
A Scalable Message-Passing Algorithm for Supply Chain Formation

Toni Penya-Alba
Jesus Cerquides

Juan A. Rodriguez-Aguilar
IIIA - CSIC

Campus de la UAB, E-08193 Bellaterra, Spain
{tonipenya, cerquide, jar}@iiia.csic.es

Meritxell Vinyals
Department of Computer Science

University of Verona
Strada le Grazie, 15, Verona, Italy
meritxell.vinalssalgado@univr.it

Abstract

Supply Chain Formation (SCF) is the process of de-
termining the participants in a supply chain, who will
exchange what with whom, and the terms of the ex-
changes. Decentralized SCF appears as a highly intri-
cate task because agents only possess local information
and have limited knowledge about the capabilities of
other agents. The decentralized SCF problem has been
recently cast as an optimization problem that can be effi-
ciently approximated using max-sum loopy belief prop-
agation. Along this direction, in this paper we propose
a novel encoding of the problem into a binary factor
graph (containing only binary variables) as well as an
alternative algorithm. We empirically show that our ap-
proach allows to significantly increase scalability, hence
allowing to form supply chains in market scenarios with
a large number of participants and high competition.

1 Introduction
Supply Chain Formation (SCF) is the process of determining
the participants in a supply chain (SC), who will exchange
what with whom, and the terms of the exchanges (Walsh and
Wellman 2003). Today’s companies are required to dynami-
cally form and dissolve trading relationships at a speed and
scale that can be unmanageable by humans, giving rise to
the need for automated SCF.

Automating SCF poses an intricate coordination problem
to firms that must simultaneously negotiate production rela-
tionships at multiple levels of the SC. This problem has been
already tackled by the AI literature, mostly through auction-
based approaches. Several contributions (Walsh et al. 2000;
Collins et al. 2002; Cerquides et al. 2007) have addressed
the problem by means of combinatorial auctions (CAs) that
compute the optimal SC allocation in a centralized manner.
Unfortunately, since even finding any feasible SC allocation
is NP-Hard (Walsh and Wellman 2000; Fionda and Greco
2009), sufficiently large SCF problems will be intractable,
hence hindering the scalability of the global optimization
performed by auction-based approaches. Furthermore, as ar-
gued in (Walsh and Wellman 2003), even when the computa-
tion is tractable, no single entity may have global allocative
authority to compute allocations over the entire SC.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The work in (Walsh and Wellman 2003) proposes to solve
the SCF problem in a fully decentralized manner. Each good
in the SC is auctioned separately and all auctions run simul-
taneously without direct coordination. Therefore, each auc-
tion allocates a single resource considering the offers to buy
or sell submitted by agents. More recently, Winsper et al.
(Winsper and Chli 2010) have cast the decentralized SCF
problem as an optimization problem that can be approxi-
mated using (max-sum) loopy belief propagation (Farinelli
et al. 2008). We shall refer to Winsper’s approach as LBP.
Winsper et al. empirically show that LBP is able to pro-
duce more efficient SCs than (Walsh and Wellman 2003).
Nonetheless, the problem representation employed by LBP
leads to exponential memory and communication require-
ments that largely hinder its scalability. Furthermore, the
larger the number of agents, the further the SC assessed by
LBP is from the optimal one.

Against this background, in this paper we propose a novel
approach to the decentralized SCF problem, the so-called
Reduced Binary Loopy Belief Propagation (RB-LBP), which
significantly outperforms LBP in terms of scalability. RB-
LBP allows agents to form SCs in a bottom-up manner, re-
quiring only local communication and limited knowledge
of other participants. The main contributions of RB-LBP
are: (i) a novel encoding of the SCF problem into a binary
factor graph (containing only binary variables); and (ii) a
derivation of simplified messages that dramatically lowers
the communication requirements of message passing.

We show that in the worst case memory and communi-
cation requirements of RB-LBP scale linearly, whereas LBP
scales exponentially. Furthermore, we empirically compare
RB-LBP versus LBP. We observe that as competition in the
market increases:1 (i) RB-LBP can save several orders of
magnitude in terms of memory and communication with re-
spect to LBP; (ii) the value of the SCs assessed by RB-LBP
can be up to 2 times higher than those assessed by LBP.

