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1 Introduction

We treat the problem of generating maps of unknown office-like environments.
Our approach is based on, first, a troop of low-cost autonomous robots that
explore an indoor environment and, second, a host computer that receives
the information gathered by the robots. The host uses this information to
generate a global map of the environment.

Robots explore the environment looking for walls and other environmental
features. Robots' movement is described by rectilinear displacements and
turns are performed without changing robots’ positions, In free space, robots
explore by travelling random distances and making random turns. A rohot
stops its free movement when it detects a wall or an obstacle; in this case
the robot foltows the wall, or the edge of the obstacle, for a certain distance
{which is randomly chosen). Robots' capabilities are very limited. During
exploration, a robot, gathers information about the environment by storing
its trajectory. A trajectory is a sequence of consecutive rectilinear segments
in global coordinates. If a segment corresponds to a wall following trajectory,
it is labelled with the detected wall direction. We call this simple information
a partiol map. For each new partial map received, the host processes it and
updates the global map (a grid representation), so that it is incrementally
generated,

In our approach, there is no guarantee that all robots will successfully
- return to the host after their exploratory runs. To minimise the loss of infor-
- mation, the robats cooperate by transferring to each other the information
they have gathered - this transfer of information occurs when when rohots
meet. Therefore, sharing information allows the host to build the global map
using not only the information from the returning robots, but also the in-
formation from those whom they previously met, but who did not return,
Robots and their partial maps are numbered. Therefore, after two robots
have met, each robot will contain its own partial map and the partial map
that the other robot has acquived until that moment (that is, the trajectory
that the other robot has executed until the meeting). The host processes the

artial map of the robot that returns first, and stores the partial map of the
ther rabot. If, after a reasonable amount of time, the other robot does not

turn, it is considered to be last, and the host processes the stored partiat
ap,




282 Lépez -Banchez et al.

Robots store their trajectories during their exploration runs, Nevertheless,
their odometry error generates imprecise information about the positions of
detected environmental features as well as about the locations of free space.
We make use of Possibility Theory [7] to model the uncertainty of the this
information. In fact, we use Possibilistic Logic, which is a particular case of
Fuzzy Logic {10]. Given some vague information, Possibilistic Logic evaluates
the truth of crisp propositions whereas Fuzzy Logic evaluates the truth of
vagne propasitions. In our case, propositions are of the kind “the position
of the robot is (z,y)" and “the robot is following a wall at {x,y)” where z
and y are crisp numbers. We evaluate the truth of these propositions on the
basis of odometry errors from which degrees of possibility 7 and necessity A
are derived. Therefore, the resulting global map models the environment in
terms of degrees of possibility and necessity of the position of detected walls
and obstacles,

When choosing a representation of environmental features, there are sev-
eral facts we must take into account:

+ On the one hand, the mapping process must consider how to represent the
shape and distribution of abstacles. Tt is very common o represent indoor
environments with discretised grid-based maps [15,16,11] and outdoor en-
vironments with more abstract representations such as graphs [13,22,14).
Fach cell of the map grid represents an area of the environment and has
information about its occupancy. On the contrary, graphs represent ab-
stacle areas as nodes and relations between them as edges. One of the
reasons for making this distinction is that very often the size of the grid

cells is constant. This implies a homogeneons resclution of the space that -

is not appropriate for extensive outdoor environments with low obsta-
cle density. Nevertheless, grid maps have the advantage of independence
from the shape of the objects in the environment. .
On the other hand, it is important to deal with the uncertainty associ-
ated with each map element when choosing the right map representation.

*

Although there are several alternative solutions to deal with uncertainty;.

probability measures are the most commonly used for both grid-based

and abstract maps. An example of an abstract map is described in [2];:

it uses landmarks, defined as object features, to model natural enviror
ments. The uncertainty assoclated with landmarks position is estimate
by means of probabilistic techniques assuming a Gaussian distribution.o
the uncertainty. In the case of certainty grid representations, the prob
abilistic approach is used to estimate the probability of cell oceupang
{19,20].

Uncertainty can also be treated using Possibility Theory or Eviden
Theory, and we use the former one. Nevertheless, it is worth noting ¢
Possibility and Necessity are in fact particutar cases of Belief and Plausibil
In our case, our frame of discernment is §2 = {wall, ~wall} where wall i
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evidence of a detection and ~wall is the evidence of free space (further details
are given in Ject. 3),

We focus on the uncertainty derived from odometry erzors. This is due
to the way in which information is gathered. On the one hand, free-space
information is derived from robots’ trajectories. And, on the other hand, we
only consider occupancy information that comes from followed portions of
walls {or obstacle edges). Our robots use infrared {IR) sensors to perform
wall following. These sensors have a very limited range and do not supply
the exact distance to a wall, Adverse lighting conditions may prevent robots
from following walls because wall following requires specific sequences and
combinations of IR readings. Thus, bright lght may cause the robot to miss
a wall, but never make it follow a non-existent wall. It is also common that
robots do ot detect dark objects. In such case, the robot will collide and
try to abandon the problematic area. In both cases (Le., bright light or dark
object), there wilt not be any occupancy or free-space information, so that
the corresponding area in the global map will remain unknown {but not
misclassified). Although there is complete certainty about the presence of a
wall or obstacle, its exact location is not known: partly because of odometry
error, and partly due to the ignorance of the distance to the wall {which, in
addition, is not constant, because robots do not follow the wall in a completely
parallel manner). Nevertheless, odometry error is our main concern because
the distance can be approximated by a mean value with an associated error,
whereas the odometry error grows constantly.

Our approach conaists in generating a global map represented on 2 bidi-
mensional grid. Fach cell contains two values: the degree of possibility and
the degree of necessity of the presence of obstacles (as we will see, a cell can
also have orientation and singular point labels). Initially, all the cells have
a possibility value IT of 1 and a necessity valus NV of 0. These initial values
correspond to a situation of total ignorance and are inftuitively interpreted as
“although it is completely possible that there is a wall, there is no certainty
at all about it”. Afterwards, detection information yields Necessity values
greater than zero, corresponding to obstacles, whereas information about free
space gives Possibility values smaller than one. As robots communicate their
partial maps, the host processes them in order to infer the possibility and
necessity values. They are added to the global map by combining these new
values with the previous ones in the grid. Due to the robots’ odometry errar,

- the positions of the walls detected and followed have an associated error. This

means that a portion of the wall may actually be in the surroundings of the

© cells where the robot thinks it is. This neighbourhood is approximated by an

grror rectangle centred on cach detected position. This error rectangle is an
approximation of the estimated odometry error and provides support for the
distribution of possibility and necessity values.

