Open, Interactive and Dynamic CSP*

Santiago Macho Gonzélez and Pedro Meseguer

Institut d’Investigacié en Intel.ligéncia Artificial
Consejo Superior de Investigaciones Cientificas
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
{smacho |pedro}@iiia.csic.es

Abstract. In previous work, the notions of Open, Interactive and Dy-
namic CSP have been independently defined. Open constraint satisfac-
tion is a new model where values are incrementally gathered during prob-
lem solving. Domains are assumed unbounded. Interactive constraint
satisfaction also deals with partially known domains, assuming implic-
itly that domains are finite. Dynamic constraint satisfaction deals with
problems of dynamic nature (as configuration design or model compo-
sition) where variables, domains and constraints are subject to frequent
changes. In this paper, we study the relationship between these three
models, showing that Interactive CSP can be seen as a particular case
of Open and Dynamic. We have applied two algorithms, FOCSP (de-
veloped for Open) and LC (developed for Dynamic) to solve Interactive
CSP. We provide experimental results of this evaluation.

1 Introduction

In previous work, a new model called Open CSP [2], integrates information gath-
ering and problem solving. This model starts solving a CSP from a state where
all domains are possibly empty, and it dynamically asks for values while the
CSP has not been solved. This process stops as soon as a solution is found.
With a similar motivation, the Interactive CSP model [3] deals with problems
with partially defined domains. It is implicitly assumed that the domains are fi-
nite, while in Open CSP domains remain unbounded. In a dynamic environment,
tasks usually change. As a consequence, CSPs that represent these tasks evolve,
and variables, domains and constraints may change over time. The Dynamic
CSP model [1] was defined to solve CSP in such dynamic environments.

This paper considers the relation among Open, Interactive and Dynamic CSP
approaches. We show that an Interactive CSP can be seen as a particular case of
Open CSP, and also as a particular case of Dynamic CSP. Therefore, algorithms
developed for Open or Dynamic models can be used for Interactive CSP.

The paper is organized as follows. First, we briefly describe Open, Interac-
tive and Dynamic CSPs. Then, we show how Interactive CSPs can be seen as
particular cases of Open and Dynamic CSPs, respectively. We provide an ex-
perimental evaluation of Interactive CSP using three algorithms, one from each
class, on random problems, in terms of number of queries and search effort.

* Partially supported by the Spanish REPLI project TIC-2002-04470-C03-03.



2 Open, Interactive and Dynamic CSPs

Open CSP. Imagine you want to configure a PC using web data sources. Query-
ing all the possible PC parts in all data sources on the web is just not feasible.
We are interested in querying the minimum amount of information until finding
a solution. Since the classical CSP approach (querying all values before search
starts) is not applicable here, the new Open CSP approach [2] was proposed.
Solving an Open CSP implies obtaining values for the variables, one by one. If
the collected information does not permit to solve the problem, new values are
requested. The process stops when a solution is found.

The failure Open CSP (FOCSP) algorithm [2] solves Open CSP, based on the
idea that we gather new values only when the current known part of the problem
has no solution. In that case, it contains a smaller subproblem that already has
no solution, and the whole problem can be made solvable only by creating a
solution to that subproblem. Then, an additional value should be found for
one variable (the failed variable) of that subproblem, and search restarts. This
algorithm is proven correct and complete, no matter unbounded domains.

Interactive CSP. Very related with Open CSP is the Interactive CSP model
introduced by [3]. An Interactive CSP (ICSP) has partially known domains for
its variables. When solving an Interactive CSP, new values are requested, until
finding a solution or proving that no solution exists. The main difference with
Open CSP is that Interactive CSP implicitly assumes that variable domains are
finite.

In this model, it is possible to use heuristically some of the known constraints
to guide the acquisition of new values. This feature depends on the concrete
application to solve, but no specific condition is requested on the basic model.
The interactive forward checking (IFC) algorithm is proposed. When a domain
become empty, it launches a specific request for additional values that would
satisfy the constraint on that variable. In this process, the algorithm may request
all values of a variable, assuming finite domains.

