
NB3: Negotiation-Based Branch&Bound
TR—IIIA—2011–03

Carles Sierra
Artificial Intelligence Research Institute, IIIA-CSIC
Campus de la Universitat Autònoma de Barcelona

sierra@iiia.csic.es

Abstract
In this paper I introduce a new multiagent negotiation algorithm that

explores the space of joint plans of action: NB3. Each negotiator generates
a search tree by considering both actions performed by itself and actions
performed by others. The algorithm prunes the nodes of the tree that
require rejected actions of others, and focusses on the most promising
nodes by using appropriate heuristics.

1 Introduction
Negotiation algorithms have been frequently used to co-ordinate autonomous
agents. Although negotiation has been rightly described as a search problem
[2], previously proposed negotiation algorithms have mostly focused on the util-
ity space, that is, on how the utility value of the proposals and counterproposals
changed along time and how they approached the pareto-optimal frontier. In a
sense, these algorithms assume that given a utility aspiration level or a conces-
sion degree it is always possible to find a proposal that would fit that degree.
This might be true given certain continuity assumptions (e.g. variables with
real values) but is often not the case when the domains of the issues are dis-
crete or when there are integrity constraints among them [11]. In this paper
I focus on complex problems for which the classical continuity assumptions do
not apply and thus solutions have to be directly found at domain level. Also, I
address a number of realistic assumptions that make the application of current
negotiation algorithms unfeasible:

• The space of solutions is huge, i.e. there is no possibility to exhaustively
explore the set of solutions.

• Solutions improve with co-operation. Some actions are interdependent, if
agents help each other they are individually better off.

• The environment is only partially observable by each agent, e.g. actions
made by others my not be observable.

1



• The environment changes due to actions of others.

• Decisions have to be made within a limited time frame.

• Solutions may involve a large number of agents, possibly including hu-
mans.

Many difficult problems belong to this class, e.g:
Time Tabling: School teachers have private goals for their schedule. Once a
schedule is determined by the School Master, they may improve their particular
allocations by negotiating local exchanges with fellow teachers. This can be
based on bilateral or multilateral negotiations. Teachers’ goals here account, for
instance, for compactness (avoiding ‘holes’ in their schedules), for compatibility
with other activities (allowing a couple of hours in the middle of the schedule to
practice sport), or for personal taste (avoid afternoons as kids get too excited).
Current software solutions [10] are centralised and do not permit negotiation
among teachers.
Diplomacy: Diplomacy is a classical board game where seven players incarnate
major European powers at the beginning of the XXth Century. They own
territories and have to conquer half of Europe in order to win. There are no
chance moves and the only way to progress in the game is to get the support of
other powers. Good negotiators win. Developed software bots [6] do not offer
any reasonable negotiation techniques and are thus vulnerable when playing
with humans that show great capacity in negotiation [4]. The search space is in
this case colossal.
Logistics: A key issue in logistics is how to optimise multi-truck scheduling
of package delivery between companies where every connection between nodes
in the delivery network has a cost (petrol + time) and every package delivery
has a price. Current centralised systems [5] are not reactive enough to dynamic
changes (e.g. new deliveries constantly appearing, road incidents) and call for
a more efficient distributed solution where the negotiation of who transports
what is done at the truck’s and customer’s level allowing for private preferences
to enter into scene (a driver may prefer a detour to pass by his house and thus
be keen on accepting a low profit delivery). A simplified version of this problem
where postmen exchanged letters to minimise their individual costs was studied
in [8].

In this paper I introduce a new family of Branch and Bound algorithms,
namely NB3, that use negotiation as the key element in the exploration of the
joint space of solutions for a number of autonomous agents. Section 2 briefs
on Branch and Bound (BB) algorithms. Section 3 explains the concept of the
algorithm. Then, in Section 4 I give the details of the algorithm whose main
heuristic is described in Section 5. Finally, in Section 6 I conclude.