#..-Our results come from a simulation of the physical robots. Although the
teal robots have been used to measure the actual odometry error, their de-
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velopment is still in progress. Thus, we had to simulate the robot exgloration
o obtain input data for the host map generation process. The simulator
has been developed, including the odometry errors of the real robot§. Qur
experiments consider several autonomous robots exploring unknown indoor
environments. Partial maps contain robots’ trajectory segments that are use_d
as evidence for the position of walls and free-space areas. This evidence is
transtated into possibility and necessity degrees. This assignfnent dotj,s m‘)t
represent segments explicitly. Nevertheless, there is implicit information in
the grid that allows us to treat adjacent cells as belonging tp the same por-
tion of a wall. We also deseribe how this implicit information can be used
to refine the global map. On the one hand, wall information can be grouped
in segrents that can be extended under certain circumstances. And, on the
other hand, wall information ¢an be grouped into polygon-shaped obstacles
that allow to plamn paths toward less explored areas.

2 Problem statement: the mapping problem

The general problem

In robotics, solving the mapping problem means generating a model of a given
environment. The solution to this problem can be addressed from different
points of view depending on the characteristics of the a priori knowledge
about the environment. In this way, if the environment has been augmenlted
by adding landmarks, mapping means recognizing lanclmarks'. a.n'd establish-
ing relations between them. On the contrary, if the system mmf'dky has no
landmarks but an approximate map of the environment, the mapping process
consists in matching previous knowledge with actual detections of landmarka
in order to refine the map. Finally, when the environment is unkno‘.lvn and
not augmented with landmarks, there is no direct way of distinguishing tf.\e
relevant information and, therefore, every piece of information is included in
the map. . o
Robot characteristics are also crucial in the mapping process. Thfs is -
because imprecision associated with the obtained data differs st.xbstanmally
depending on the robot equipment, That is, robots can know with more.
less accuracy their position depending on how they obtain their odomet.ry i
formation {encoders at the wheels for dead reckoning, compass for headu}g' i
GPS for global positioning). At a given position, robots ean gather very dlffel \
ent kinds of data depending on the sensors they are equipped with. Cameras,
sonar sensors, infrared sensors and laser range finders are different poss
bilities. Cameras give global views, but present difficulties in distinguishin
obstacles in an image. Sonar sensors gather more information than infraréd
sensors; they cover & bigger range, but their information is less reliable du
spurious reflections, Finally, laser range finders are very accurate, althoug
in most cases, their high cost prevents their use.
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Our mapping problem

Among the possible settings of the mapping problem described above, we
consider an office-like indoor unknown environment that is mapped using in-
formation coming form a troop of low-cost autenomous robots that explore
the environment. The robots are equipped with wheel encoders to estimate
their position and infrared sensors to follow detected obstacles. The uncer-
tainty associated with the information that robots collect is treated with
Possibilistic Logie. The reason for choosing possibility /necessity techniques
instead of probability is our need for an initial assignment of values represent-
ing ignorance. Possibility theory aflows a clear represontation of ignorance,
but probability does not. The latter often uses an initial value of 0.5 in case
of ignorance, but this value actually represents occupancy equiprobability
instead of ignorance, Furthermore, probabilistic techniques ate reliable only
if enough sensor data is available, the data is well distributed in the explored
environment and this distribution can be easily obtained.

Environment

Our mapping process only considers environment features with rectilinear’
edges long enough to be followed by the robots. Small ohstacles, such as
legs of chairs or desks, are not ropresented because they generate spurious
IR sensor readings that are considered as noise. This does not represent an
important disadvantage because small obstacles can be easily avoided using a
“non-informed reactivity”. That is, information about a small obstacle i not
crucial due to the fact that whether the robat aveids it by turning to the left
or right will not imply a significant change in the global performance of the
robot. Besides, if the contour of a non-rectilinear feature has boen followed,
it wiill be approximated by a line between the first and last positions where
the wall following took place {these points are the only ones that the partial
map stores),

Therefors, considering only relatively large environment features, we can
assume that office-like environments are highly orthogonal (i.e., horizontal
and vertical}, This is due to the fact that, on the one hand, walls are usually
connected by right angles; and on the other hand, human-made office objects
such as bookshelves or drawers tend to have rectangular shapes.

In case a robot follows a wall or an edge obstacle with a krajectory not
parallel to the object, the resulting detected segments will not be orthogonat,

- -The orthogonal assumption presents the advantage that i can be used to cor-

rect these non-orthogonal segments. Nevertheless, half opened doors appear
50 often in office-like environments that the mapping process has been refined
to consider exceptional non-orthogonal features, Thus, the host only orthog-
onalises those segments that are almost vertical or horizontal and keeps the
ablique segments as they are.

!
]
|
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Characteristics of our mobile robots

Robots have been designed bearing in mind that the hardware had to be
as simple as possible but, on the other hand, the robot had to show sn::art
behaviour in order to navigate efficiently. These requirements resulted in a
design that contains three different functional modules. First, the steering
module that controls the motors in order to follow a trajectory. Second, the
perception module, which acquires information about the environment by
means of IR sensors. And third, the navigation module that generates the
trajectory to be followed {see {16] for details).

Fig. 1. Autonemous mini-robot.

Each robot is 21 cm long and 15 cm wide {see Fig. 1). Tt has three wheels,
two of them are 5 cm steering wheels controlled by independent motors. The
robots can reach a maximum speed up of 0.6 m/sec and they are equipped
with the following sensors: :

¢ Impulse generators at each wheel for odometry. They generate 5 encoder
pulses per centimeter so that each pulse corresponds to a displacement
of 2 mm.

+ Five IR proximity sensors for obstacle detection placed at 02, £45° and.

£00°. These provide two possible readings: *near’ and 'far’, which corre-
spond to 10 and 20 em respectively. o
» Safety micro switches for the detection of collision,

¢ One omnidirectional IR Emitter/Receiver sensor that detects the pres-:

ence of other robots and transmits data.

Error analysis

In order to study the robots’ odometry error, we have performed an analisi
based on experimental data. This data has been obtained from the mea
surements of how real robots deviate when they move following straight 1t
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trajectories. We have considered the data from a robot covering 20 times a
distance of 3 meters and 20 times twice that distance (i.e., 6 meters). With
the obtained data, we have used the Kolmogorov normality test to verify
that the experimental sample indeed follows a normal distribution both in
the direction of the trajectory and in the direction perpendicular to the tra-
Jectory. The obtained distributions are N{0,1.7) and N(0, 7.3) respectively.
Furthermore, we have tested that both distributions are independent.

b, e——
I 6.59 cm

Approx.

’\Serror

lem T

Fig. 2. Left: displacement erzor rectangle. Right: turning error approximation.

Based on the above normal distributions, we have determined the size of
an error rectangle that reflects 95% of the sample coming from the 3-meter
runs {in fact both samples present elliptical shapes). Fig, 2 shows the resulting
rectangle associated to the robot final position after the 3-meter straight run,
This rectangle size is 6.59 cm in the direction of the trajectory by 28.58 cm in
the direction perpendicular to the trajectory. This respectively corresponds
to errors of 0.022 cm and 0.095 cm per covered cm.

