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Ž .In this article we compare two contrasting methods, active set method ASM and genetic
algorithms, for learning the weights in aggregation operators, such as weighted mean
Ž . Ž .WM , ordered weighted average OWA , and weighted ordered weighted average
Ž .WOWA . We give the formal definitions for each of the aggregation operators, explain
the two learning methods, give results of processing for each of the methods and
operators with simple test datasets, and contrast the approaches and results. � 2001 John
Wiley & Sons, Inc.

I. INTRODUCTION

Data fusion and aggregation operators are used in different fields, and in
artificial intelligence, to fuse information supplied by different information
sources. In recent years, several methods and techniques have been developed
to deal with information represented under various forms: numerical, ordinal,
etc. For example, in the particular case of the numerical setting, there exist,

Ž . Ž .among others, the weighted mean WM characterized in Ref. 1 , the ordered
Ž . 2 Ž . 3weighted average OWA operator, the weighted OWA WOWA , the Cho-

Ž .quet integral definitions and properties are given in Ref. 4 , and the Fuzzy
integral.5

Usually, these aggregation operators are parametric with respect to a set of
parameters. For example, one or two weighting vectors in the case of the
weighted mean, OWA, and WOWA operators, a weighting vector and a fuzzy
quantifier in the case of the OWA with importances,6 or a fuzzy measure in the
case of the Choquet and fuzzy integral.
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One of the open problems in this area is the determination of the parame-
ters for these functions. This need is of great relevance in order to ease the
application of these operators, to extend their use to new problems, and to
embed them in new systems. Several approaches have been studied in the
literature, some of them, such as Saaty’s Analytic Hierarchy Process7 for the
weighted mean or the method defined in Ref. 8 for the OWA operator, are
based on a user�or a set of users�experts�that supplies critical information
that is afterwards used in a certain way to extract the weights. This approach can
be applied when there is some background knowledge about the system we want
to model or about the decision process. To deal with the case when this
background knowledge does not exist, a different approach similar to a machine
learning technique has been developed. The main idea is to learn the parame-
ters from a set of examples. This is the case in Ref. 9 for learning the weighting
vector for OWA operators, in Ref. 10 for weighted means and OWA operators,
and in Ref. 11 for Choquet integrals. In all these works, a set of examples
Ž .defined as a set of input parameters and their corresponding output are given
and, from them, the weighting vectors or the fuzzy measures are inferred.

ŽIn addition to the advantages of this approach not needing background
.knowledge and automating the whole process through the use of examples ,

learning the weights allows the extension of these operators to larger problems
where the number of parameters is great. This is not possible when all the
information has to be supplied by experts as a vast amount of knowledge is then
required.

In this paper we study the approach based on a set of examples, and we
compare the use of genetic algorithms and an algorithm based on active set
methods to learn the parameters for the weighted mean, the OWA operator,
and the WOWA operator.

The article is structured as follows: in Section II we give the formal
definitions of the OWA, WM, and WOWA operators: Section III describes two

Ž .forms of learning the weights, active set methods ASM based approach and
Ž .genetic algorithms GA ; Section IV describes a reformulation for examples with

a different number of variables; Section V explains advantages and inconve-
niences of the ASM and the GA approaches; Section VI summarizes and gives
some conclusions.

II. PRELIMINARIES

We review here some of the operators that are used later on in this work.
Yager 2 introduced the OWA operators and Fodor et al.12 characterized them.
Torra3 introduced the WOWA operator and its relationship with the Choquet
integral is given by Torra.13

� �DEFINITION 1. A �ector v � � � ��� � is a weighting vector of dimension1 2 n
n if and only if

� �� � 0, 1 � � � 1i i i
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DEFINITION 2. Let p be a weighting �ector of dimension n, then a mapping WM:
n Ž .� � � is a weighted mean of dimension n if WM a , . . . , a � � p a .p 1 n i i i

Ž .DEFINITION 3 Yager, Ref. 2 . Let w be a weighting �ector of dimension n, then a
n Ž .mapping OWA : � � � is an ordered weighted averaging OWA operator ofw

dimension n if

OWA a , . . . , a � � w aŽ .w 1 n i i � Ž i.