The paper is organized as follows. Section 2 introduces
LBP from (Winsper and Chli 2010) and analyzes its mem-
ory and communication requirements. Section 3 describes
RB-LBP, our main contribution. Section 4 details the results
after comparing LBP with RB-LBP, and section 5 draws con-
clusions and sets paths for future research.

1In terms of number of providers offering each good.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1436



(a) TDN (b) SC factor graph

Figure 1: Example of a TDN and its LBP encoding.

2 A Base Approach to Decentralized SCF
To automate SCF, Walsh and Wellman introduce the notion
of Task Dependency Network (TDN) as a way of captur-
ing complementarities among production processes. A TDN
takes the form of a bipartite directed acyclic graph. Figure 1a
depicts an example of a TDN. Producers (p1, p2, p3, p4) and
consumers (c1, c2, c3) are represented by rectangles, goods
(g1, g2) are represented by circles, and links between rectan-
gles represent potential flows of goods. Producers p1, p2, p3
do not require any input goods to produce each one unit of
output good g1, whereas producer p4 requires g1 to produce
g2. Good g2 can be consumed by either c1, c2, or c3.2 Pro-
ducers p1, p2, p3 and consumers c1, c2, c3 are potential part-
ners of p4 as they are all eligible to establish trading rela-
tionships. The number below each producer stands for the
selling price of her service, whereas the number below each
consumer stands for the purchasing price.

The TDN in figure 1a allows several feasible SC configu-
rations. For instance, configuration SC1 : p1 → p4 → c2 is
feasible, whereas SC2 : p4 → c2 is not (nobody provides g1
to p4). The value of a configuration is assessed by subtract-
ing its producers’ values from its consumers’ values. The
value of SC1 is 22− 10− 5 = 7. In general, the value of a
configuration SC is

∑
ci∈SC v(ci)−

∑
pj∈SC v(pj), where

v(ci) and v(pj) stand for the i-th consumer and j-th producer
values respectively. The SCF problem is that of finding the
feasible configuration with maximum value.

2.1 Using Loopy Belief Propagation
The work in (Winsper and Chli 2010) shows that the SCF
problem can be cast as an optimization problem that can
be efficiently approximated using max-sum. The formalism
employed to represent SC problems is inspired on TDNs
(Walsh and Wellman 2003). Thus, (Winsper and Chli 2010)
offers the means of converting a TDN into a graphical
model, and concretely into a factor graph on which max-
sum can operate. Figure 1 depicts the conversion of a TDN
into a factor graph that we detail next.

In the factor graph there is a dashed box per agent in the
TDN and the goods do not appear. Inside an agent’s box
there is a variable, represented by a circle. For instance, the
box for p1 contains variable xp1 . The values (states) of each
variable encode the individual decisions that the agent needs

2In (Walsh and Wellman 2003), producers can only produce a
single unit of a single type of output good.

xp1 [fp1 ] xp4 [fp4 ] xc1 [fc1 ]
σ0: sell to p4 [-5] σ2:buy from p1, sell to c1 [-10] σ12:buy from p4 [20]
σ1: don’t sell [0] σ3: buy from p1, sell to c2 [-10] σ13: don’t buy [0]

σ4: buy from p1, sell to c3 [-10]
σ5: buy from p2, sell to c1 [-10]
σ6: buy from p2, sell to c2 [-10]
σ7: buy from p2, sell to c3 [-10]
σ8: buy from p3, sell to c1 [-10]
σ9: buy from p3, sell to c2 [-10]
σ10: buy from p3, sell to c3 [-10]
σ11: don’t buy, don’t sell [0]

Table 1: Example of states (and values) of agent variables.

to make regarding her exchange relationships plus an inac-
tive state. For instance, table 1 lists the states of the variables
corresponding to agents p1, p4, and c1. Notice that the states
of p4 (from σ2 to σ11) encode all possible exchange relation-
ships for the agent.