Applying the same study on the 6-meter run sample, we have obtained
a rectangle that is twice the size of the previous one {by considering the
‘confidence interval margin). And therefore, this allows us to conclude that
the size of the error rectangle is linearly proportional to the covered distance.
" Finally, two additional experiments test turning errors. First, the robot
turns 45 degrees (+-45° in one experiment and —45° in the other) and then,

it makes again the 3m displacement. Surprisingly, the sample deviation was

not really affected by the turn, and the mean was very similar for both
movements. This divergence corresponds to a deviation of approximately two
degrees on the left (which is likely to originate in a built-in robot problem).
In this manner, we conclude that the studied robot has a deviation but not
a turning error that can be isolated from the displacement error. However,
since this result cannot be generalized, when computing the odometry error
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we parametrise robot-turning errors in terms of a segment approximation in
the direction perpendicular to the displacement. The turning error we use
corresponds to an approximation of the error of turning +45° and moving
lem.

Robot's architecture

Hach robot implements two navigation sirategies: random exploration. and
path following. Both strategies are based on the co-ordination among differ-
ent elementary behaviours (following the Brooks' philosophy [4]. Basically,
the representation of each strategy is a deterministic finite state automaton
in which each state corresponds to an elementary behaviour. Fig. 3 shows
the automata that perform the random exploration strategy and the path
following strategy.

Fig. 3. Automata schemas. Left: random exploration strategy. Right: path following
strategy

‘We will see in the next subsection that these basic behaviours use sensor
readings as well as historical information about previously taken decisions
to determine what are the actions to execute and when to switch to other
behaviours under the conditions shown by labels on the ares in Fig. 3. This
“one behaviour active at a time” policy avoids the problem of combination
of behavior ontcomes that appears in those approaches activating more than
one simple behaviour simultaneously [24]. Our solution i3 to have less sim-
ple behaviours in order to make the decisions that satisfy the goal for each
strategy. Decisions are made using If-Then rules.

Elementary behaviours

The random exploration strategy co-ordinates elementary behaviours to cover
free space by changing the robot’s direction randomly and by following obsta
cles when detected. This randomness is modelled by two parameters that ac
individually assigned to each robot: a turning probability, that is, how ofte

' behaviour tries to reach the end of the wall. Pirst
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a robot changes its direction) and a left/right turning probability, that is,
to which side the robot tends to turn more frequently. Different probability
values produce different global behaviours. For instance, a robot with a high
tuening probability presents a global “nervous” behaviour, while one with a
tow vatue shows a “caim” behaviour. “Nervous” robots tend to cover small
environment areas exhaustively, On the contrary, since “calm” robots turn
less frequently, they have a tendency to explore larger areas.

Once the environment has been partially explored, the host corapuker
can generate paths to unexplored areas. Such paths are represented as a
sequence of positions. Robots can then apply the path following strategy,
which consists of navigating through the environment reaching these path
positions sequentially.

We briefly describe here each elementary behaviour (the behaviour switch-

ing conditions are shown in Fig. 3 and a more detailed description can be
found in [18]):

¢ Random walk: this behaviour is active while the robot is in free-space.
That is, it controls the movements of the robot when there are no sensor
readings. Random turns and lengths of displacements are decided using
the turning and left/right turning probabilities explained above,
Directed walk: this behaviour is the default one in the path following
strategy. Length and orientation of robot displacements are computed
cansidering the next position to reach in the path and the current posi-
tion. This behaviour is active while nothing blocks the robot's way.
Wall alignment: this behaviour tries to “align” the robot to what might
be a wall. By aligning we mean having the robot parallel to the wall,
or obstacle edge, by first facing the wall and next turning 90 degrees.
A suecessful alignment is recognised by the robot when it has sensor in-
formation coming from sensors an one side without any front detection.
Of course, this is not done instantaneously, but requires a series of small
angular corrections and displacements. During random exploration, any
sensor reading triggers the wall alignment behaviour. Under the path fol-
lowing strategy, everything works similarly, the only differences are: 1)
the wall alignment behaviour tries o align the robot only to objects ob-
structing its way, 2) it turns in the direction of the smaller angle deviation
with respect to the eurrent path, and 3) a loss of sensor readings implies
a switch to the directed walk hehaviour.
Wall following: once the robot is aligned to a wall, this behaviour com-
putes the distance the robot will try to cover and controls its displacement
by keeping it parallel to the wall .
In the case of random exploration, the wall following distance is com-
puted using the turning probability. Thus, a “nervous” robot, will follow
a wall, on average, at a shorter distance than a “calm” robot (neverthe-
less, a minimum distance is guaranteed}. In the case of path following, the

» the robot follows the

g
J
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wall {or obstacle side) for a fixed distance, and if the end is not reached,
it turns 180 degrees and doubles the distance.

Waell leaving: During random exploration, the goal of this behaviour is to
reorient the robot until there are no sensor readings and then switch to the
random walk behaviour. Under the path following strategy, this behaviour
re-arients the robot until there are neither collision detections nor frontal
sengor readings, and then switches to the directed walk behaviour. The
goal of this behavicur is to redirect the robot until there are no sensor
readings and then switch to the random walk behaviour.

There are still two more elementary behaviours concerning the communi-
cation process between pairs of robots:

e Presence detection: any behaviour will switch automatically to this be-
haviour when a robot detects the presence of another robot by means
of the omnidirectional sensor. Once ancther robot is detected, the robot
changes the frequency of the omnidirectional sensor, stops, and waits for
the same frequency in the received signal from the partner to switch into
the data transmission behaviour.

s Date transmission: this behaviour consists in the transmission of the in-

formation gathered so far, that is, the robot's partial map.

Navigation performance

At the lowest level of abstraction, the navigation is nothing more than a
sequence of actions (turn, move, stop) executed in the environment. These
actions are commands to the effectors. The sequence of actions is generated by
the currently active elernentary behaviour, which sets the sub-goal that must
be execuied and controls its success, interruption or adaptation. For example,
when a wall-following elementary behaviour is active it sets a sub-goal (a
displacement by a given length and orientation) and controls its execution
using sensors: wheel encoders give the travelled distance (this is the clue
for the sub-goal success), any front detection cancels the behaviour, and too
far or too clese side sensor readings indicate that the orientation must be
adjusted. Figure 4 shows an example of wall following execution that turns
slightly in order to stay parallel to the oblique wall, The rules that generate
deviations consider a fixed small angle, here set to 7.5°, These rules are: = '

If Behaviour=right-wall-following
and 45right_sensor=no detection
Then rotate(-angle)
If Behaviour=right-wall-following
and{45right sensor=near or front_sensor=near)
Then rotate{+angle}

_ g}s we have seen in the error analysis, these values are eq = 0.022 cm per

. the perpendicular direction, and e, corresponding to the turni
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Fig. 4. Wall following example.

