angle
and the ratio of lengths between related segments. Figure 5
shows an example of intersection triplet. The intersection
point is represented as a white box and guiding points
are represented as black boxes. The angle is created by
containing lines of the two segments and ratio is obtained
from the lengths of the segments.

Figure 5. Intersection triplet

In a first step we find triplets in the subShape, order
them by the angle and select the one with the smallest angle.
Second we start expanding triplets in the inputShape. All
triplets that do not have the same angle and the same ratio
are thrown away, the good ones are stored. For each of the
stored triplet we create affine transformation, and check if
remaining points of the subShape will fall onto points of
the inputShape. We store all passing transformations and
discard the rest.

In the last step, we check if transformed maximal lines of
the subShape fall within the boundaries of maximal lines of
the inputShape (function TransShape in the algorithm).
Figure 6 shows the passing condition a) in the left part
of the shape and a failing condition b) in the right part.
We see that we could find the transformation of the points
of the subShape to the lower part of the inputshape, but
the test on the boundaries fails. The white boxes represent
intersection points and the black boxes are guiding points.

We have significantly improved the performance of the
subshape detection algorithm using intersection triplets. In
the original version, we would have to test k!

(
n
k

)
combina-

tions, where k is the number of points used to create the
transformation and n is the number of intersections of the

Figure 6. Boundary detection: a) Passing detection b) Failing detection,
missing boundary

Figure 7. SGI User Interface

inputShape. Usually, the transformation is created using
three points, so k is equal to 3. In the provided simple
example, it would be 504 combinations to test. With the
proposed modification we have to test only 4 combinations.

C. SGI User Interface

Figure 7 displays SGI graphical user interface. It was
designed to provide comfortable user experience. Tabbed
framework lets the user to customize the interface. Focus
was stressed on comfortable definition of shapes and rules
by using mouse. Parts and rules are defined on separate
canvases giving the user complete control and overview of
ongoing work. This figure also points to most important
parts of the SGI. Part 1) is used to show all current rules.
Part 2) shows all current shapes. The list is created by the
thumbnails of given objects. Part 3) is the edit area. Here
it is where most of the actions are performed, including all
shape and rule modifications. Part 4) and 5) are used for
grammar rendering. Part 4) is used to define what protocol
and randomization we want to use for rendering as well as
how many iterations we want to perform in one rendering.
This allows us to render grammar step by step and see how
the shape emerges.



Let us present some results of generations using SGI.
Figure 8a) represents a very simple spatial rule, where we
add another square to original square, creating new square
in their intersection. Figure 8b) shows the result of the
generation using simple tree search protocol. This simple
generation respects original shape and its orientation always
creating the very simple design.

Figure 8. a) Definition of rule b) Generated design using tree search
protocol

Let us see what will happen when we allow the generator
to use subshape detection. Figure 9a) shows the result of
generation using simple rule from figure 8a) with active
subshape detection and active markers. Figure 9b) depicts
the result of generation with active subshape detection but
without markers. As we see we have generated much more
shapes creating very interesting designs from this one simple
rule. Presented technology of markers limits subshape de-
tection for emerging shapes. When placing marker on some
shape, generator not only has to find subshape in current
shape but also has to find this marker on the same position
in the detecting shape. In Figure 9a), when smaller unmarked
rectangles, such as those created by intersection of rectangles
are ignored, the detection of possible shapes is limited to the
originally marked ones.

Figure 9. Generated design using rule from figure 8 with activated
subshape detection. a) With markers b) Without markers

V. CONCLUSION AND FUTURE WORKS

Shape grammars are very promising and usable mecha-
nism for analysis of existing designs and smart generation
of new designs. Up until now there did not exist a tool
that would comfortably allow to process it. In this research
we have presented a generic shape grammars tool named
SGI. The framework allows to interactively create shapes
and rules and several mechanisms have been implemented
to select a candidate shape and rule to proceed in generation

process. Contributions of the research are 1) the generic
nature of the interpreter, 2) the inclusion of an optimal
algorithm for subshapes detection and 3) the user-friendly
design.

Although SGI can be used in several fields of applications,
we plan to use it in the development of virtual institu-
tions [1][4]. Virtual institutions are interaction environments
where participants can be human and software agents. It
is a normative environment where software and human
agents can participate and collaborate in a joint 3D virtual
world [3]. Communication between participants is done by
avatars (user’s or generally agents computer representation
of himself/herself or alter ego). Institutional rules structure
valid interactions within the institution providing control-
lable and normative environment. For the specification of
the institutional rules, we use electronic institutions (EI), a
well-known MAS methodology. The institution specification
[8] defines among other issues the activities (interactions
protocols) participants can engage in and their connections,
that is the role flow policy among them. It also establishes
the maximum number of participants for each activity.