In the factor graph variables corresponding to potential
partners are connected through a compatibility factor (rep-
resented as a square). Each compatibility factor encodes the
compatibility between the decisions of the two agents in-
volved. Two agents decisions are incompatible whenever
one of them is willing to trade with the other, but the other
does not. Consider agent variable xp4 , its state σ2 is compat-
ible with xp1 ’s state σ0, but it is incompatible with xp1 ’s σ1
(p1 doesn’t provide g1 to p4!). If two states are compatible,
the value of the pairwise function is zero, otherwise is nega-
tive infinity. Thus, considering p1 and p4, fp1p4(σ0, σ2) = 0
and fp1p4(σ1, σ2) = −∞. Note that to determine their com-
patibility, both p1 and p4 need to keep a copy of compatibil-
ity factor fp1p4 .

The factor graph resulting from converting a TDN also
contains activation factors (omitted in figure1b), each one
representing the purchasing or selling price of an agent. Fol-
lowing table 1, p1 assigns value -5 to its state σ0, and c1
assigns value 20 to its state σ12.

To summarize, the conversion process transforms a
TDN into an SC factor graph with agent variables V =
{x1, . . . , xN}, activation factors {f1, . . . , fN}, and a set F
of compatibility factors. Then, the SCF problem amounts to
finding a state assignment for the agent variables in V that
maximizes the following reward function:

R(x1, . . . , xN ) =
∑
xi∈V

fi(xi) +
∑

fkl∈F

fkl(xk, xl) (1)

Notice that R(x1, . . . , xN ) assesses the value of an SC
configuration. The optimization of R can be approximated
by running max-sum over an SC factor graph. LBP (Winsper
and Chli 2010) has SC participants iteratively exchange
messages encoding their trading decisions along with their
values. Message-passing occurs in a decentralized manner
and agents only exchange messages with their potential part-
ners. This process continues until all agent variables settle on
some state. At that point, the states of agent variables repre-
sent a solution to the SCF problem.

In max-sum, messages in a factor graph flow from vari-
able to factor and from factor to variable. Max-sum assesses

1437



the message from variable x to factor f (µ′x→f ) as follows:

µ′x→f (x̄) =
∑

g∈N (x)\{f}

µg→x(x̄) (2)

whereN (x) stands for the neighboring factors of variable x,
x̄ stands for a state of x, and µg→x stands for the last mes-
sage received by variable x from factor g. Max-sum assesses
the message from f to x (µ′f→x) as follows:

µ′f→x(x̄) = max
Ȳ

(f(x̄, Ȳ ) +
∑
y∈Y

µy→f (ȳ)) (3)

where Y is the set of variables linked to factor f excluding
x, Ȳ is the joint state for all the variables in Y including y.

Every time a variable receives messages from all its
neighboring factors, it can locally update the value of each
of its states given the messages received so far:

R̃x(x̄) =
∑

f∈N (x)

µf→x(x̄) (4)

Equation 4 allows each agent to periodically obtain an ap-
proximation to the function to optimize in equation 1. Thus,
the highest-value state corresponds to the SC configuration
with maximum value. Convergence of LBP occurs when all
agents find that the state that maximizes their R̃x is the same
as in the previous iteration. Upon convergence, LBP includes
a post-processing phase that removes incompatibilities from
the computed SC configuration.

2.2 Analysis
The example in figure 1b makes us wonder about LBP’s
memory and communication requirements. Notice that
agent variable xp4 requires 32 + 1 states and each compati-
bility factor requires 2 · (32 + 1) entries (the product of the
number of states of the two agents). If agent p4 had another
input good provided by three other agents, xp4 would re-
quire 33 + 1 states and factors with 2 · (33 + 1) entries. In
general, the memory requirements of an SC factor graph ex-
ponentially grow with the number of goods and neighboring
agents. Notice that equations 2 and 3 indicate that the size
of messages between agent variable and factor is as large as
the number of states in the agent variable. In figure 1b, LBP
would employ messages of size 32 + 1 from agent variable
xp4 to its compatibility factors.

From this discussion follows that in markets with high
degrees of competition, the SC factor graph resulting from
converting a TDN is highly demanding in terms of mem-
ory and communication requirements. Next, we assess some
upper bounds on the amount of memory required by an SC
factor graph along with the overall bandwidth required by
LBP at each iteration. We assume that there are n agents,
each agent is connected to at most G goods, and each good
is connected to at most A agents. Hence, an agent has at
most G · A potential partners. Therefore, the requirements
are:
Memory. Each compatibility factor requires at most A2G

entries to store compatibility values. Since each agent shares
compatibility factors withG ·A neighbors, the memory each
agent requires is O(G ·A2G+1).