3 Map generation process
Error propagation

Each robot moves following a trajectory that is composed of straight Hnes and
turning points. Therefore it is possible to deseribe a trajectory as a sequence
of connected segments where the end point, of a segment coincides with the
initial point of the next. Considering the error rectangle that is associated
with displacements and turns, we compute how this error grows along the
trajectory. Fig. 5(a) illustrates how rectangle error B gets expanded by a
rectangle error r to obtain a new rectangle evror B, R and R are the er-
rors associated with the end points p and p' of two consecutive trajectory
segments. The rectangle ervor r represents the resulting error from the dis-

placement 4’ of the last segment. Tts dimensions {length { and width w) are
computed as follows:

. I=L+cos{a) - (b+c) +cos(90 — ) -
. w=W +cos(a)-a+cos(00 — &) - (b+c)
a=d eq, b=d -ep, c=d (e a/ds)

Where L and W ave the length and width of Tectangle R, d' the distance
travelled, o the last turned angle, and eg, e, &, the error values of the robot.
overed ¢cm in the direction of displacement, ¢, = 0.095 cm, which goes in
ng error,
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{b)

Fig. 5. Error propagation along the robot trajectory.

Obviousty, all the intermediate points between the initial and final points
of & segment also have an associated error proportional to the displacement,
done so far. Thus, consecutive rectangle errors define an area around the
trajectory that contains all the positions where a robot coutd actuatly have
been. Part (b) of Fig. 5 shows the error propagation after a 45 degrees right
turn, a straight line, another right turn of 90 degrees and finally another
straight line.

When following a wall, the robot tries to keep parallel to the wall at a
certain distance d. Therefore, the segment that represents the detected wall
is computed as a parallel segment on the side of the detection. Thus, the
error associated with the wall is a translation of the trajectory error plus eg:
the error of the infrared sensors that detect the wall. IR, sensors have a range
of 20 cm and its error is +5cm. Fig. 6 shows in dark grey the wall error that
results from the trajectory error, which in turn appears in light grey. Since
the robot practically always remains at the same distance from the wall, the
error along the direction orthogonal to the wall is taken to be constant and -
equal to the mean of the intial and final segment errors. 5

Modelling the certainty

The space being explored by the robots is diseretised by means of a grid.
Cells in the grid represent a small area of the real environment. The size
of this area depends on the granularity that the host uses to represent the
environment. Our system considers square cells whose size is a parameter of
the system {it is usually taken as 1 or 2 cm long). Grid cells contain tv
values: the degree of possibility and the degree of necessity of the presenc
obstacles. Initially, all the cells have a possibility value f of 1 and a necessi
value ¥ of 0. These initial values correspond to a situation of total ignoran
and are intuitively interpreted as “alihough it is completely possible -tha
there is a wall, there is no certainty at all abous it". ;

covered by the error rectangle assaciated to that position. Information about
followed walls updates the necessity value in the corresponding cells and

represents the degree of certainty about the presence of an obstacle in each
“ position.

_remain positive (N (wall) = a > 0} in the cells inside the error rectangle, but
.obtain the value 0 in the cells outside the lmits of the rectangle. These values
-have been established with the aim of reflecting that, having detected some
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o
Fig, 8. Computation of & wall segment and its error based on the robot’s trajectory. ‘ o
T

As robots transmit the information gathered during their exploration,
the possibility and necessity grid values are modified in a way that depends !
on the presence, or absenee, of obstactes. The information gathered by each
robot is called a partial map and contains its trajectory in global co-ordinates.
Trajectories are sequences of segments that are specified as lists of turning
positions. Each segment has associated information that specifies if the tra-
jectory segment corresponds to a wall following segment, in which direction
the wall has been followed, and if it ends (wall ends and corners are referred
to as singular points).

Taking into account the errors associated with the segments, we use each
robot's trajectory and detections to determine the areas in the grid for which
the possibility and necessity values will be updated. Fig 7 shows two examples

of cell areas: in a) related to a communicated position, or in b) a discretised
segment.

Modelling the certainty of followed walls. When an error rectangle is
associated with a position that belongs to a followed wall, the occupancy
certainty degree is updated in every cell that becomes partially or totally

Neeessity values decrease lincarly with the magnitude of the error and

bstacle, the necessity that there is a wall cannot be zero any longer, but
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‘wag communicated
4% position

discretization

of the erroc:
X emory=3, emon,=3

Fig. 7. a} Grid representation of a position and its associated error; b) Discretisa-
tion of a segment and its error.

can onty be positive since a positive value denotes some certainty about the
occupancy of the space. However, this occupancy certainty degree decreases
whaen the distance to the central cell of the error rectangle increases. Fig. 8(a)
shows this case. Notice that the possibility value is constantly equal to I in
all the cells covered by the error rectangle, This is due to the following axiom
of Possibility Theory: N(d) > 0= I{4)=1.

As we have already mentioned in the introduction, our Possibility and
Necessity values are particular cases of Belief and Plausibility ones. We can
easily see how our assigned values N{wall} = o > 0 and II{wall} = 1 can
be considered as Belief{woll) and Plausthility{wall) corresponding to the
following basie probability assignment {b.p.a.):

Let the frame of discernment 12 = {wall, ~wall}, with mass:

m: P(19) = [0,1], m(@)} = 0, m{well) = o, m{{~wall}) = 0, m{2) =
1-a.

Therefore, we obtaln:

Bel(wall) = Z m{d) = m{{wall}} +m(f) =«
AC{wall}

Pllwall)= > m(d) = m{{wall}} +m() =1
An{wall}F#0

Modelling the certainty of free space. Robot trajectory segments pro’
vide us with information about free space. In terms of possibility and ne:
cessity values, free space information corresponds to IT{~well) = 1 and
N{-wall} > 0. These values entail that M{wall) < I and N{wall) = 0
according fo the following axiom of Possibility Theory: N{A) = 1 — T{-4);

In the same way as necessity values of obstacles, M{wall) decrease wheir
approaching the edges of the error rectangle. Necessity values of the negati
of obstacles N{-well) also decrease proportionally to the distance tot
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THwall)=1 /

Niwaltp0

Fig. 8. IT and N value assignment from: a) Wall, and b) Free space informatien.

Fram 1 to 6: examples of the representation in the host of a Necessity pyramid )
and several Possibility pyramids (2..6).

central cell of the error rectangle. Therefore, the possibility value of obstacles
HI{wall) increases in the same proportion untit it reaches the value 1 at the
cells outside the limits of the error rectangte. Qbviously, we have ¥ {wally =0
for all the cells covered by the error rectangle. Fig, 8(b) shows this case.

Value assignment

The height of the pyramids in Fig. 8 is determined by the size of the error
rectangle. The underlying idea is to establish z linear error-height relation
such that, a null error irplies the maximum altowed value of height {i.e., one).
An error equal to the maximum allowed error, K, implies a zero height since
the information is no longer reliable. This maximum allowed error threshold,
measured in grid units, assigns a limit to the error. K Is established exper-
imentally and it is twice the one that forces the robot to return from its
exploration. Big errors imply data irrelevancy and high risk of not being able
of returning to the host, even when using the same trajectory without loops.