Construction of such Virtual World (VW) will be done in
two phases:

1) Specification of institutional rules using Islander Tool
2) Generation of the Virtual World
We plan to use the Shape Grammar Interpreter in the

second phase to automatically generate the floor plan of
the building taking into account the institution specification.
For this purpose, we will extend the tool to load existing
specification of an EI and extract needed metadata such
as: how many rooms are to be generated, how they are
linked or what is the needed size of the room. These
parameters will be later used as input for a defined floor
plan grammar to create initial 2D layout of the virtual
environment. Another shape grammar will solve automatic
population of the functional and non-functional objects into
the VW (e.g. interaction objects such as reception desk,
furniture . . . ). We are also working on the mechanism of
transforming 2D representation into a 3D one and then
exporting it into an open standard format for interactive 3D
applications like COLLADA or X3D.

ACKNOWLEDGMENT

Partially funded by projects IEA (TIN2006-15662-C02-
01), AT (CONSOLIDER CSD2007-0022) and by the Gen-
eralitat de Catalunya under the grant 2005-SGR-00093.
M.Esteva enjoys a Ramon y Cajal contract from the Spanish
Government. We want to thank to Joan Carles Naranjo,
Yestyn Jowers and Miquel Prats for their extensive support
on this research.



REFERENCES

[1] A.Bogdanovych, M.Esteva, S.Simoff, C.Sierra, and H.Berger.
A methodology for developing multiagent systems as 3d elec-
tronic institutions. In Agent-Oriented Software Engineering
VIII, volume 4951 of Lecture Notes in CS, pages 103–117.
Springer, 2008.

[2] M. Agarwal and J. Cagan. A blend of different tastes: The
language of coffee makers. Environment and Planning B:
Planning and Design, 25(2):205–226, 1998.

[3] A. Bogdanovych, M. Esteva, S. Simoff, C. Sierra, and
H. Berger. A methodology for 3d electronic institutions.
In AAMAS ’07: Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems,
pages 1–3, New York, NY, USA, 2007. ACM.

[4] Anton Bogdanovych. Virtual Institutions. PhD thesis, Uni-
versity of Technology, Sydney, Australia, 2007.

[5] K. N. Browna, C. A. McMahon, and J. H. Sims Williams. De-
scribing process plans as the formal semantics of a language
of shape. Artificial Intelligence in Engineering, 10(2):153–
169, 1996.

[6] Chase S C. Shapes and shape grammars: from mathematical
model to computer implementation. Environment and Plan-
ning B: Planning and Design, 16:215–242, 1989.

[7] J. P. Duarte. Customizing mass housing : A discursive gram-
mar for Siza’s Malagueira houses. PhD thesis, Cambridge
(MA): Massachusetts Institute of Technology, 2001.

[8] Marc Esteva, David de la Cruz, and Carles Sierra. Is-
lander: en electronic institutions editor. In W. Lewis John-
son Cristiano Castelfranchi, editor, Proceedings of the First
International Joint Conference on Autonomous Agents and
Multiagent Systems, volume 3, pages 1045–1052, Bologna,
Italy, July 2002. ACM PRESS.

[9] I.Rodriguez, A.Puig, M.Esteva, C.Sierra, A.Bogdanovych,
and S.Simoff. Intelligent objects to facilitate human participa-
tion in virtual institutions. In IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Tech-
nology, pages 196–199, 2008.

[10] T. W. Knight. Shape grammars: six types. Environment and
Planning B: Planning and Design, 26(1):15–31, 1999.

[11] H Koning and J Eizenberg. The language of the prairie: Frank
lloyd wright’s prairie houses. Environment and Planning B,
8(3):295–323, 1981.

[12] R. Krishnamurti. The construction of shapes. Environment
and Planning B: Planning and Design, 8:5–40, 1981.

[13] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive
visual editing of grammars for procedural architecture. ACM
Trans. Graph., 27(3):1–10, 2008.

[14] Junsik Moon. Shape grammar for Mies van der Rohe’s high-
rise apartment. PhD thesis, S.M. Massachusetts Institute of
Technology, 2007.

[15] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural modeling of buildings. ACM
Trans. Graph., 25(3):614–623, 2006.

[16] Yoav I. H. Parish and Pascal Müller. Procedural modeling of
cities. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
pages 301–308, New York, NY, USA, 2001. ACM Press.

[17] Radoslaw Karwowski Brendan Lane Przemys-
law Prusinkiewicz, Lars Mndermann. The use of positional
information in the modeling of plants. In Proceedings of
ACM SIGGRAPH 2001, page 289300, 2001.

[18] G. Stiny and J. Gips. Shape grammars and the generative
specification of painting and sculpture. IFIP Congress 1971.
North Holland Publishing Co., 1971.

[19] G. Stiny and J. Gips. Shape grammars and the generative
specification of painting and sculpture. In C. V. Friedman,
editor, Information Processing ’71, pages 1460–1465, Ams-
terdam, 1972.

[20] G Stiny and W J Mitchell. The palladian grammar. Environ-
ment and Planning B, 5(1):5–18, 1978.

[21] G Stiny and W J Mitchell. The grammar of paradise: on the
generation of mughul gardens. Environment and Planning B,
7(2):209–226, 1980.

[22] E. Crawley T. Speller, D. Whitney. Using shape grammar
to derive cellular automata rule patterns. Complex Systems,
17:79102, 2007.