Figure 2: RB-LBP binary factor graph of the TDN in Fig. 1a.

Communication. The messages between an agent variable
and its compatibility factor are of size O(AG). Since each
agent shares compatibility factors with at most G ·A neigh-
bors, she consumes O(G · AG+1) bandwidth. Finally, since
we consider n agents in the SC, LBP requiresO(n·G·AG+1)
bandwidth overall per iteration.

Therefore, the exponential resource requirements of LBP,
particularly in markets with high degrees of competition,
significantly hinders its scalability. Furthermore, regarding
privacy, the message each agent receives from a trading part-
ner also contains information about her competitors. For ex-
ample, in figure 1b producer p4 would send a message to p1
that contains all her states and thus p1 would be aware of the
existence of other producers of good g1.

3 Binarized Belief Propagation for SCF
We have argued that in markets with high competition, the
mapping to a factor graph provided in (Winsper and Chli
2010) requires an overlarge amount of memory. In this sec-
tion we develop RB-LBP (first introduced in (Penya-Alba et
al. 2012)), an alternative algorithm that scales up to high
competition markets. We start by introducing a new map-
ping of a TDN into an SC binary factor graph (containing
only binary variables). Thereafter, we show that variables,
factors and messages in an SC binary factor graph take a
simpler form than their counterparts in an SC factor graph.
Furthermore, we describe RB-LBP’s post-processing phase
to remove incompatibilities from the computed SC configu-
ration. Finally, we provide a complete description of RB-LBP
and we analyze its worst-case requirements.

3.1 From TDN to SC Binary Factor Graph
Figure 2 shows the SC binary factor graph that results from
encoding the TDN in figure 1a. In our encoding each agent is
responsible for several decision variables. In figure 2, each
dashed box surrounds the variables and the factors that an
agent is responsible for. This new mapping introduces two
types of binary decision variables:
Activation variables aα encoding whether agent α is active
(aα = 1) or inactive (aα = 0), namely part of the SC or not.
Option variables bαgβ and sαgβ . bαgβ encodes agent’s β
decision of buying good g from agent α, whereas sαgβ en-
codes agent’s α decision to sell good g to agent β.

For example, consider the variables p4 is responsible for.
The decision of p4 to participate in the SC is encoded as vari-
able ap4 . Furthermore, p4 can acquire good g1 either from
p1, p2 or p3. Therefore, p4 requires variables bp1g1p4 , bp2g1p4

1438



and bp3g1p4 to encode each of the three possible decisions.
If p4 is inactive (ap4 = 0), she should not buy g1 and so
bp1g1p4 , bp2g1p4 and bp3g1p4 should all be 0. Furthermore,
whenever p4 is active, she should buy g1 from only one of
her providers, that is, only one out of bp1g1p4 , bp2g1p4 and
bp3g1p4 should be 1. The information about whether a set of
values is acceptable is stored in factor fS linking ap4 with
option variables bp1g1p4 , bp2g1p4 , bp3g1p4 . Since this factor
guarantees that only one of the providers is selected, we call
it selection factor. In general, to guarantee that only one of
the providers of a given good is selected, we make use of a
selection factor. A selection factor links the activation vari-
able from the agent with the different choices for that good.
Note that in a selection factor, the role of the activation vari-
able is different from that of option variables.

We do also need to guarantee that different agents take co-
herent decisions. Thus, we add a factor that constrains sαgβ
and bαgβ to be either both 1 or both 0. We call this kind of
factor equality factor. Equality and selection factors encode
hard constraints. Whenever a variable assignment satisfies a
hard constraint, its value is 0, otherwise it is negative infinity.

Finally, we introduce agents’ buying and selling prices
into the SC binary factor graph by means of activation fac-
tors (not included in figure 2). Thus, each agent α has a fac-
tor fα that stores: (i) zero whenever aα is 0; and (ii) agent
α’s buying or selling price otherwise.

