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Abstract. Multi-agent task allocation problems pervade a wide range
of real-world applications, such as search and rescue in disaster manage-
ment, or grid computing. In these applications, where agents are given
tasks to perform in parallel, it is often the case that the performance
of all agents is judged based on the time taken by the slowest agent
to complete its tasks. Hence, efficient distribution of tasks across het-
erogeneous agents is important to ensure a short completion time. An
equivalent problem to this can be found in operations research, and is
known as scheduling jobs on unrelated parallel machines (also known
as R||Cmax). In this paper, we draw parallels between unrelated parallel
machine scheduling and multi-agent task allocation problems, and, in so
doing, we present the decentralised task distribution algorithm (DTDA),
the first decentralised solution to R||Cmax. Empirical evaluation of the
DTDA is shown to generate solutions within 86–97% of the optimal on
sparse graphs, in the best case, whilst providing a very good estimate
(within 1%) of the global solution at each agent.

1 Introduction

Multi-agent task allocation problems pervade a wide range of real-world scenar-
ios, such as search and rescue in disaster management [10], and environmental
monitoring with mobile robots [12]. In such problems, a set of agents, such as
rescue agents in search and rescue, must work together to perform a set of tasks,
often within a set amount of time. In particular, agents are given tasks to per-
form in parallel, and the performance of the team is usually judged based on the
time taken by the slowest member of the team. For example, consider a team
of firefighters that must put out fires in a building before medical personnel can
enter and provide first aid for civilians — in this case, the medical personnel
can enter the building only when all fires have been extinguished. In this case,
the task allocation problem we focus on would consist of firefighter agents and
firefighting tasks. Each firefighter would be assigned a number of fires to put out,
and medical personnel would only be able to enter after the last fire has been
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extinguished by the last firefighter. Thus, the performance of all the firefighters
(i.e., how early the medical personnel can enter the building) is judged on how
long the last firefighter has taken to finish. Hence, efficient distribution of tasks
across such heterogeneous agents is important to ensure an early completion
time. In more detail, in this context, agents must find a solution that ensures all
tasks are performed in the shortest amount of time.

Now, an analogue to this particular class of task allocation problems has been
widely studied in operations research and is known as scheduling on unrelated
parallel machines, or R||Cmax [4]. In this problem, there are a set of heteroge-
neous machines, and a set of tasks which must be performed by those machines
(equivalent to agents), potentially under some constraints (for example, where
a given machine cannot execute certain tasks), such that the maximum finish
time across machines, known as the makespan, is minimised. However, while
many algorithms (for example, [5,6,8], see [9] for a review) have been developed
to solve R||Cmax, they all require the existence of some central authority. How-
ever, this introduces a central point of failure: for example, if communication to
and from the central authority were to fail, then another authority would have
to be found so that it could re-compute the solution and try to communicate
it. In addition, in realistic large-scale environments, which can potentially have
hundreds of agents, there is a need for an algorithm that will scale well in terms
of communication and computation, which centralised algorithms are unable to
do. Hence, the challenge we face is to build decentralised algorithms that are
robust to failure, and so, there is a clear need for a multi-agent systems solution
to solve R||Cmax in our domains.

Against this background, in this paper, we develop a novel, decentralised,
approximate algorithm to solve the unrelated parallel machine scheduling prob-
lem, called the Decentralised Task Distribution algorithm (DTDA). DTDA uses
localised message passing through the min-max algorithm to find good quality,
per-instance bounded approximate solutions in a distributed, efficient manner.
In more detail, the min-max algorithm is a localised message passing algorithm
from the GDL (Generalised Distributive Law) family [1], which factorises the
global problem into local agent-level sub-problems, by exploiting possible in-
dependence among agents’ actions. For example, assume two firefighters are in
distant parts of a large building, and must decide which of the fires surrounding
them they must put out. In this situation, the two firefighters can avoid con-
sidering each others’ actions but should coordinate their own actions with any
firefighters which are close by, and therefore would be making their decisions
regarding some of the same fires.

This paper advances the state of the art in the following ways:

– First, we provide a novel representation of the R||Cmax problem, in terms
of a junction graph, which is a graphical model frequently used to represent
factored functions [7].

– Second, we show how we can simplify the min-max algorithm, and then run
it over this junction graph representation to generate approximate solutions
to the R||Cmax problem, with per-instance bounds, through decentralised
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message passing between agents. To the best of our knowledge, this is the
first known application of min-max to the R||Cmax problem.

– Third, we empirically evaluate our approach, by comparing our performance
with two benchmark algorithms (optimal and greedy), on graphs with differ-
ing average degrees. We find that it produces solutions within 86–97% of the
optimal, in the best case, in sparse environments, and outperforms greedy
by up to 16%.