Let us represent the error rectangte by the tuple {2, %e, ez, 8y}, where .
and y. are the coordinates of the central cell of the rectangle and e, and ¢,
are, respectively, half the length of the base and half the length of the height
of the error rectangle measured in number of grid cells. Following this, the
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height of the pyramid is given by:

maxf{e, e,)
K

The necessity value of having a wall at cell {i, 7) is given by:

height =1 —

Nij{wall) = height - min(1 - it——éffi, 1- b;—yci) 2)
= v

The possibility value ITi;(wall} is obtained by 1 — Nj;{~wall) using 1 and
2.

Combination of values

In the previous subsection we have seen how necessity and possibility values
are propagated from a central cell towards its surrounding cells. Each cen-
tral cell represents a point of the discretisation of wall segments or free-space
trajectory segments, As a consequence of this discretisation, central cells are
adjacent along the trajectory segment and therefore, value propagation is
done over cells that may already have been updated by a previous propa-
gation. In other words, we are propagating overlapping pyramids, and this
irplies that new values must be the result of a combination between old and
new pyramids.

T,

e P
v
b}

Fig. 9. a) Wall representation. b} Representation derived from trajectory segments£

In the case of wall segments, they are discretised, and orthogonalised if
they are mearly horizontal or nearly vertical, The values derived from wall
evidence are necessities increasing from 0 and which combined using the maz
operation (Fig. 11). In the case of trajectories, possibility values decreas
from 1 and are combined by means of the min operator. Fig. 10 graphical
shows the results of such combination. y

When the same portion of a wall has been followed more than once {¢
ther by the same or different robots), we can consider the resulting Info
mation as being independent due to the random exploration they perfor:

to light extremes.
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Fig. 10. Examples of passibility pyramids derived from trajectory segments com-
bined at the host. '

The necessities are combined by means of the probabilistic sum, that is
S(z,y) = z 4 y — zy, in order to reinforce the certainty about the loca-
tion of the wall, Fig, 11 shows a top view of this situation. Part 6 of Fig. 11
correspords to wail information in the global map. The host represents each
cell by a pixel (a point in the figure) and assigns colours whose darkness
grows proportionally to the necessity value, In part, 7 of Fig. 11 we can see an
suxiliary grid that represents an overlapping portion of the same wall. The
values in the auxiliary grid are combined with the values in the global map
so that the global map is updated (sce Fig. 11 part 10}).
To summarise, the process is as follows:

Add_nev_partial_map_into_global_map {partial_map,max_error)
{ Repeat while(non-empty(partial_map))

3 3

Fig. 11. Examples of necessity pyramids for a wall representation combined at the
host. 1,3,4: Non-orthogonalised walls and trajectories; 2,5: Orthogonalisation of 1
and 3; Walk reinforcement: 8 results from the combination of 6 and T; The upper

nd left walls in 3, 4, and 5 have been alse combined. Singular points correspond
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{ segment=read_segment(partial_map)
error=max.error (segment)
If (error<max_error)
{ d_seg=discretize(segment)
If (segment.wall==’yes’)
{ d_seg=orthogonalize(d_seg)
d_wall=compute_wall_segment{d_seg)
add_wall_and_trajectory_to_global map(d_wall,d_seg)

}
Else
add_trajectory_to_global_map(d_seg)

}
Else
partial_map=empty

}

1

Add_wall_and_trajectory_to_global_map{d_wall,d_seg)

{ orthogonalize(d_seg,d_wall)
dim=compute_wall_dimensions(d_wall)
orient=compute_wall_orientaticn(d_wall)
aux_grid=create_anxiliary_.map{dim}

Repeat (for each discrete position ‘p’ in d_seg)

{ add_possibility_values_to_global_map(p,min)
wall_p=compute_the_corresponding_wall position{p)
sing_pt=check_ if_wall_p_is_singular_point{wall_p)
add_necessity_values_to_aux_grid(wall_p,orient,sing_pt,max)

}

add_auxiliary_map_into_global_map(aux_grid,probabil_sum)
} i
Following the interpretation of the Possibility /Necessity assignments as -
Belief/ Plausibility values, we can now justify the use of the two different
combination rules described above. On one hand, we have already seen that
we apply the probabilistic sum when combining independent wall detections
in the same cell, and this operation is nothing but Dempster’s rule for simple
support masses [6:
Bely(wall) = o
Bely(wall) = aa
Bely o(well} = (my & ma){wall)
= +ay -~ oy - oy,

with m(.Q) = (1 - 0.'1} . (a1 - C!z). ) )
On the other hand, we also combine values coming from a single ‘w:
segment detection, and since in that case we are considering non-indepert
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pieces of evidence, Dempster’s rule is not suitable for evidence combination.
Instead, we have used a max-combination, a cautious operation whose results
are still within the evidence theory framework. Indeed, max-combination is in
accordance with the so-called “combination of compatible Belief functions” {5
that makes sense when interpreting Bel/P1 values as bounds of the probability
measures consistent with them. Namely, let

Fi= {P|Beli(4) < P(4) < PL{A)} =12

be the family of such probabilities [6]. Then, their natural combination can
be taken as the intersection:
Fig=FRnNkH )
= {P | max(Beli(4), Bely(A)) < P(A) < min{PlL(4), Ply(A))}.
In general, infpepnp, P(A) and suppep np, P(A) ate not a pair of Belief

and Plausibility values [5]. However, in our particular case, this combination
leads to a proper bekief function. Indeed, the function Bel® is defined as

Bell, (wally = - P{A4)

inf
e PN,
= max({Beli (wall}, Bela{wall)) = max(ay, az)
Bell3 (@) = m{{~wail}) =0

BEI{T?(Q) =1.
This is a belief function whose corresponding mass assignments are:

m{{wall}) = max(a1, az)
m{?) = m{f-wali})

m(1?) =1 - max{ay, az) .

Moreover, in this particular case, this max-combination is also in accordance
with the new combination operation proposed in [28].

Local propagation

: The method used to update wall information in the global map (that is, the

combination operation we have just seen) takes advantage of the fact that
wall information is given as segments that come from a single wall follow-
ing., This allows us to reinforce overlapping, but independent, wall segments,
Nevertheless, this presents the disadvantage of forcing the use of an auxiliary
grid map, This implies that the updating process can not be considered as
being purely local: it is local at the segment level but not at the cell level, If
We.want to remain purely focal, the computation of the necessity value of a
cell must be done by considering only those cells that surround it.

i
i
i
i
|
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We propose here an alternative method to include wall inform?,tion. This
method is purely local. Nevertheless, with the information stcre(li in the cells
it is not possible to distinguish whether two necessity values are independent
or not. Or in other words, the algorithm cannot know if new propagated
values that arrive to a given cell come from the same wall following or not.
Therefors, there is no way of discerning when two necessity values ‘should
be combined using the maximum operator or applying the probabilistic sum.
This restriction forces local propagation to use only one operation to cor‘nbme
necessity values. We have chosen the most conservative one: the maxdimum
operator. Being conservative reflects the fact that we prefer not to reufforce
independent wall information than to reinforce non-independent wall infor-
mation, We compute the height —i.e., necessity value— of the central cell of
the error rectangle, at position {1, j), with {1} as

max(ez, ey}

nf (walll{i, j, ez, 64)) = 1 - =

Next, we need to define the propagation of this measure from any cell (r, m)
within the error rectangle to its four neighbours. The propagation follows the
following inequalities:

n—1)—i

1 o (walll(i, j, ez, e4)) > b (wall) - max(0,1 -

n+1)—i
e (001G 2,0 2 ) a0, - 102 D 28y
m—1)-j|
"f‘n,m—l(wa”!(is}.: ezley}) 2 nfl,m(wa“) * max([)l 1~ K—ey_-‘)
s [+ 1) — 3l
n’f’a,m+1(wa”i(z$]| ez;ey» 2 ”;,m(wa”) : max((}, i- _e‘y“_“') .