Dynamic CSP. A Dynamic CSP [1] is a finite sequence (CSP(0), CSP(1),...) of
CSP instances, where each CSP (i) differs from the previous one by the addition
or removal of some constraints (all possible changes of a CSP can be expressed
in terms of constraint additions or removals). Solving a Dynamic CSP implies
solving each instance of the sequence. The first instance is solved from scratch,
and it is always possible to apply this method to any subsequent one. However,
this approach is inefficient and may cause instability between solutions of consec-
utive instances. For this reason, when solving dynamic CSP one wants to reuse
as much as possible the solving episodes of previous instances.

There are several solving approaches for Dynamic CSP solving. We consider
the local changes (LC) algorithm [4], which tries to repair a previous solution.
When the assignment of a variable becomes inconsistent with a previous solution,
the inconsistent part of that solution is modified, keeping the assignment of that
variable, until consistency is restored. If this is not possible, other values for the
considered variable are tried.



3 Relationship between models

In this section we study the relationship between Open, Interactive and Dynamic
CSP models. The relation between these 3 models is shown in figure 1.

Interactive CSP as Dynamic CSP. An Interactive CSP can be seen as
a particular case of Dynamic CSP, as follows. In Interactive CSP, the operation
that passes from a problem instance to the next one is acquire_value, getting
a new value for a particular variable. Then, the variable domain is extended
with that value, and the relational part of constraints involving such variable
are enlarged with the allowed tuples that contain the new value. This process
can be modelled in Dynamic CSP as follows. Adding a new value is equivalent
to removing a unary constraint which disallowed this value in the domain of the
corresponding variable, so that value is now available. Enlarging the constraints
in which the variable is involved is equivalent to replacing (removing plus adding)
the previous constraints by the enlarged ones.

At first glance one may think that this approach requires to know all the
values of the domains from the beginning, to form the variable domains of the
Dynamic CSP. However, this is not the case. It is enough to know the maximum
number of values for each variable, say d; for v;. Initially, the problem state is as
follows. The domain of v; is a set of d; dummy values {dummyy, ..., dummyqg,}.
When value a is found, it replaces a dummy value, say dummyy, in the variable
domain (that now becomes {a, dummys, ..., dummyqg,}), and in the constraints.

Strictly speaking, this model is an extension of the standard model of Dy-
namic CSP, where all domains are known from the beginning. The existence of
dummy values which are replaced by real values as search progresses is not a big
issue for the standard Dynamic CSP model, because the domain size does not
change, and dummy values are replaced by real ones only once. This is the only
extension that the standard Dynamic CSP model requires to include Interactive
CSP.

Interactive CSP as Open CSP. An Interactive CSP can be seen as a
particular case of Open CSP. Similarly to the Open CSP model, Interactive
CSP uses partially defined data, where domains are acquired incrementally from
external agents. The main difference between these models is that Interactive
CSP does not address the problems of an open environment, in particular it
limits itself to finite domains whilst Open CSP works with unbounded domains.
Thus Interactive CSP instances can be solved with Open CSP algorithms.

©

Fig. 1. Relation between Open CSP, Interactive CSP and Dynamic CSP



4 Experimental Results

We applied the LC algorithm [4] defined for solving Dynamic CSPs to solve
Interactive CSP instances. Also we compare the FOCSP algorithm [2] defined
for solving Open CSP problems which solves Interactive CSP problems. Both
LC and FOCSP algorithms are compared with the IFC algorithm[3] developed
for solving Interactive CSP problems.

To compare the algorithms, we are interested in the number of checks needed
to solve the Interactive CSP and the number of accesses to information sources
until a solution is found. We generated 1000000 random Interactive CSPs, with
between 5 to 18 variables and 4 to 12 values per variable, with random con-
straints, forcing the graph to be at least connected and at most complete.