2 Branch & Bound algorithms in a nutshell
Branch&bound (BB) is a general algorithm to find optimal solutions in discrete
domains. Here I outline the basics of the algorithm and introduce some notation,

2



for an in-depth description refer to [3, 7].
The objective of a BB algorithm is to find a solution x to a problem that

maximises (or minimises) a given function f (x). The algorithm incrementally
generates a tree where nodes represent sets of solutions S . Children nodes rep-
resent subsets of the father (S1, . . . ,Si , . . . ,Sn) forming (ideally) a partition. A
BB algorithm consists of three basic operations. One to split the set of solutions
represented in a node into a number of subsets that become the children of the
node. This operation is called Branching. It is clear that

maxx∈S f (x) = max{vi | vi = maxy∈Si
f (y)}

The second operation is the establishment of bounds, lower and upper, for the
value of f (x) on the elements of Si . This step is called Bounding. The key idea in
any BB algorithm that looks for a maximum of f (x) is that if the upper bound
of a node is lower than the lower bound of another node, then the former node
can be ignored as it will not contain the optimal solution. This third step is the
pruning of the tree. This recursive procedure stops when the set S contains a
single element or when the lower and upper bounds get equal, i.e. all contained
solutions are equally good (or bad).

The efficiency of the algorithm heavily depends on how well the splitting and
bounding procedures are done. As guidelines, the smaller the overlap among
children the better, and the more accurate the bounding the better. Without a
good bounding there will be little pruning and the tree will become an exhaustive
search of the space of solutions which is usually impractical. An advantage of
the algorithm is that, as it progresses, the global bounds, defined (in case of
minimisation) by the minimum of the lower and the minimum of the upper
bounds of the non-pruned nodes, gets reduced. We can also stop the search, i.e.
the splitting of a node, when its interval gets reduced to a reasonable size and
then pick up one element randomly from the set represented by the node.

3 NB3 basic concept
Branch and bound has been mostly used as a centralised algorithm. Distributed
versions do also exist that try and exploit concurrency in the exploration of
the tree [1]. However, not much work has been done on the application of
branch&Bound algorithms in search problems where the splitting is based on
variables that are controlled by different entities (i.e. agents), as in the asyn-
chronous backtracking method used in Distributed Constraint Satisfaction [11],
and where there is no single function f (x) to optimise but a set of functions,
one per agent, that are not centrally known. This paper proposes an algorithm
that is run by every agent in a multiagent system (its execution could also be
distributed, but this is not the relevant focus here) and that uses negotiation
between agents to split nodes and to prune nodes that contain sets of undesir-
able solutions (worst than others already found) or unfeasible solutions (they
require actions explicitly rejected by some agents). Next I give the basic idea of
the algorithm.

3



I assume a number of agents A = {α, β, . . . , ω} situated in an environment
ε ∈ E . Each agent α has the capacity of executing a set of feasible actions in a
particular environment and given a set of known commitments, fea(Cα, ε) ⊂ O,
where O represents the set of all possible actions by any agent in any environ-
ment and Cα ⊆ O. For convenience, inaction is considered as a possible action.
At particular time instants, agents decide autonomously what action (or ac-
tions) to perform in the environment. They are endowed with private goals and
thus select those actions that might be more profitable for their goals. I am
assuming environments where dependencies between actions are fundamental.
In other words, certain actions performed by α will only be successful if they
are accompanied by certain actions performed by β. This means that agents
cannot decide what to do in isolation. They are assumed to have the capability
of persuading one another, via negotiation, in order to co-ordinate their actions.
I don’t assume any global goal, agents use their private goals to determine the
success of the agreed upon joint set of operations over the environment. I do
assume that agents know which other agents are available and their possible
actions. A set of actions, that is, a joint plan, p = Oα ∪ Oβ ∪ · · · ∪ Oω, where
Oi ⊆ fea(Ci , ε) for all i ∈ A, executed on an environment ε will end up in a new
environment ε′, noted p(ε) = ε′. Agent α will measure how good ε′ is to its goals
with the help of a private function fα(ε). Instead of a single function to optimise
f (ε), as in classical BB, in a multiagent setting we are then dealing with a tuple
of functions 〈fα(ε), fβ(ε), . . . , fω(ε)〉 each one being locally optimised by a copy
of the NB3 algorithm.

During the process agents make commitments to perform certain actions by
accepting proposals and reject actions by rejecting proposals. Agents have a
partial view of the commitments made as conversations may be private.

I next explain the different components of NB3 from the perspective of agent
α.