We use inequalities because we want to keep the maximum of the different
propagated values. For instance, if a propagation is made from_ cell‘(n, m) to
cell (n — 1,m), then the propagated value that {n — 1, m) receives is smaller
than the necessity at (n,m). Although the inequalities allow to compL-xte
afterwards a new propagation back from (n—1, m) to (n, m), the > constrain
prevents (n,m)} to change its necessity value because the propagated valug
will be smaller than the one at (n,m). The propagation finishes when th
values become stable in all cells.

Finally, the & measure is updated as follows:

PRIV

Nfl'm {wall|{i, j, ez, e4)) = max{N,ﬂ;,i, nh, n{well](i, 7, ez, 6,00

Once again, free-space can be computed with the previous igtf.qualihle
from N} . (-wall}{i, j, ez, 8,}), which is then translated into possibility va L
] o (wall] {4, 4,02, e4)) I
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Figure 12 depicts the results of combining wall information with the maz
operator onty, This figure includes three different combinations of pairs of
walls, With the aim of illustrating the difference between using and not using
reinforcement, these walls are the same ones that appeared in figure Fig, 11.
Since the results without reinforcement are poorer, reinforcement wil be used

in the sequel.

Fig. 12. Local necessity combination using the max operation. The walls are the
same ones as in Fig. 1k

4 Implementation: map usage
Wall extension

As we have already said, robots move pseudo-randomly in free space. When
a robot detects a wall, or obstacle, it follows it along a random distance (that
depends on the turning probability of the robot) and marks the trajectory
segment so that the host can compute the corresponding wall segment. Fol-
lowing a wall along a random distance implies that very often the robots leave
the wall they are following before reaching its end. This is done in order to
increase the number of discovered features and to avoid robots going around
an obstacle once if is detected. In general, random distances force robots to
leave walls before reaching their end in order to look for other detections. If
the robot reaches an end of an obstacle, this end point is labelled as singular
point to represent the fact that the robot found a discontinuity in the shape
of the ohject {i.e., a corner or an open door).

- Both wall and trajectory segments are diseretised into grid cell positions,
and for each position, we have seen thag necessity and possibility values are

assigned to the corresponding cells in the grid. When the position corresponds
to a singular point, the cells are marked accordingly. In this manner, although
: _t‘he segments are not explicitly represented as such in the grid, the host

can treak neighbour cells with positive necessity values and equal orientation
-labels as belonging to the same piece of wall or object. Obviously, if this part

£ wall or object has cells containing singular point labels, it means that there
s%a discontinuity in its shape. (It could correspond ko a corner, an open door,
1¢:) In the sequel, we will refer to these cell groups as wall segments becanse
tis for this kind of environment features that the extension we propose makes
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more sense. Following the grouping cells idea, we can think of the global map
as an implicit representation of wall segments and trajectories.

The obtained map is as reliable as the information error allows, but it is
also telatively Hmited. Actually, we can ensure that wall segments without
singular points correspond to longer walls, and therefore, we can extend them.
However, there is not enough informetion in the map to know the magnitude
of the extension. In the absence of knowledge about real wall lengths, we use
some criteria to limit the extension of wall segments. First, since trajectories
tepresent free space, they are used as extension bounds. And secondly, it
seems reasonable to stop extending a wall segment when it meets either
another detected wall segment or another segment extension. In the latter
case, if the wall segments have the same direction, then they can be considered
as being part of the same wall. On the contrary, if they have perpendicular
directions, the obvious interpretation is to consider that they form a corner,
s that their junction can be labelled as a Aypothetical singular point.

Extension is nothing but a conjecture—thers are no evidences to support
it. As a consequence, to be conservative, the host only extends orthogonal wall
segments {i.e., vertical or horizontal but not oblique ones). This is because,
on the one hand, it is more likely that orthogonal wall segments actually
correspond to real walls, and since walls are in average longer than the dis-
tance they have been followed, On the other hand, oblique features usually
correspond to doors or other less usual objects. Thus, considering that it is
more difficult to predict the real shape of oblique features, it is safer not to
extend them.

Extension is done locally by propagating low constant certainty values
of occupation for those cells in the segment extremes. These low necessity
values are set to 0.1 in order to reflect that they are just assumptions and do
not correspond to actual robot detections. ;

As we have already said, segments are not explicitly represented in the
grid. Therefore, the extension algorithm must search through the grid for
those cells that belong to the extremes of a group of cells that can be co
sidered as a wall. These cells are characterised by two conditions. On t
one hand, they must correspond to a discontinuity in the necessity value
And, on the other hand, the discontinuity must be in the direction of the wal
segment. In algorithmic terms, this means that this cefl must have a positive,
necessity value, and one of its neighbours in the direction of its orientatic
must have a zero necessity value. In this manner, if for example there is on
cell with positive necessity and horizontal orientation, then either the cellko
its right or the one on its left must have zero necessity value {up and dow
respectively for vertical segments), Each time a cell with one neighbour:wi}
zero necessity value is localised, it is necessary to check if it can be exiendg
by one cell (that is, if the stopping conditions do not apply). If this:
case, the neighbour is marked for extension (with an “extendable” mr
otherwise the cell is marked as “non-extendable”. Once all cells havesb

¥i
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marked, the extension algorithm assigns 0.1 necessity values to cells with
“extendable” marks and the “extendable” marks are removed.

Wall extension has twe main advantages: first, it increases the coverage of
the real envitonment, and second, planning over the resulting maps gives more
conservative and safer paths than those obtained considering just detected
features. As we will see in the following subsection, these paths are computed
from a visibility graph of the free space and they guide robots towards less
explored areas. In Sect. 5 we will sce how the need for reactivity is reduced
when robots follow paths computed from expanded maps.

Path planning

The robot troop implements a distributed solution to the map building prob-
lem and allows an inereased coverags of the environment. Although a total
coverage cannot be guaranteed, we try to complete the map as much as pos-
sible. This is done in two steps: first, the host camputes the shortest path
to uncovered areas; and second, this path is used as a guide to new robot
missions to explore those areas, The host analyses the map with the aim of
extracting those features that are useful for planming. In fact, this analysis
consists of a schematization method, which transforms the certainty grid map
representation into a graph.