� Ž . Ž .4 � 4where � 1 , . . . , � n is a permutation of 1, . . . , n such that a � a for� Ž i�1. � Ž i.
Ž .all i � 2, . . . , n. i.e., a is the ith largest element in the collection a , . . . , a .� Ž i. 1 n

Ž .DEFINITION 4 Torra, Ref. 3 . Let p and w be two weighting �ectors of dimension
n, then a mapping WOWA: � n � � is a weighted ordered weighted averaging
Ž .WOWA operator of dimension n if

WOWA a , . . . , a � � � aŽ .p , w 1 n i i � Ž i.

� Ž . Ž .4 � 4where � 1 , . . . , � n is a permutation of 1, . . . , n such that a � a for� Ž i�1. � Ž i.
Ž .all i � 2, . . . , n i.e., a is the ith largest element in the collection a , . . . , a , and� Ž i. 1 n

the weight � is defined asi

� � w* � p � w* � pŽ . Ž .i j	 i � Ž j. j� i � Ž j.

Ž .with w* a monotone increasing function that interpolates the points i�n, � wj	 i j
Ž .together with the point 0, 0 . The function w* is required to be a straight line when

the points can be interpolated in this way.

Ž .PROPOSITION 1 Torra, Ref. 3 . The WOWA operator satisfies the following
properties:

Ž .1 It is an aggregation operator which remains between the minimum and the maxi-
mum.

Ž . Ž .2 It satisfies idempotency unanimity .
Ž .3 It is commutati�e if and only if p � 1�n for all i � 1, . . . , n such that w � 0.i i
Ž .4 It is monotone in relation to the input �alues a .i
Ž .5 It leads to dictatorship of the ith �alue when p � 1 and p � 0 for all j � 1, . . . , ni j

but j � i.
Ž .6 It leads to the arithmetic mean when p � 1�n and w � 1�n for all i � 1, . . . , n.i i
Ž .7 It leads to the weighted mean when w � 1�n.i
Ž .8 It leads to the OWA operator when p � 1�n.i

III. TWO APPROACHES FOR LEARNING THE WEIGHTS

Our approach to learning weights is based on using a set of examples. We
assume that each consists of a set of values to aggregate and the corresponding
outcome. Let the set of examples be those in Table I. That is, a set of M
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Table I. Data examples.

1 1 1 1 1�a a a ��� a m1 2 3 N

2 2 2 2 2�a a a ��� a m1 2 3 N

���

M M M M M�a a a ��� a m1 2 3 N

Žexamples, each one with N input values the dimension of the aggregation
. ioperator is, therefore, N . In this table, a corresponds to the value supplied byj

the jth source in the ith example; and mi corresponds to the outcome of the ith
example.

The goal of our approach is to learn the weights that, when used in
j Žconjunction with the aggregation operator, return m or a similar value if no

. Ž i i i i .exact solution exists when the input vector is a a a ��� a . We compare1 2 3 N
two approaches, one based on the active set methods and the other based on
genetic algorithms. We review them below. In both cases, what we need is a way
to determine a good solution. This is equivalent to defining a measure of the
goodness of a solution. In our case, this will be done through the accumulation,

Ž i i i i j.for each example a a a ��� a 
 m , of the distance between the ideal1 2 3 N
outcome m j and the outcome given by the aggregation operator. The distance
for each example is computed through the squared difference. Therefore, in our
case, the more suitable weighting vectors are those that minimize this expres-
sion:

M
2j j jD p � � a , . . . , a � m 1Ž . Ž .Ž .Ž .Ý p 1 N

j�1

Žwhere p represents the parameters of the aggregation operator � i.e., either
the weighting vector p, the weighting vector w, or both in the case of the