3.1 Search tree
In a multiagent setting, each agent that runs the algorithm builds its own search
tree. The root node of the NB3 search tree consists of all the possible solutions
to the problem. In our context, assuming that each agent may chose to perform
a subset of its feasible actions, the set is S =

⋃
i∈A fea(Ci , ε). The set of plans

represented by a node n, i.e. subsets of S , are noted as plans(n). As already
mentioned, this is in most practical applications an intractably large set for
exhaustive exploration. The children of a node will be, as in the classical case,
a partition of the solutions of the father node. I label the link between a father
and a son with either (i) the name of an action contained in all the solutions
represented by the child or (ii) with a constraint satisfied by all the solutions
of the child. A path between the root and a leaf of the tree is then a (joint)
(partial) plan (i.e. those actions labelling links in the path) that guarantees, at
least, the worst solution in the leaf node. Given the path from node n backwards
to the root node, I note by n.path the set of actions in the path from all agents
in A, that is n.path ⊆

⋃
i∈A fea(Ci , ε).

4



I also assume that α is situated in an environment that has strict time limits
for a decision to be made. If the tree has been completely explored and an
optimal solution has been found before the deadline then the decision of what α
has to do is easy: the actions corresponding to α in the path to the optimal leaf
node. Otherwise, the set of actions in the path from the root to the node in the
partially explored tree with the best bounds plus the known commitments is a
possibly good choice for action, even if only partial, and is what NB3 considers
as the best plan. In that respect, NB3 is an anytime algorithm that always has
the so far best plan of action ready.

3.2 Splitting
I consider two broad classes of actions that can be used to split a node:

• Atomic actions. An atomic action is an indivisible action on the environ-
ment. The labels of the arcs between a father and a set of children are
mutually exclusive atomic actions generating a partition. The splitting
will generate as many children as mutually incompatible actions. For in-
stance, if α is considering the possible moves of one of its units (name given
to a kind of ‘army’ in Diplomacy) and there are three mutually exclusive
movements, three children would be generated.

• Generic actions. The labels of the arcs between a father and its children
are mutually exclusive generic actions that generate a partition. The
subset of solutions represented by each child satisfy the constraint in the
arc back to its father. A generic action is a behaviour agreement between
α and some other agent β and does not imply any concrete action to
be made but a restriction/commitment on the actions that both agents
will make.1 Different semantics could be possibly associated to the same
constraint by different agents.2

For simplicity, I consider that both generic and atomic actions are part of the
set O. Any generic or atomic action involving β and labelling an arc will force
the issuing of an offer from α to β if the child node is at some point selected as
the best current node, as it requires the acceptance of the terms of the agreement
by β. I am assuming a negotiation environment in which commitments among
the participants have to be made along the search process. This is so because
an agent cannot wait until it finds the optimal plan before negotiating with
other agents, as then it would be perhaps too late to get any commitment from
them: they might have already signed commitments for incompatible actions.
Therefore, a trade-off exists between optimality and commitment availability.

1An example in Diplomacy could be to do a binary split depending on whether a peace
treaty is agreed upon with another agent or not. A peace treaty is not an actual action on
the environment, but a constraint on what actions are allowed: a peace treaty between two
agents prevents them from attacking each other, for instance.

2For instance, what actually peace means may be different: just not attacking or also
helping if requested.

5



The more we forward explore from a potential commitment of others (without
actually getting the commitment) the better, but then the less probable it is to
get it. How to solve this trade-off is key in the application of NB3 to a particular
problem, NB3 has an eager strategy: when a node is selected as the best, the
commitments of other agents needed in the path to the node are immediately
sought for.

Given that we have two types of splitting mechanisms and the mentioned
trade-off, α needs to carefully find out the type of split: constraining or selecting,
and which constraint or actions to use in the split. On the one hand, it may
be good to initially split according to the actions α has full control (i.e. its
own actions) as it can progress quickly in the expansion of the tree, but at the
same time α needs to start negotiating for good enough commitments of the
others as soon as possible (to prevent undesirable agreements among them).
The heuristic h that proposes the split to make in a node is a fundamental
parameter of NB3. It ranks the splits to make at each node according to the
path to the node n.path and both the goals and the trust3 attitude of α.

3.2.1 Offers

When a node is selected as the best current node, the agreements and actions
in the path to the root that require commitments from other agents that have
not yet been asked for makes the agent (i) to issue as many offers as needed to
get them, and (ii) to withdraw any standing offers that are incompatible with
the offers just made.

In particular, when the heuristic h used by α chooses to split a node according
to β’s actions or a constraint on a mutual agreement and, after bounding, one
of the children is selected as the current best, NB3 issues an offer to β to get its
commitment on the action or agreement labelling the arc from the child to the
father. If there is a standing offer that is incompatible with that action, NB3

withdraws it.
Any offer to be sent by α should normally include those actions in the path

to the root that α considers to be profitable to the involved partner(s). What
to include is however part of the negotiation strategy of the agent and beyond
the focus of this paper.