There are several well known schematization methods in the literature.
We have chosen the “Visibility graph” method [23]. The obtained visibil-
ity graph consists of nodes representing vertices of obstacles that are linked
by arcs whenever they are “visible” or accessible from each other. That is,
whenever there is a straight line trajectory through free space joining the
obstacles’ vertices. Next, planning a minimum distance trajectory between
any two cells is easily achieved by a minimal path searching algorithm. We
have used the A* algorithm with the Euclidean distance as heuristic funetion
(it is an admissible and consistent function that guarantees the algorithm’s
completeness). This method generates the shortest path between iwo posi-
tions so that the resulting path is a sequence of rectilinear segments linking
the vertices of those obstacles that obstruct the ideal direct trajectory. For
safety reasons, we represent vertices of obstacles by a point in the free space
area next to them. Consequently, we can no longer guarantee optimality in
the length of the path between any two positions, but the planned paths are
safer and nearly optimal,

ath following strategy

Paths are planned at the host so that they connect two positions selected by
the user of the host application. The user Is also in charge of assigning the
zesulting paths to certain robots. The behaviour-based strategy that robots
ply to follow the planned paths has been already explained in Sect. 2.
asically, one behaviour tries to follow the given path and the remaining
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ones implement. the reactivity necessary to deal with unexpected obstacles,
i.e., those that were not previousty detected and obstruct the path.

5 FExperimental results

The giobal performance of a group of real robots has been simulated. This
simulator includes random errors in robot movements and altows us to illus-
trate the whole process of exploration, map generation, map expansion, path
planning and path following. In order to give a general idea of our results,
we reproduce here some sereens over two different environments.

Fig. 18. Four robots explore an unknown environment.

We have used the environment in Fig. 13 to test how the exploration
covers an unknown environment {which is 5.3 m. long by 3.8 m. wide and
has a 28.4 m. of walls). Fig, 13 shows 5 robot exploration trajectories: they
appear in their final positions and their initial positions are distributed along
the environment for a better coverage ({3]). The host builds the global map
in an Incremental way, that is, it adds the information of a partial map each
time a robot delivers it. Therefore, we can measure how the global map covers
the environment by computing the percentage of detected walls with tespect
to the total amount of walls in the environment. The data in-Table . 1 shows
the environment coverage each time one more robot delivers its exploration
information to the host: -
The column labelied “Detection” shows the eoverage cbtained by consid
ering the portions of wall segments that have been actually followed. Imaged
a), ¢}, 8}, and g} in Fig. 14 show how the global map is incrementally geit
erated (it contains both wall and trajectory information). The next colursn
in the table indicates the percentage of correctly expanded wall segments

Fig. 14. Incremental global map generation: a}c),e),g) global maps after the or-
_ dered addition of partial map information (Portions of trajectories whose error
exceeds a maximum error are not considered); b),d},f},1) corzesponding extensions
{h contains the real environment in order to evalnate the results). Wall detections in

edium grey, extensions in light grey, trajectories in dark grey and singular points
very light grey (darker scales mean more certainty).
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Table 1. Environment coverage considering an increasing number of robots

# 1obot maps Detection Expansion Incorrect expansion

i 16.2% 22.4% 1.4%
2 30.1% 55.1% 0%
3 45.7% 57.0% 3.4%
4 57.1% 71.4% 34

Images b), d}, f), and h) in Fig. 14 show the detected walls and their expan-
sion. As we have already sald, expansion is not a completely reliable process,
and the rightmost column gives the error. Obviously, the more information
the host has about the environment, the less chances the expansion process
has of making wrong assumptions about the environment. Unfortunately, the
percentages are strongly dependent on the robots’ trajectories and the envi-
ronment’s topology. Thus, these figures can only illustrate the improvement
without giving general results. In fact, the environment in Fig. 13 already
shows an example of this dependency. The reason is that we have been con-
sidering all walls in the environment, including the ones in the upper right
room. We should not take into account these walls because the robots cannot
cross the almost closed door of this room, and therefore, walls inside become
unreachable.

Using a different environment, the following results compare the plan-
ning of paths in expanded and non-expanded maps (In this case 45.3% of
the environment has been detected, 70.1% correctly expanded and 6.4% in-
correctly expanded.). Fig. 15 a} shows planned paths in the non-expanded
map and Fig. 15 b} the paths in the expanded map. Paths are labelled with
the same number to emphasise that they have the same initial and goal po-
sition. Nevertheless, since they consider different maps, they yield different
trajectories.

Fig.15. Paths form a} A non-expanded map and b} An expanded map.
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The Images in Figures 16, 17, and 13 depict the trajectories actually per-
formed by robots following paths planned over the non-extended and the
extended map respectively. Small circles in the trajectories represent the
planned path pesitions. Obviously, in areas with the same information both
perform equally well {ses paths number § and 2). When one map is more ac-
curate than the other, incorrect expanded information yields to longer paths
than necessary, while non-detected walls may result in the need to engage in
extensive reactive manouvers.

Sometimes, an incorrect expansion closes narrow gaps that require the
use of reactive capabilities, like real-time obstacle avoidance, to get through.
Therefore an initially shorter path in the nen-exparded map can result in
an actual frajectory whose length is in fact comparable to the length of a
trajectory from the expanded map (this is the case of paths number 3). Of
course, this is not always the ease: path number 4 in the expanded map avoids
a non-existing piece of wall causing an extra displacement. The worse case
of avoiding a non-existent wall is path pumber 5 in the expanded map: it
turns around the corner where a different robot previously went. Although
this tendency of going over other robots' trajectories (i.e., already explored
free space) can be a disadvantage, it is also the source of more conservative
and safer paths.

Finally, when expansion is correct, the resulting paths are more informed
and reactive manouvers are less often needed {see path number 6). Reactivity
is less efficient because it causes the robot to decide how ta avoid an obstacle
without knowing its shape. This can yield the problem that appears in path
number 7 in the non-expanded map. Here, reactivity makes the robot take
so many wrong decisions that the robet, stops before reaching the target. In
fact, the robot stops because the rectangle error associated with its position

grows so much that it includes the target coordinates {although the robot is
still quite far from it).

6 Discussion

The work presented here describes an approach to the problem of building
maps of unknown structured environments by means of small antonomous
robots. The unavoidable imprecision of the sensors induces uncertainty in
the information gathered by the tobots. We have used Possibility Theory to
treat the uncertainty associated with the position of the obstacles as well as of
the free space. In our maps we represent robots’ trajectories (which represent

. free-space) and wall following information (that reflect accupancy).