.WOWA operator .
Together with this objective function, a set of restrictions has to be

considered when the aggregation function � is either the weighted mean, the
OWA operator, or the WOWA operator. This restriction is that the parameters
Ž .the weights have to define a weighting vector. That is, weights have to add to
one and be positive. Therefore, the general problem can be formalized in the
following way:

M
2i j jMinimize � a , . . . , a � mŽ .Ž .Ý p 1 N

j�1

such that
N N

p � 1 w � 1Ý Ýi i
i�1 i�1

p � 0 for all i w � 0 for all ii i
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where, in the case of � being the weighted mean, only restrictions over p apply;
in the case of the OWA operator only those over w apply and, in the case of the
WOWA, both apply.

A. Active Set Method Based Approach

The problem formulated in this way is a typical optimization problem and
there exist different techniques to tackle with it. In the particular case of using a
weighted mean or an OWA operator, the problem reduces to a quadratic
program and there exist several algorithms that solve the problem with accuracy
Ž .see, for example, Refs. 14 and 15 ; for example, the ones based on active set
methods.

Active set methods rely on the simplicity of computing the solution of
quadratic problems with linear equality constraints. Based on this, algorithms
iterate so that in each step inequality constraints are split into two groups: the
first with those that will be treated as active and considered as equality
constraints; and the second with those that are ignored. Then, the algorithm
moves to an improved point moving on the surface defined by the set of active
constraints. At this point constraints can be added to, or removed from, the
active set. This process is repeated until the minimum is reached. A detailed
analysis of such a method, applied to the learning of weighting vectors for the
weighted mean and the OWA operator, is presented in Ref. 10.

The application of these methods to the example introduced by Filev and
Yager9 for the OWA operator resulted in a good solution. The data matrix
corresponding to this example is given in Table II. Using the active set method
approach, the resulting weighting vector for the OWA operator was

w � 0.1031, 0.0, 0.2293, 0.6676Ž .

Žwhile the solution in Ref. 9, after 150 iterations based on the use of the
.gradient technique , was

w � 0.08, 0.11, 0.14, 0.67Ž .

The error using active set methods was: 0.001256, while, with the gradient
technique due to the slow convergence, was 0.002156.

Table II. Data matrix H and solu-
Ž .tion vector d taken from Ref. 9 .

�0.4 0.1 0.3 0.8 0.24

�0.1 0.7 0.4 0.1 0.16

�1.0 0.0 0.3 0.5 0.15

�0.2 0.2 0.1 0.4 0.17

�0.6 0.3 0.2 0.1 0.18
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B. Genetic Algorithm Based Approach

An evolutive procedure is a probabilistic algorithm which maintains a
Ž . � t t 4population of individuals P t � x , . . . , x for iteration t. Each individual1 n

represents a potential solution to the problem being considered, and is normally
implemented as a data structure S. Each solution xt is evaluated to give ai

Ž .measure of its ‘‘aptitude.’’ Then, a new population is formed iteration t � 1 by
Ž .selection of the most apt individuals selection step . Some members of the new
Ž .population undergo transformations modification step using ‘‘genetic’’ opera-

Žtors, which form new solutions. There are unary transformations m mutationi
. Žtype which create new individuals by a small change in just one individual m :i
. Ž .S ����� S , and transformations of a higher order c crossover type , which createj

Ž .new individuals by the combination of parts of various two or more individuals
Ž .c : S � , . . . , � S ����� S . After a given number of generations the programj
converges�with the objective that the best individual represents a solution
close to the optimum.