While waiting for the acceptance of issued offers, NB3 keeps on expanding
the tree. h should prioritise, when expanding the tree from a node, those actions
of α that might be interesting to the agents with open negotiation threads in
preparation for a counter-offer.

When α receives an offer from β, h should prioritise those actions contained
in the offer that are compatible with those in the path to the current best
node. In this way, agents help each other in focusing the search on the space of
potential deals. Another key parameter of NB3 is for how long should α explore
before accepting an offer, as β may withdraw the offer if α waits too much.

3Don’t forget that commitments may not be respected.

6



3.2.2 Withdraws

When α receives a withdraw from agent β it will prune all nodes that require
those actions of β in the proposal withdrawn. Also, any withdraw is an indi-
cation that the probability of reaching a deal with β is lower than before and
consequently the actions by β should have less priority in future selections to
be made by h.

When α withdraws a previously sent offer to β the probability of reaching
agreements with β decreases as β might be unhappy with the decision4 and then
the selection of actions that were potentially favourable to β and that h was
going to select early in the splitting process should be delayed.

3.3 Bounding
Given an environment ε ∈ E , every time a node n is created, NB3 generates its
bounds: n.min and n.max. The bounds are estimations of the minimum and
maximum value of the environments ε′, that may be generated from the joint
plans represented in the node:

• min: an estimate of the value of the worst environment reachable from the
joint plans in n. The worst environment is theoretically the one where the
rest of agents coalesce to play against α. Which combination of actions is
the worst to α may be difficult to estimate. The concrete function to use is
domain dependent and must satisfy n.min ≤ min{f (p(ε)) | p ∈ plans(n)}

• max: an estimate of the value of the best environment reachable from the
joint plans in n. The best environment is theoretically the one where the
rest of agents play in favour of α. Which combination of actions is the
best to α may also be difficult to estimate. n.max ≥ max{f (p(ε)) | p ∈
plans(n)}

NB3 computes an ‘expected value’ for each node, n.E , that estimates the
value we would obtain if the partial plan in the path, p = n.path, and the
reached agreements Cα are executed and no extra actions are done. That is
n.E = f ((p ∪ Cα)(ε)). Clearly n.min ≤ n.E ≤ n.max. If the computation has
to stop before finishing the exploration, NB3 choses the node with the highest
expected value as the solution. Also, the best current node is the one with the
highest expected value. NB3 chooses n.E instead of n.max to avoid selecting
nodes containing feasible (although absurd) proposals that would be highly
beneficial to α but most probably rejected by the other agents (e.g. selling a
pen for a million dollars).

3.4 Pruning
When an offer that α has issued is accepted by agent β then it means that agent
β is making a commitment to act upon the environment in a particular way, that

4humans may be involved in the MAS.

7



is, it will perform certain actions from the set of available actions O ⊆ fea(Cβ , ε).
All actions that are incompatible with those in O are unfeasible, therefore we
can prune all nodes such that in their paths to the root there is any of the
incompatible actions. When an offer made by α to β is rejected the nodes that
assumed the actions of β in the offer are also pruned.

4 Algorithm
In this section I give the details of NB3.5 The basic data structure is Node(A),
parametric on the set of agents A, contains the set of feasible operations for the
agents that are not yet explored, ops, the explored ones, i.e. the path to the
root, path, the bounds and expected value, min,max,E , a link to the father,
father and the label on it, label. The initial environment is ε0.

Node(A)

ops, path : 2O;

min,max,E : [0, 1];

father : Node(A) | nil
label : O | nil
ε0 : E

∀ o ∈ ops.comp({o} ∪ path, ε)

The predicate comp({o} ∪ path, ε) indicates that any feasible operation o
must be compatible with the actions on the path to the root. I assume that the
actions o ∈ O include the identifier of the agent performing the actions and thus
the function pri(O) computes the actions performed by agent i in an arbitrary
set O ⊆ O.