18000 120
LC— o —
FOCSP - =~ FOCSP ———
16000 FC ---- /] MinlFG - - - -
/ 100 (R et
14000 i Best Case —-—- ]
1

12000 ! 80

10000 1

Checks
@
]

8000 . 3
6000 /
4000 /

2000 -

6 8 10 12 14 16 18 B 8 10 12 14 16 18
Num Variables Num Variables

(a) (b)

Fig. 2. (a) Comparison of the number of checks against the number of variables. (b)
Comparison of the number of queries against the number of variables

Figure 2(a) shows the number of checks against the number of variables,
studying the performance of the algorithms when we increase the number of vari-
ables. It is shown that the LC algorithm has a much better performance that the
FOCSP and the IFC algorithms. The FOCSP algorithm redoes again the same
solving process every time a new value is added, the IFC is just a backtracking
with forward checking, while the LC algorithm uses the information from the
previous assignments (compatible assignments, incompatible assignments) for
solving without solving again the CSP from scratch as the FOCSP algorithm
does. The high number of checks of the IFC algorithm is due in part to the
acquire_value phase, where the algorithm checks for a compatible value.

Figure 2(b) shows the number of queries needed to find a solution against
the number of variables. We assume that a query retrieve just a single value.
We can see that LC and FOCSP algorithms have a much better performance
than the IFC algorithm which needs to collect all values in a mediator for doing
the forward checking. Also we included the Minimal Interactive Forward Check-
ing [3] algorithm (MinIFC) which queries compatible values without collect the
complete variable domain. We notice that LC, MinIFC and FOCSP algorithms
query nearly the same number of values to find a solution. We compare all algo-



rithms with the case where we found a solution just querying a value for every
variable. We included this situation in the figure 2(b) with the line Best Case.

Figures 2(a) and 2(b) show the improvements of the LC algorithm applied to
solve Interactive CSP problems. Empirically it is shown in figure 2(a) that reuse
previous work on failed branches is better on average than detect the failed
variable and redo the problem as the FOCSP algorithm does. Also the LC is
better than backtracking with forward checking as the IFC algorithm does. It
is interesting to analyze that the number of queries of LC algorithm is always
slightly higher than the number of queries of FOCSP. This may be related with
the way values are queried by both algorithms. While consecutive queries of
FOCSP ask for values of different variables, consecutive queries of LC may ask
the complete domain of a variable. Therefore, in some cases LC may ask more
than needed to find a solution. This point is subject to current research.

5 Conclusions

In this paper we have analyzed the relation among Open, Interactive and Dy-
namic CSP. These models, different from the classical CSP, have appeared in
different moments motivated by different applications. We have shown that In-
teractive CSP can be seen as a particular class of Open CSP (restricted to finite
domains). In addition, we have also shown that Interactive CSP can be seen as
a particular class of Dynamic CSP. As consequence, algorithms used to solve
Open CSP and Dynamic CSP can be used to solve Interactive CSP. Based on
this relationship, we have applied the FOCSP algorithm (initially developed for
Open CSP) and the LC algorithm (initially developed for Dynamic CSP) com-
paring them with the IFC algorithm (developed for Interactive CSP) when they
solve Interactive CSP instances. We have found that the LC algorithm reduces
dramatically the number of checks with respect to FOCSP and IFC, just slightly
increasing the number of queries needed to find a solution with respect to the
FOCSP algorithm.

We think that this relationship between Open, Interactive and Dynamic CSP
is a promising avenue for research, that we will further investigate.

References

1. Rina Dechter and Avi Dechter. Belief maintenance in dynamic constraint networks.
In Proceedings of the Seventh Annual Conference of the American Association of
Artificial Intelligence, pages 37—42, 1988.

2. Boi Faltings and Santiago Macho-Gonzalez. Open constraint programming. Artifi-
cial Intelligence, 161:181-208, 2005.

3. Evelina Lamma, Paola Mello, Michela Milano, Rita Cucchiara, Marco Gavanelli, and
Massimo Piccardi. Constraint propagation and value acquisition: Why we should
do it interactively. In IJCAI, pages 468-477, 1999.

4. Gérard Verfaillie and Thomas Schiex. Solution reuse in dynamic constraint satisfac-
tion problems. In Proceedings of the Twelfth Conference of the American Association
of Artificial Intelligence, pages 307-312, 1994.