Within the extensive literature in this field, we can highlight the following:
two key authors for parameter optimization problems are Rechenberg16 and
Schwefel17; Fogel’s evolutionary programming18 is a technique for searching
through a space of small finite-state machines; Glover’s scatter search tech-
niques19 maintain a population of reference points and generate offspring by
weighted linear combinations. A matrix representation for the chromosome was
introduced by Vignaux,20 and Koza21 and Michalewicz and Janikow 22 are
examples of specific genetic operators to accommodate the problem to be
solved. The incorporation of problem specific knowledge has been tackled by
authors such as Antonisse and Keller,23 Forrest,24 and Fox and McMahon.25

Other relevant results are given in Refs. 30 and 31.
We can use genetic algorithm techniques to learn the weighting factors for

aggregation operators such as WM, OWA, and WOWA from historical data. In
the case of WOWA, we could also look for interpolation functions which give
the best results, with an adequate parametric representation for the function in
the chromosome. A genetic algorithm has, as input, a set of input cases and

Ž . Žtheir respective outcomes examples , a set of modifiable values in this case the
. Žweighting factors , a set of constraints in this case the sum of the weighting

.factors must be equal to 1 , and an objective function, which we have defined as
the minimum difference between the predicted outcome m j� and the real
outcome m j. We wish to find the weighting factors which best approximate the
input and output data, while minimizing the objective function.

The routine in Figure 1 simply goes through all the individuals in the
current population and assigns a ‘‘fitness’’ score to each. The fitness score
for each individual is calculated by executing the function which calculates

Ž .the output in this case the WOWA aggregator for each of the data cases
Ž .1 ��� j and with the w and p weight vectors contained in the chromosome of
individual i.

The chromosome consists of a single vector data structure which holds the
w weights and the p weights. Another approach would have been to separate
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Figure 1. The basic structure of the evaluation routine.

the w and p weights into two separate vectors, and maintain them as separate
populations. This would give the possibility of converging more rapidly because
the different weight types are not mixed by the crossover and mutation opera-
tions.

Struct chromosome
�

� �int gene vector 1..num weights ;
4

In the case of WOWA, gene vector holds the w and p weights and
num weights is equal to the number of variables � 2. Likewise, in the case of
OWA, gene vector holds the w weights and num weights is equal to the
number of variables. Finally, in the case of WM, gene vector holds the p
weights and num weights is also equal to the number of variables.
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Table III. Data matrix H and solu-
Ž .tion vector d taken from Ref. 3 .

�0.7 0.6 0.4 0.3 0.50

�0.9 0.7 0.5 0.3 0.60

If we normalize the � and � values, we guarantee that consistent WOWA’s
are generated:

�� � � ���i i i

�� � � ���i i i

In Table III the data matrix, used to learn the weights for the WOWA operator
using the GA method, is given. Using the GA method approach, the resulting
weighting vectors for the WOWA operator were

w � 0.47, 0.05, 0.11, 0.37Ž .
p � 0.15, 0.19, 0.35, 0.31Ž .

This was obtained using crossover in 1 point, with random and uniform muta-
tion. The population was 150, the possible gene values ranging between 1 and
10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude
was 0.000, run over 100 generations, and the best individual found after 3
generations.

If we increase the range of possible gene values to be between 1 and 100,
and increase the population to 300, the following result was found, also with best
aptitude 0.000, and taking 9 generations to reach it.

w � 0.07, 0.42, 0.07, 0.44Ž .
p � 0.01, 0.51, 0.31, 0.17Ž .

while the solution for the w and p vectors given in Ref. 3 was

w � 0.13, 0.37, 0.37, 0.13Ž .
p � 0.25, 0.25, 0.25, 0.25Ž .

The data matrix used to learn the weights for the OWA operator using the GA
method is that of Table II. Using the GA method approach, the resulting
weighting vectors for the OWA operator were

w � 0.07, 0.07, 0.33, 0.53Ž .

This was obtained using crossover in 1 point, with random and uniform muta-
tion. The population was 150, the possible gene values ranging between 1 and
10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude
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was 0.067, run over 100 generations, and the best individual was found after 9
generations.

If we increase the range of possible gene values to be between 1 and 100,
and increase the population to 350, the following result was found, with best
aptitude 0.061, and convergence in 27 generations:

w � 0.09, 0.01, 0.31, 0.59Ž .