The following functions are domain dependent and need to be defined for
each use case: fea determines the set of feasible actions in an environment given
a set of actions already committed to and comp determines if a set of actions
can be performed at the same time in a given environment.6

fea : 2O × E ⇒ 2O

comp : 2O × E ⇒ B

The following functions are agent dependent:

generate : Node(A)×A× 2O × 2O × 22
O → 2O

h : Node(A)× 2O × 2O × 22
O ⇒ 2O

f : E → [0, 1]
boundmin : Node(A)× 2O × 2O → [0, 1]
boundmax : Node(A)× 2O × 2O → [0, 1]

5I use Z [9] and classical algorithmic notation.
6For instance, in any reasonable environment ε, moving box X from posi-

tion A to position B is incompatible with moving it to position C , that is,
comp({move(X ,A,B),move(X ,A,C)}, ε) = false.

8



where generate determines a deal to be sent to another agent when expanding
a node given the actions committed, unfeasible, and under negotiation, h is the
heuristic that gives as result the set of operations to use to split a node, f is the
evaluation function of the agent and boundmin and boundmax are the bounding
functions. These functions are key as the h function determines what part of the
space will be explored and in which order, and generate has to build attractive
proposals that may be accepted and thus prune the tree. Both together have
to avoid absurd proposals that would be rejected by the others and slow down
the search process.

Algorithm 1 is run by each agent. The main variables are C representing
the achieved commitments, U representing the unfeasible actions, i.e. explicitly
rejected or withdrawn, and P representing the proposals under negotiation. τ
represents the minimum exploration time to wait for a good proposal to be
accepted.

Algorithm 1 NB3

Require: A = {α, β, . . . , ω} the set of agents
Require: α ∈ A the agent performing the computation
Require: ε0 the initial environment.
Require: tmax time limit
Require: τ acceptance time threshold
Ensure: O ⊆ prα(fea({}, ε0)) a set of actions to perform
1: C ,U = {} : 2O; P = {} : 22O

2: root : Node(A)
3: Open : seqNode(A)
4: root = create(Node(A))
5: root.ops = fea({}, ε0); root.path = {}
6: root.min = 0; root.max =∞; root.E = f (ε0)
7: root.father = nil; root.label = nil
8: Open = 〈root〉
9: BestMin = root.min
10: spawn Search’n’speak
11: spawn listen
12: repeat
13: nil
14: until tnow ≥ tmax ∨Open = 〈〉
15: kill all threads
16: return prα(Best.path ∪ C )

Algorithm 2 is a loop that expands the search tree. The first node in Open
is selected as the Best current node. The algorithm re-computes the set of
feasible operations and the bounds, as new commitments may have been added
to C that may modify them. Then the function h selects (line 22) the set of
operations that will split the node into a set of children. The bounds of the
children are computed and then the set of Open nodes is sorted. The final loop

9



(lines 35–37) prunes nodes.

10



Algorithm 2 Search′n′speak
1: while Open 6= 〈〉 do
2: Best = first(Open)
3: Open = rest(Open)
4: for d ∈ P | time(d) ≥ τ ∧ proposer(d) = x ∧ x 6= α ∧ comp(Best.path ∪

C ∪ d, ε0) do
5: accept(α, x, d)
6: C = C ∪ d
7: end for
8: Best.ops = Best.ops \U
9: Best.min = boundmin(Best,C ,U )
10: Best.max = boundmax(Best,C ,U )
11: Best.E = f ((prα(Best.path ∪ C ))(ε0))
12: for o ∈ Best.path do
13: if o ∈ fea(x, ε0) ∧ x 6= α ∧ (¬∃ d ∈ P.o ∈ d) then
14: NewDeal = generate(Best, x,C ,U ,P))
15: for d ∈ P | ¬comp(d ∪NewDeal, ε0) do
16: if d ∈ prα(P) then
17: withdraw(α, x, d)
18: else
19: reject(α, x, d)
20: end if
21: end for
22: offer(α, x,NewDeal)
23: P = P ∪ {NewDeal}
24: end if
25: end for
26: O = h(Best,C ,U ,P)
27: for o ∈ O do
28: n = create(Node(A))
29: n.ops = Best.Ops \ {o}
30: n.path = Best.path ∪ {o}
31: n.father = Best; n.label = o
32: n.min = boundmin(n,C ,U )
33: n.max = boundmax(n,C ,U )
34: n.E = f ((n.path ∪ C )(εo))
35: Open = Open • n
36: BestMin = max(BestMin,n.min)
37: end for
38: Open = sort(Open,E ,≥)
39: while Open 6= 〈〉 ∧ ((first(Open)).max < BestMin ∨

¬comp((first(Open)).path ∪ C, ε0)) do
40: Open = rest(Open)
41: end while
42: end while

11



Algorithm 3 deals with the house keeping of commitments and unfeasible
actions according to the messages received.