From the example, we are ready to specify the steps
needed to transform a TDN into an SC binary factor graph.

Conversion Algorithm: Each agent α performs:

1. Variable creation.
(a) She creates a variable aα encoding whether agent α is

active or not.
(b) For each good g and agent β such that agent α offers

good g to agent β, she creates a variable sαgβ encoding
agent α’s decision to sell good g to agent β .

(c) For each good g and agent β such that agent α is offered
good g by agent β, she creates a variable bβgα encoding
agent α’s decision to buy good g from agent β.

2. Activation factors creation. She creates activation factor
fα to store: (i) zero whenever aα is 0; and (ii) agent α’s
buying or selling price otherwise.

3. Selection factors creation.
(a) For each good g that α can buy, she creates selection

factor fαg with: (i) aα as activation variable; and (ii) an
option variable bβgα per provider β of good g.

(b) For each each good g that α can sell, she creates selec-
tion factor fαg with: (i) aα as activation variable; and
(ii) an option variable sαgβ for each buyer β of good g.

4. Equality factors creation. For each good g and each
agent β such that agent α is offering good g to agent β,
she creates an equality factor linking sαgβ and bαgβ .

3.2 Simplifying Message-Passing
The algorithm above produces a SC binary factor graph
on which max-sum can run. However, next we show that
the memory and communication requirements for max-sum

over SC binary factor graphs can be severely reduced. First,
we argue that there is no need to store constraint factors be-
cause we can provide explicit equations for their messages.
Secondly, we argue that since we employ max-sum, we can
represent any function over a binary variable using a single
real number. Based on these observations, we provide the
reduced equations for the messages that RB-LBP will em-
ploy (refer to (Penya-Alba 2012) for complete details of the
derivation ).
Simplifying factor to variable messages. Max-sum iter-
ates exchanging messages from factors to variables (equa-
tion 2) and from variables to factors (equation 3). Since vari-
ables are binary, computing the expression in equation 2 is
straightforward. On the other hand, the right hand side of
equation 3 assesses the maximum over a potentially large
set of variables. Note that both equality and selection fac-
tors represent hard constraints, whose value is either zero or
minus infinity. Hence, we can assess the maximum by only
considering those assignments satisfying the hard constraint
(namely those with zero value). This severely simplifies the
assessment of equation 3.
Reducing messages. Observe that a single value δ = b(1)−
b(0) is enough to represent a function b over a binary vari-
able. Thus, δ > 0 means x = 1 is preferred to x = 0, δ < 0
means x = 0 is preferred to x = 1, and δ = 0 represents
no preference. The same idea can be applied to messages.
Whenever RB-LBP needs to send a message µ to a binary
variable, instead of sending 〈µ(0), µ(1)〉, it can send a single
value ν = µ(1) − µ(0). To take full advantage of this idea,
we assess the single-valued messages that are exchanged on
an SC binary factor graph.

After compiling constraint factors into equations and re-
ducing messages, the messages employed by RB-LBP can be
computed as follows:
1. The message from variable x to factor f contains a sin-
gle value ν′x→f , the addition of the last messages received
from every factor linked to x but f .

ν′x→f =
∑

f ′∈N (x)\{f}

νf ′→x (5)

2. The message ν′fS→a sent from selection factor fS to its
activation variable a is the largest message received by fS
from any of its option variables oi, 1 ≤ i ≤ n.

ν′fS→a = max
1≤i≤n

(νoi→fS + εoi) (6)

3. The message ν′fS→oi sent from selection factor fS to op-
tion variable oi is assessed as:
ν′fS→oi = εoi + min(νa→fS , min

1≤j 6=i≤n
−(νoj→fS + εoj )) (7)

4. The message ν′fα→aα sent from activation factor fα to
activation variable aα is simply the agent’s buying or sell-
ing price.
5. The message from equality factor fE joining variables s
and b to variable b is a single value ν′fE→b assessed as the
last message received by fE from s. Since equality factors
are symmetric, the message from fE to variable s is the last
message received from b.

1439



ν′fE→b = νs→fE ν′fE→s = νb→fE (8)

Note that to assess the messages from factors to variables
(using equations 5-7) agents do not need to store the tables
representing constraint factors. Since the size of a selection
factor grows exponentially with the number of options, the
equations above yield large savings in memory.