ŽThis result approximates more closely to the ASM method result given in Sect.
. 9III A than to the result given by Filev and Yager.
In Table IV the data matrix used to learn the weights for the WM operator

using the GA method is given. Using the GA method approach, the resulting
weighting vectors for the WM operator were

p � 0.08, 0.21, 0.29, 0.38, 0.04Ž .

This was obtained using crossover in 1 point, with random and uniform muta-
tion. The population was 150, the possible gene values ranging between 1 and
10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude
was 0.031, run over 100 generations, and the best individual was found after 7
generations.

If we increase the range of possible gene values to be between 1 and 100,
and increase the population to 300, the following result was found, with best
aptitude 0.004, and convergence in 18 generations:

p � 0.1, 0.2, 0.3, 0.4, 0.0Ž .

The values of the resulting p vector are identical to those given in Ref. 10.
The weighted mean was the only operator which showed a significant

improvement in the best solution found by varying the parameters to the GA. In

Table IV. Data matrix H and solution vec-
Ž .tor d taken from Ref. 10 .

�0.3 0.4 0.5 0.1 0.2 0.30

�0.2 0.1 0.4 0.1 0.5 0.20

�0.2 0.5 0.8 0.0 0.1 0.36

�1.0 0.5 0.3 0.6 0.7 0.53

�0.2 0.1 0.1 0.1 0.1 0.11

�0.7 0.7 0.7 0.7 0.7 0.70

�0.4 0.8 0.2 0.8 0.6 0.58

�0.3 0.2 0.1 0.4 0.3 0.26

�0.6 0.8 0.7 0.2 0.5 0.51

�0.1 0.5 0.2 0.6 0.4 0.41
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the case of WOWA and OWA, diverse combinations were tried for mutation
rate and crossover rate, but without improvement of the best solution found.
Notwithstanding, by changing the population size and allowable values for the
gene, we were able to find different weight values for the best solutions with the
same aptitude.

We also tried a mutation function with Gaussian distribution instead of
random and uniform, and a crossover function with a 2 point crossover instead
of 1. In the case of the WM, this reached the same precision as the previous

Ž .solution best aptitude 0.004 with the same weights. In the case of OWA, the
Ž .solutions found were slightly worse best aptitude 0.068 compared to 0.061 . The

2 point crossover can be used to preserve the order of subgroups within
the chromosome, when this is significant to the solution to the problem, as in

Ž . 26,27the TSP travelling salesman problem , or in this case, where the weights are
ordered with respect to the data values. We think the lack of improvement for
OWA in this case was due to the insufficient length of the chromosome.
Although the type of problem is appropriate to show an improvement with this
method, the total number of genes was insufficient to create significant sub-
chains of genes within the chromosomes.

IV. REFORMULATION FOR EXAMPLES WITH A DIFFERENT
NUMBER OF VARIABLES

In order to use an aggregation operator to process data with missing values,
we have several options open to us. The first option may be to fill in the missing
values with a new value. This could be a flag which indicates that the value is
missing, or it could be the mean of the rest of the values for that variable in the
case of numeric values, or the mode in the case of categorical values. This
method works better when there are a large number of cases and thus the mean
and mode values are good approximations. In our case, we wish to work with a
small number of cases and we cannot guarantee that the mean and mode will be

Ž .accurate. Thus, we choose to eliminate the missing values not the whole case .
If the cases have N variables, and, for case j, two variables are missing, then we
eliminate those variables for case j and we pass the p and a vectors with N � 2
variables to the WOWA operator. The w vector remains unchanged, and we
pass N of its weights to WOWA. This is because the p and a vectors must have
the same length: for each a value there must exist a corresponding p weight. In
contrast, the w vector is not directly related to the p and the a vectors, as it is
used to construct the quantifier function. The different lengths of the a and p
vectors with respect to the w vector make it necessary to maintain two length
counters and pass these to WOWA to be used in the appropriate points of the
function code. Of course, the aggregation operator performs the aggregation
based only on the N � 2 variables received as its input. Thus, a reformulation of
the aggregation problem is needed so that it can be applied to a number of
variables less than N. This approach has its cost�benefit: on the one hand, we
have the possible benefit due to a reduction in noise due to erroneous substitute
values. On the other hand, we have the possible cost due to information loss due
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to the absence to the omitted variables’ value. The final decision on whether to
choose one option or the other depends on the application and the nature of the
data being processed, as well as on the number of cases.