The rest of this paper is structured as follows. In Section 2, we formulate
R||Cmax. Next, we decompose the problem in Section 3 so that it can be dis-
tributed, and discuss how we simplify the min-max algorithm in Section 4. Then,
we present our decentralised algorithm in Section 5. Next, we empirically eval-
uate the quality of the solutions given by the DTDA in Section 6. Finally, in
Section 7, we conclude.

2 Problem Formulation

In this section, we formally describe the problem we introduced in Section 1.
In more detail, our problem consists of finding an allocation of tasks to agents
in order to to optimize overall execution performance in terms of the system’s
makespan. First, in Section 2.1, we provide the basic definitions of the environ-
ment. Then, in Section 2.2, we describe our objective function, which formalises
the analogy with the R||Cmax problem overviewed in Section 1.

2.1 Basic Definitions

Let the set of agents be denoted as A = {a1, a2, . . . , a|A|}, and the set of tasks to
be completed as T = {t1, t2, . . . , t|T |}. Each agent ai can perform a set of tasks
Ti ⊆ T . For each agent ai ∈ A we denote a cost function, χi : Ti → R+, that
returns the total run–time incurred at ai to perform some task t ∈ Ti. Thus,
χi(tk) returns the application-specific runtime required for agent ai to perform
task tk. A graphical representation of an example environment is given in Figure
1, in which there are 3 agents (circles) and 4 tasks (squares). Each agent is
connected to the tasks it can potentially perform by lines in the graph, and
edges are labelled with χi(tk). Thus, for example, agent a1 will incur a runtime
of 30 to perform task t2 whereas agent a2 will only incur a runtime of 20.

Given this, the problem is to schedule all of the tasks in T across the agents in
A such that all tasks are completed and the makespan is minimised. We formally
define this objective in the next section.

2.2 Objective Function

To show the analogy with R||Cmax, consider the set of jobs as the set of agents’
tasks and the set of machines as the set of agents. Specifically, the objective of
R||Cmax is to find a mapping m : A → 2T from tasks to agents, such that the
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Fig. 1. A graphical representation of a sample R||Cmax problem, in which agents are
represented by circles, and tasks by squares. Edges between agents and tasks indicate
an agent can perform a task, at a cost denoted on the edge.

makespan is minimized. In particular, we wish to find this mapping subject to
a number of constraints. First, each task must only be computed by one agent:

m(ai) ∩m(aj) = ∅,∀ai, aj ∈ A, i 6= j

and second, that all tasks must be computed:⋃
ai∈A

m(ai) = T

in which m(ai) denotes the set of tasks assigned to agent ai, under mapping m.
Given this, our objective is to find a mapping m∗ as follows:

m∗ = arg min
m∈M

max
ai∈A

∑
tk∈m(ai)

χi(tk) (1)

where M is the set of all possible mappings. For instance, Figure 2 depicts an
optimal mapping of the problem in Figure 1 where optimal assignments from
agents to tasks are shown with arrows. Thus, the optimal mapping m∗ is defined
as: m∗(a1) = {t1, t3}, m∗(a2) = {t2} and m∗(a3) = {t4} with a makespan value
of max(10 + 50, 20, 70) = 70.
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Fig. 2. An optimal mapping from agents to tasks, for the problem in Figure 1. Arrows
between agents and tasks depict an agent being assigned to a task.
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Now, in order to solve the objective function given in Equation (1) in a
decentralised way, we first decompose the problem so that it can be modelled as
a junction graph, like that shown in Figure 3.

3 R||Cmax Representation

In more detail, a junction graph [7] is an undirected graph such that:

– each node i, known as a clique, represents a collection of variables, Xi.
– each clique node i in the junction graph has a potential, ψi : Xi → R+,

which is a function defined over the set of variables in the clique.
– two clique nodes i and j are joined by one edge that contains the intersection

of the variables they represent.

Using this representation allows us to explicitly represent the interactions be-
tween agents, in terms of the common tasks they can complete. To do this, we
represent each agent as a clique in the graph containing variables relating to
the tasks that agent can complete. In so doing, the representation facilitates the
application of a particular GDL [1] message-passing algorithm, called min-max,
which we can use to find a solution to Equation (1) in a decentralised manner.
We explain min-max in more detail in Section 4.

a1
x1,x2,x3 

a2
x2,x3 

a3
x3,x4 

x2,x3 x3

x3

Fig. 3. The junction graph formulation of the scenario given in Figure 1. Large circles
are cliques, with the elements of the cliques listed. Edges are labelled with common
variables between cliques.