The use of Possibility Theory has two main advantages: it allows uvs to
tepresent the initial total ignorance about the environment to be explored;
and it provides operators that combine values in a very intuitive way, These
advantages fairly compensate bhe minor disadvantage, which is the lack of a
unique assignment of possibility and necessity distributions. We have assigned
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Fig. 16, Resulting trajectories when trying to follow the planned paths to the goal
positions 1, 4, and 5. Left: on the non-expanded map. Right: on the expanded map.

o %

Fig. 17. Resulting trajectories when trying to follow the planned paths to the goal
positions 2 and 6. Lefi: on the non-extended map. Right: on the extended map.

e

Fig. 18, Resulting trajectories when trying to follow the planned paths to the goal
positions 3 and 7. Left: on the non-extended map. Right: on the extended map.

possibility and necessity distributions based on the robot’s odometry error.
The assignment used In this work is based on a linear approximation of the':
real Gaussian error distributions, This is done for achieving simplicity of -
computation in the algerithms, However, other more complex assignments
could have been used. i

The basic assumption made in this work about the environment is that
although it Is unknown, it is highly structured, mainly orthogonal and-ba

suitable because the used sensors

of the detected feature. On the contrary,
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sically static. Orthogonality helps in correcting the orientation of detected
wall segments and in defining the direction of segment, expansions. Concern-
ing the static nature of the enviromment, we assume that it does not change
drastically along time. Since the host only updates information by combining
the new values with the previous ones (see Sect. 3), we handle changes in
the environment by allowing contradictory informaticn inside the grid cells.
In this manner, every cell has an initial necessity value of 0 and a possibility
value of I (N(wall) = 0 and H(wall) = 1}). When there is wall detection,
a certain number of cells in the grid will update their necessity value to
make it positive. If later on there is, for example, a robot that has a trajec-
tory going through these cells, information about free space will be stored
in the possibility values, making them smaller than 1. This yields a situa-
tion with contradictory values {(N{wall) > 0 and H{wally < 1). Therefore,
when displaying the results, a cell is displayed as being free space if the ne-
cessity of being free is bigger than the necessity of being occupied (i.e., if
N(-wall) = 1 ~ T{wall) > N{wall)). Otherwise, it will appear as occu-
pied. The advantage of having both representations internally is that we can
change this displaying criteria (for example, when displaying only wall infor-

mation). Moreover, the combination process does not depend on the order of
information arrival,

As the next section points out, the present approach has been developed
as an alternative to our own previous work ([1], [17]). The work presented
can be summarised as an approach that 833igns and combines possibility and
necessity values in a discretisation of the environment, while our previous
work used fuzzy segments to represent walls in an environmental map. In
the present work, there is only one map representation: the global map grid;
whereas the previous work was based in the fusion of robots’ maps in or-
der to obtain the total map. The concept of fuzzy segment tn our previous
work is very similar to the fuzzy segments used by Gasds [8}. Gasés groups
consecutive sensor readings into the fuzay segments in order to obtain single
boundaries. Similarly, in our previous work segments came from portions of
followed walls, that can be fused under certain proximity conditions.

When building a map, the nature of the souree of information is a key as-
pect in considering uncertainty issues. The classical map generation approach
involves a single robot (usually large and expensive} moving in the environ-
ment, and sensing within a scope of 360 degrees. In this manner, the detected
features are distributed around the robot and have an uncertainty that mainly
depends on the sensor. Following this approach, the work by Fabrizi, Oriolo
and Ulivi [9] presents an exhaustive study and treatment of the sensor infor-
mation assuming that the position of the robot is known. This approach is
(laser and ultrasonic) have a long range, so
that an erroneous reading would mean a significant variation on the position
our approach focuses on position

errors because we propose small cheap robots (without an accurate estima-
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tion of their position) following detected walls from a very short distance. We
propose a co-operative approach where several small robots explore for build-
ing a global map of the environment. In fact, our work has been referenced
in [27] as the first collaborative multi-robot mapping approach kunown to ti'{e
authors. And, to the best of our knowledge, the work by Thrun et al. {27} is
the only one that proposes a similar multi-robot approach. The authars use
probabilities to generate geometrical maps. The robot’s main task is -to move
for a long time inside the same museum area. Therefore, their main effort
is done in correcting accumulated errors, whilst the navigation during the
acquisition phase is done by joy-sticking the robot and marking landmarks.
More generally speaking, fuzzy logic has been previously applied to the
mapping problem in several ways. For example, Kim et al. in [12] use fuzzy
numbers to model the uncertainty of the parameters of geometric primitives
and coordinate transformations used to describe natural environments. Poloni
et al. [21] use fuzzy sets to generate maps in which each point in the map
has a degree of being empty and of being occupied. Saffiotti and Wesley [25]
match environment perceptual clues against an approximate map in order to
estimate the robot’s localisation with respect to a pre-existing map. In their
work, perceptual clues are represented by fuzzy sets and combined by a fuzzy
aggregation operator. The map is a set of objects of different types (e.g, door,
wall, corridor) in known positions.

7 Conclusions

The real robots were initially working with a contour-based map building
method also based on fuzzy techniques. Nevertheless, some shortcomings due
to the globality of the computational process involved, obliged us to adopt
some ad hoc solutions during the process of map completion (see [1])- The
grid-based method presented here is more of a local computation process
(the propagation of possibility and necessity values from a cell to their neigh-
bours). In addition, this grid-based method better exploits the nformation
about free space conveyed by the trajectories. Furthermore, it takes advan-
tage of the fact that possibility and necessity are dual measures and, finally,
it is computationally simpler. We are now in the process of incorporating this
new approach in the real robots. However, we will keep working in simulation
mode in order to perform extensive statistical analysis. In the long run we
also plan to address the problem of leamning higher level environment con-
cepts (“corner”, “door®, etc.) based on sequences of sensor readings, i.e., we
plan to address the problem of symbot grounding,
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Integrating Linguistic Descriptions and Sensor
Observations for the Navigation of
Autonomous Robots

Jorge Gasés

1  Introduction

One of the main problems for antonarnous robot navigation in unknown in-
door environments is the difficulty identifying the objects in the robot’s work-
ing area from raw sensor observations. Range sensors (i.e., laser and ultrasonic
sensors), the most commonly used type of sensors in mobils robot applica-
tions, only provide information about the existence of ohjects in some given
positions of the space. A number of approaches {2,17,20,24] have shown that
this information is enough to successfully perform obstacle avoidance even in
cluttered environments. However, there are many applications that alse re-
quire fo identify the type of objects that have been detected in order that the
robot can take appropriate decisions and operate on the environment, The
" transition from range data to object identification is a very difficult problem,
particularly when no a priori environment knowledge is available.
An alternative is to use more powerful perceptnal systems, such as vision,
A major focus in computer vision has been to derive relevant information
from an image without prior knowledge of its contents. Some of the most
intensively studied aspects have been the recovery of depth and surface in-
formation [7,12], and the identification of perceptual groupings in the image
that may correspend to features of the same object [16]. However, these meth-
ads have not yet solved the general problem of object identification, and most
&pproaches find solutions based on an intensive use of context information
o), knowledge about the world [18], or specializing the system for a specific
. task or environment. In the case of unknown indoor environments, it is not
’ 'éyen possible to use these solutions since the lack of prior information implies
‘that there are no restrictions on the objects that might appear in the images.

(any possible type of

f"’i‘o solve this problem, we propose the use of linguistic descriptions, an
Inportant source of information thiat has been scarcely used by the robotics

munity in spite of its strong potential and availability. In most applica-
» once the robot’s working area has been decided, it is possible to obtain