In the case of the WM, the reformulation is

2jM Ý a pi� I i ij jD p � mŽ . Ý Ý pž /i� I ij�1 j

� 4where p is the weighting vector p, where I is a subset of 1, . . . , N with thej
index variables of example j. In the reformulation, we divide by � p in order toi
renormalize the weights and assure that their sum is equal to 1. The approach
for the OWA is similar and we have not detailed it here. In the case of the
WOWA, the reformulation is

M Ý p jŽ .j	 i ; j� I sjD p � W *Ž . Ý Ý ž /Ý pžž i� I ij�1 i�I jj

2
Ý p jŽ .j� i ; j� I sj j j�W * a � miž /Ý p / /i� I ij

� Ž .�where p is the weighting vectors p and w i.e., p � p 
 w , where I is a subsetj
� 4of 1, . . . , N with the index variables of example j. In the reformulation, we

divide by � p in the same manner as for WM and OWA, and the orderingi
Ž .� p is now restricted to the subset i � I . Note that the interpolationj	 i � Ž j. j

Žfunction W * is the same for all examples j � 1, . . . , M it is computed using all
.weights in w .

In Table V the data matrix with one missing value is given. A new version
of WOWA, modified to process missing values as described above, was executed
with this data set and with the same parameters used in the tests in Section
III B.

This resulted in a best aptitude of 0.001, with convergence in 6 generations.
The weight vectors were as follows:

p � 0.17, 0.39, 0.34, 0.11Ž .
w � 0.02, 0.41, 0.29, 0.29Ž .

Table V. Data matrix H and solution
vector d, with missing values indicated
by ‘‘M.’’

�0.7 0.6 0.4 M 0.50

�0.9 0.74 0.5 0.3 0.60
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If we increase the number of missing values to two, that is, in Table V we also
make the value corresponding to row 2, column 4 equal to ‘‘M,’’ and rerun the
WOWA modified to process missing values, the best aptitude is also 0.001, but
convergence is slower in 26 generations. If we increase the number of missing
values to four, that is, in Table V we also make row 2, column 4 and row 1
column 1 equal to ‘‘M,’’ and rerun the modified WOWA, the best aptitude is

Ž .0.009, achieved at the maximum cutoff of 100 generations. Finally, if we
increase the number of missing values to six, that is, in Table V we also make
row 1, column 2 and row 2, column 3 equal to ‘‘M,’’ and rerun the modified
WOWA, we see a significant degradation in the performance: best aptitude is
0.300 achieved in 100 generations; the output values are 0.50 and 0.90 for rows 1
and 2, respectively; the weight vectors in this last case settle to the following:

p � 0.42, 0.04, 0.12, 0.42Ž .
w � 0.05, 0.36, 0.41, 0.19Ž .

In conclusion, we see that with the data set of Table V, there is a robust
handling of missing values, in which there is only a significant degradation in the
overall precision when there exists a high percentage of missing values. We have
to take into account that the datum in Table V is a small artificial data set and it
is relatively easy for the aggregation to find good alternative solutions for the
different subsets of the values.

V. ADVANTAGES AND INCONVENIENCES
OF THE TWO APPROACHES

Both active set methods and genetic algorithms have been applied to learn
the weights for the aggregation operators described in Section II. We have used

Ž .them in medium sized real problems see Refs. 10, 28, and 29 for details and
from our experience the two approaches are complementary. We describe below
the advantages and inconveniences of both approaches.