Finally, notice that equations 6 and 7 include epsilon val-
ues. These are included to help RB-LBP break ties. Con-
sider the example in figure 1a. There, p4 has two possible
providers, p1 and p3, selling good g1 at the very same price.
When running RB-LBP over the SC binary factor graph in
figure 2, option variables bp1g1p4 and bp3g1p4 can be set to
1 to reflect that p4 equally values buying from either p1 or
p3. However,that would break the selection (hard) constraint
linking ap4 with its option variables. To avoid this problem,
each agent assigns an economically negligible value to each
of her trading relationships encoding the agent’s preferences
in case of equally-valued options. Thus, for each option vari-
able oi, we draw a value εoi from a uniform distribution
U [−0.00005, 0.00005].

3.3 Determining the SC Configuration
The RB-LBP algorithm distributedly runs max-sum using the
above-described equations until convergence or until reach-
ing a maximum number of steps. After that, each agent
stores a value for each variable representing her preferences.
A first solution is assessed distributedly, each agent setting
each variable to her preferred value. Since this first solution
may not satisfy some of the constraints, it needs to be re-
vised (and possibly mended). The mending process has two
main steps: during the first one, each agent ensures that all of
her internal constraints are satisfied; during the second one,
agents ensure that providers and consumers agree on their
decision to collaborate.
Step 1: Internal consistency. Each agent checks each of
her selection constraints. When a selection constraint breaks,
there are three possible cases:

1. If the activation variable is 0, the agent clears all the op-
tion variables.

2. If the activation variable is 1 and there are no option vari-
ables set to 1, the agent toggles the activation variable

3. If the activation variable is 1 and there are two or more
option variables set to 1, the agent randomly selects one
of them and clears the remaining ones.

Step 2: Collaboration consistency. Agents need to com-
municate their neighbors to agree on whether collaborating
or not. Firstly, each agent sends to each of her neighbors her
decision to collaborate with her or not. Secondly, each active
agent (her activation variable is 1) will determine (based on
the information received in the previous step) whether all of
her selected partners want to collaborate with her. If that is
not the case, she will set all of her variables to 0 and will
send this information to her neighbors. This second step is
repeated until no agent changes her variables any further.

Measure LBP RB-LBP

Memory needed per agent to store the
preferences over her state

O(AG) O(G · A)

Size of largest factor O(A2G) O(1)

Maximum memory needed per agent
(to store both preferences and factors)

O(G ·A2G+1) O(G ·A)

Maximum message size O(AG) O(1)

Maximum bandwith consumed per
agent

O(G ·AG+1) O(G ·A)

Overall consumed bandwith O(n ·G · AG+1) O(n ·G · A)

Maximum computation time per
agent and iteration

O(G ·A2G+1) O(G ·A2)

Table 2: Required resources: LBP vs. RB-LBP.

3.4 Reduced Binary Loopy Belief Propagation
Putting together all the elements above, we obtain RB-LBP
as a distributed algorithm that proceeds as follows:

1. Each agent stores the variables defined at step 1 of the
procedure in section 3.1.

2. Each agent randomly assigns a weight εoi to each of her
variables, except the activation variable.

3. Until convergence or reaching the maximum number of
iterations each agent:

(a) Internally uses messages in equations 5, 6 and 7 be-
tween the variables and factors she is responsible for.

(b) Uses the messages in equations 8 to communicate with
her potential partners.

4. The solution is determined as described in section 3.3.

3.5 Analysis
Along the analysis conducted in section 2.2 for LBP, in this
section we provide worst-case bounds on the amount of
memory, the size of messages exchanged at each iteration,
and the computation time needed by RB-LBP agents.
Memory requirements. Each agent needs to store a real
number per variable in order to maintain preferences over a
variable’s states. Since each agent collaborates with at most
G·A other agents, the amount of memory to store her prefer-
ences is in O(G ·A). Regarding factors, each RB-LBP agent
only needs to store her activation factor. Hence, the memory
that each RB-LBP agent needs is in O(G ·A).
Communication requirements. Each pair of agents in-
volved in a potential collaboration in RB-LBP are linked
by a single equality constraint. Hence, they exchange a
single number. Since each agent collaborates with at most
G · A other agents her communication requirements are in
O(G·A). Thus, the total bandwidth consumed by all RB-LBP
agents is in O(n ·G ·A).
Computation time requirements. At each iteration, each
agent needs to assess O(G · A) messages and by looking
at the equations of the messages we see that each message
takes at most O(A) operations. Thus, the total computation
time required by RB-LBP agents is in O(G ·A2).
Privacy analysis. Unlike LBP, the only information that an
agent in RB-LBP requires regarding her potential partners
is limited to their trading relationship. Thus, an agent only