Algorithm 3 Listen
1: loop
2: if offer(x, α, d) then
3: P = P ∪ {d}
4: U = U \ prx(d)
5: end if
6: if accept(x, α, d) then
7: C = C ∪ d
8: P = P \ {d}
9: for o ∈ O | ¬comp({o} ∪ C , ε0) do
10: U = U ∪ {o}
11: end for
12: end if
13: if reject(x, α, d) or withdraw(x, α, d) then
14: U = U \ prx(d)
15: P = P \ {d}
16: end if
17: end loop

In the worst case the tree explores every state and is the complexity is the
size of the state space. If the function boundmin is exact then the complexity is
linear on the depth of the tree [7]. These extreme cases are however very rare.
The exchange of offers makes that the heuristic h is informed of the interest of
the opponents and thus explores the parts of the space that contain the most
plausible deals that would, by being agreed upon, induce a large pruning of the
tree and thus provide good average search complexity. A detailed analysis of
the complexity is beyond the scope of this paper.

5 Guidelines for the heuristic h
The function h ranking the split operations has to try and guess the most
promising ones given the goals of the agent. A good general rule is to start from
those that are ‘easier’, that is, those that α can do without much conflict with
the others, then go for the actions involving ‘friends’, and then with the rest.
Also, when a proposal is received it is better to first explore our part of the deal
to make sure the deal is interesting to us.

When agent β withdraws a previous offer or α withdraws an offer made
previously to β the probability of reaching agreements with β decreases and
thus the splitting on actions that might be interesting to β should be delayed.
Similarly, when agent β sends an offer to α, or α sends β an offer, the actions
that might be interesting to β should be explored as soon as possible by α.

12



There is always the possibility that agent β commits to an action that β will
not execute, intentionally or not. Measures of trust are useful as to determine
whether to prune a node or not. That is, if the trust on β is too low and its
actions are in the set of commitments we may keep as open some nodes that
otherwise could have been pruned to allow for more exploration of plans not
involving β. This indicates that the more trustworthy an agent is the more
pruning its commitments will cause and therefore the earlier in the negotiation
with it the better for the overall efficiency of the search. Trust is therefore one
of the important factors in the heuristic that orders the operators to split.

6 Conclusions and further work
In this paper a new negotiation algorithm has been introduced. The motivating
use cases are characterised by a huge space of solutions and the particular aspect
that co-operation improves the individual outcome. The algorithm uses the
offers exchanged between agents to direct the exploration of the space. In this
way the search is focused on those parts where agreements are more easily
found. The algorithm has been described in detail. As future work I plan
to have a probabilistic modelling of the commitments and unfeasible actions to
better model agent preferences, trust and reputation. The algorithm is currently
being applied to two of the use cases (time tabling and Diplomacy).

References
[1] B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms:

Survey and synthesis. Operations Research, (42):1042–1066, 1994.

[2] Nick Jennings, Peyman Faratin, Alessandro Lomuscio, Simon Parsons, Car-
les Sierra, and Mike Wooldridge. Automated negotiation: Prospects, meth-
ods and challenges. International Journal of Group Decision and Negotia-
tion, 10(2):199–215, 2001.

[3] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey.
Operations Research, 14(4):699–719, 1966.

[4] Raz Lin and Sarit Kraus. Can automated agents proficiently negotiate with
humans? Commun. ACM, 53:78–88, January 2010.

[5] MJC 2. http://www.mjc2.com/transport logistics
management.htm.

[6] David Norman. http://www.ellought.demon.co.uk/
dipai/.

[7] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

13



[8] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press,
Cambridge, USA, 1994.

[9] M. Spivey. The Z Notation (second edition). 1992.

[10] RJ Willemen. School timetable construction : algorithms and complexity.
Technische Universiteit Eindhoven, 2002.

[11] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara.
The distributed constraint satisfaction problem: Formalization and algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 10:673–
685, 1998.

14


	Introduction
	Branch & Bound algorithms in a nutshell
	NB3 basic concept
	Search tree
	Splitting
	Offers
	Withdraws

	Bounding
	Pruning

	Algorithm
	Guidelines for the heuristic h
	Conclusions and further work