ASM based methods are appropriate for learning the weights for the WM
and the OWA operators because, in this case, the minimization problem is a

Žquadratic one and almost exact solutions can be found except for cases of
.numerical instability, e.g., linear dependency between two information sources .

For quadratic problems, the formulation of the problem and their resolution is
simple. Instead, for these two cases, genetic algorithms are not quite appropriate
because, usually, the best solution they find is only a suboptimal one. Thus,
ASMs are more precise. Moreover, the computation costs in terms of memory
and CPU usage are greater in the case of the GA based approach than in the
case of the ASM. This is due to the fact that genetic algorithms need to compute
the fitness function for each of the individuals in each of the populations and
this is calculated applying the aggregation function to each example. Instead, the
costs of the ASM are mainly proportional to the number of variables and not to
the number of examples. This is so because ASM only uses the examples

Žonce�in the initial step�to compute an N*N matrix where N is, as above,
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.the number of examples and the iterative method uses this matrix but not the
initial examples. According to this, the greatest difference between the costs is
when the set of examples is large and the number of variables is small. In
relation to the implementation, neither ASM based methods nor GA based ones
are difficult to implement. To implement the former, we need the general ASM

Ž .algorithm for selecting or removing active constraints described in Ref. 10 and
an algorithm to solve linear equations. The implementation of the latter has to
follow the indications given in Section III B. According to the better approxima-
tion, the computational cost, and the implementation difficulties, it seems to us
that when the aggregation operator is either WM or OWA then ASM based
methods are recommended.

This is not the case when weights are learned for the WOWA operator. In
this case, the complexity of ASMs increases because the function to minimize is

Žnot quadratic. This is due to the existence of the interpolation function w* built
.from the weighting vector w�one of the weighting vectors to learn and due to
Žthe fact that this function is applied to additions of some of the p’s the other

.weighting vector to learn . Although there exist some optimization techniques to
find approximate solutions for nonquadratic problems, their implementation is a

Ž .difficult and nontrivial task see, e.g., Ref. 14 . In this case, complexity of genetic
algorithms does not increase and the main change is to use the WOWA
operator in the fitness function instead of using the OWA or WM. Thus, genetic
algorithms can be used to obtain suboptimal solutions with sufficient precision
more easily. Besides these advantages, the genetic algorithm is also suitable
because it can find several suboptimal solutions. This is especially adequate
because, at present, we do not know whether the distance for the WOWA

�operator is convex or not this is not the case for the WM and OWA where
Ž . �D p is convex .

The use of genetic algorithms presents an additional advantage for either
the WM, OWA, or WOWA operators. This is the case when data files include
missing values or the number of variables is different in each example. Section
IV presents an alternative definition of the distance function that takes this fact
into account. Using this function is easy when genetic algorithms are applied
because we only need to adapt the fitness function and the rest of the program
can be kept as it was. However, this is not the case for the ASM based approach,
as, for example, in the case of the weighted mean or the OWA operator, the
minimization problem is then nonquadratic. That is, the distance cannot be
expressed as

xQx � dx

for an appropriate matrix Q and vector d. Thus, the general ASM method
cannot be applied. Therefore, when the number of variables is not the same for

Žall examples as is sometimes the case in real applications due to missing or
.nonapplicable values , the genetic algorithm approach is also more appropriate.
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VI. CONCLUSIONS

In this article we have detailed two different approaches to learning the
weight values used by the WM, OWA, and WOWA aggregation operators. We
have seen some advantages and disadvantages of each of the approaches, and
results of data processing with simple data sets. The methods provide viable
options when considering alternatives for learning weights, whose choice may
finally depend on the nature of the data sets being processed, the observed
results, and the desired precision and repeatability of the outcome.

Vicenç Torra acknowledges partial support of the CICYT project SMASH: TIC-96-
1038-C04-04.
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