1440



(a) Maximum memory requirement. (b) Maximum memory requirement. (c) Median problem solving time.

(d) Maximum bandwidth per agent. (e) Maximum bandwidth per agent. (f) RB-LBP benefit over LBP.

Figure 3: RB-LBP vs. LBP in Walsh’s (left) and large-scale (right) networks. Plots b, c and e use a log-scale for the y axis.

shares with a potential partner her own decision about buy-
ing or selling a good. For instance, in figure 1a agent p4
would only share with p1 her decision about purchasing
good g1, but not any information about p1’s competitors.
Hence, the gain of privacy of RB-LBP with respect to LBP.

Table 2 compares the resources needed by the LBP and
RB-LBP algorithms, showing that RB-LBP scales better in
terms of memory, communication and computation require-
ments.

4 Empirical Results
In this section we empirically compare the memory, commu-
nication, computation time and the value of the SC assessed
by LBP with respect to those obtained by RB-LBP.

We perform our comparison over two different sets of
problems. Firstly, following the experiments in (Winsper
and Chli 2010), we analyze the performance of LBP and RB-
LBP over the TDNs described in (Walsh and Wellman 2003).
The experimental settings are the same as those in (Winsper
and Chli 2010).

Secondly, we compare LBP and RB-LBP in scenarios with
a larger number of agents and higher degrees of competition.
Since the test-suite described in (Vinyals et al. 2008) is de-
signed specifically to mimic real-world SCF problems, we
employ it to generate the TDNs used in this comparison. We
generate TDNs with 50 goods and a number of agents rang-
ing from 40 to 500. Since the number of goods is fixed across

scenarios, the degree of competition in the TDNs grows with
the number of agents.

For each scenario, we generate 100 TDNs with different
selling and buying prices. We run LBP and RB-LBP over
each TDN and we record the maximum memory required
per agent, the maximum bandwidth used per agent at each
iteration, the running time, and the value of the SC config-
urations assessed. Since the distributions obtained for these
measures are long-tailed and skewed, we use the median in-
stead of the mean as a measure of central tendency following
the recommendations in (Wilcox and Keselman 2003).

LBP and RB-LBP are implemented using libDAI (Mooij
2010). Our tests are run on an Intel(R) Xeon(TM) CPU run-
ning at 3.20GHz with 2GB of RAM on linux-2.6 x86 64.

The results over the TDNs introduced in (Walsh and Well-
man 2003) are depicted in figures 3a and 3d. Figure 3a shows
that LBP requires from 2 up to 13 times more memory than
RB-LBP depending on the TDN structure. Figure 3d shows
that the maximum bandwidth consumed by an agent during
an LBP iteration is up to 5 times larger than RB-LBP’s. Note
that the names in the x axis in figures 3a and 3d correspond
to the network structures described in (Walsh and Wellman
2003). The average values of the SC configurations obtained
by LBP match the results in (Winsper and Chli 2010). RB-
LBP’s average SC values are identical to LBP’s. Since the
largest TDN contains at most 33 agents, we can consider the
TDNs in (Walsh and Wellman 2003) as small. Thereupon,
both LBP and RB-LBP converge to an SC configuration in

1441



the order of the millisecond, making the difference between
both methods negligible in any practical sense.

Figures 3b to 3f show the results of the comparison of
LBP and RB-LBP in TDNs with a larger number of agents
and larger degrees of competition. Observe, in figure 3b,
that the memory requirements for LBP are up to 5 orders
of magnitude (105 times) greater than for RB-LBP. This is
because as the number of agents increases memory require-
ments grow exponentially for LBP, and only linearly for RB-
LBP. Bandwidth usage for LBP is up to 787 times greater
than for RB-LBP as shown in figure 3e. Regarding compu-
tational time, RB-LBP is up to 20 times faster than LBP, as
shown in figure 3c. Finally, we observe that the median SC
value obtained by RB-LBP is up to 2 times greater than those
obtained by LBP as shown in figure 3f.

5 Conclusions and Future Work
We have described RB-LBP, a novel approach for decentral-
ized SCF. We have shown both theoretically and experimen-
tally that RB-LBP scales up to solve market scenarios with a
large number of participants and high competition. RB-LBP
can significantly reduce the usage of memory and commu-
nication several orders of magnitude with respect to LBP.
Furthermore, RB-LBP produces up to two times higher value
SCs and has smaller time complexity. Therefore, RB-LBP al-
lows to tackle large-scale decentralized SCF.

Up to date state-of-the-art decentralized SCF (Walsh and
Wellman 2003; Winsper and Chli 2010) only applies to
TDNs whose agents can produce at most a single good. Al-
though we report empirical results over TDNs to compare
with existing approaches, RB-LBP can readily be applied to
supply chains whose producers can deliver more than one
good. Evaluating RB-LBP in such scenarios and over a vari-
ety of actual-world network structures is left as future work.

6 Acknowledgments
This work has been funded by projects EVE (TIN2009-
14702-C02-01), AT (CSD2007-0022), CSIC 201050I008,
and the Generalitat of Catalunya (2009-SGR-1434).

References
Jesus Cerquides, Ulle Endriss, Andrea Giovannucci, and
Juan A Rodriguez-Aguilar. Bidding languages and winner
determination for mixed multi-unit combinatorial auctions.
In IJCAI, pages 1221–1226, 2007.
John Collins, Wolfgang Ketter, and Maria Gini. A multi-
agent negotiation testbed for contracting tasks with tempo-
ral and precedence constraints. Int. J. Electron. Commerce,
7:35–57, 2002.
Alessandro Farinelli, Alex Rogers, Adrian Petcu, and
Nicholas R. Jennings. Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In
AAMAS, pages 639–646, 2008.
Valeria Fionda and Gianluigi Greco. Charting the tractabil-
ity frontier of mixed multi-unit combinatorial auctions. In
IJCAI, pages 134–139, 2009.

Joris M. Mooij. libDAI: A free and open source C++ li-
brary for discrete approximate inference in graphical mod-
els. JMLR, 11:2169–2173, 2010.
Toni Penya-Alba, Meritxell Vinyals, Jesus Cerquides, and
Juan A. Rodriguez-Aguilar. Scalable decentralized supply
chain formation through binarized belief propagation. In
Proceedings of AAMAS 2012.
Toni Penya-Alba. Scalable decentralized supply chain for-
mation through binarized belief propagation. Master’s the-
sis, Universitat Politècnica de Catalunya. Departament de
Llenguatges i Sistemes Informàtics, 2012.
Meritxell Vinyals, Andrea Giovannucci, Jesus Cerquides,
Pedro Meseguer, and Juan A Rodriguez-Aguilar. A test
suite for the evaluation of mixed multi-unit combinatorial
auctions. Journal of Algorithms, 63(1-3):130–150, 2008.
William E. Walsh and Michael P. Wellman. Marketsat:
An extremely decentralized (but really slow) algorithm for
propositional satisfiability. In AAAI/IAAI, pages 303–309,
2000.
William E. Walsh and Michael P. Wellman. Decentralized
supply chain formation: A market protocol and competitive
equilibrium analysis. Journal of Artificial Intelligence Re-
search (JAIR), 19:513–567, 2003.
William E. Walsh, Michael P. Wellman, and Fredrik Ygge.
Combinatorial auctions for supply chain formation. In ACM
Conference on Electronic Commerce, pages 260–269, 2000.
Rand R Wilcox and H J Keselman. Modern robust data anal-
ysis methods: measures of central tendency. Psychological
methods, 8(3):254–74, 2003.
Michael Winsper and Maria Chli. Decentralised supply
chain formation: A belief propagation-based approach. In
ECAI, pages 1125–1126, 2010.

1442