In order to apply min-max, we reformulate the objective function in Equation
(1) in terms of a junction graph. Figure 3 depicts the junction graph representing
the problem in Figure 1. We define the set of variables X = {x1, . . . , x|T |} to
include one variable xk for each task tk ∈ T . Thus, the junction graph in Figure
3 contains four variables, {x1, x2, x3, x4}, which correspond to the four tasks in
Figure 1. Each variable xk ∈ X takes a value from its domain, which contains
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all of the IDs of agents that can complete task tk. Hence, if xk = i, then we
know that agent ai is allocated to tk. For instance, the domain of x2 in Figure
3 is composed of two values, 1 and 2, corresponding to the indices of the agents
that can perform task 2, a1 and a2. Notice that, in doing this, we enforce the
constraint that exactly one agent must perform every task.

Additionally, we use Xi = {xk|tk ∈ Ti} as the set of variables representing
the tasks agent ai can perform. With slight abuse of notation, we use Xi to
denote a configuration of the variables in Xi. Given this, in our formulation, an
agent ai’s clique will contain all variables in Xi (in Figure 3, labels within circles
denote agents’ cliques). Thus, in Figure 3, the set of variables corresponding to
agent a2’s clique, X2, is composed of x2 and x3, which are the two tasks that a2
can perform in Figure 1.

Finally, we encode the cost function of agent ai as a potential function,
ψi(Xi), representing the total time that ai will take to compute the configuration
Xi. Formally:

ψi(Xi) =
∑

xk∈Xi,xk=i

χi(tk) (2)

Thus, in Figure 3 the potential function of agent a2, ψ2, which is defined over
variables x2 and x3, returns a runtime of 60 for the configuration x2 = 1, x3 = 2,
which is the runtime incurred at a2 to complete task 3 in Figure 1.

By the definition of a junction graph, two agents, ai and aj , will be joined
by an edge in the junction graph if and only if Xi ∩Xj 6= ∅. In Figure 3 edges
are labelled with the intersection of two cliques. Thus, agent a2 is linked to a3
by an edge that contains the only common variable in their cliques: x3. Given
this, we denote agent ai’s neighbours, N (ai), as the set of agents with which ai
shares at least one variable, and therefore, are neighbours in the junction graph.

Given all this, the junction graph encodes our objective function (Equation
(1)) as follows:

X∗ = arg min
X

max
ai∈A

ψi(Xi) (3)

where Xi is the projection of X over variables Xi. In more detail, given two sets
of variables Xi, Xj ⊆ X, a projection of X over Xj contains the variable values
found in X for all xk ∈ Xi ∩Xj in Xj .

Now that we have a junction graph formulation of the problem, we can de-
compose our objective function amongst the agents. In order to do this, we
compute the marginal function zi(Xi) at each agent, which describes the de-
pendency of the global objective function (given in Equation (1)) on agent ai’s
clique variables. This is computed as follows:

zi(Xi) = min
X−i

max
aj∈A

ψj(Xj) (4)

where X−i is a configuration of X−i, where X−i = X \ Xi and Xj is the
projection of X−i over the variables in Xj .

Finally, in the presence of a unique solution, the optimal state of ai’s clique
variables is:

X∗i = arg min
Xi

zi(Xi) (5)
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This decomposition facilitates the application of the min-max GDL algo-
rithm, as our operators here are min and max, to find a decentralised solution
to R||Cmax. Thus, in the next section, we introduce min-max, and prove its
most important property: that it will always converge within a finite number of
iterations.

4 The min-max Algorithm

The min-max algorithm is a member of the GDL framework [1], which is a
framework for localised message passing algorithms. We know from the literature
(for example, [3]) that GDL algorithms are efficient (particularly in sparse graphs
— in our case, where each agent can only perform a subset of the tasks), and
provide generally good solutions, so it fits to apply one here. In addition, GDL
algorithms are proven to converge to optimal solutions on acyclic graphs (which,
in our case, would be junction trees). In more detail, GDL based algorithms are
all based on a commutative semiring. Min-max is based on the commutative
semiring 〈R+,min,max,∞, 0〉 where min is the additive operator and max the
multiplicative operator.

Given a junction graph, the GDL approach consists of exchanging messages
between agents and their neighbours in the junction graph. Let Xij = Xi∩Xj be
the intersection of variables of two neighbours, ai and aj , and Xi\j = Xi \Xj . In
the GDL, agent ai exchanges messages with a neighbour aj ∈ N (ai) containing
the values of a function µi→j : Xij → R+.

Initially, all such functions are defined to be 0 (the semiring’s multiplicative
identity). Once messages have been received, the message is computed as follows:

µi→j(Xij) = min
Xi\j

max

[
ψi(Xi), max

ak∈N (ai)|k 6=j
µk→i(Xki)

]
(6)

where Xij is a configuration of Xij , Xi\j is a configuration of Xi\j , and Xi and
Xki stand for the projection of Xij ,Xi\j over variables in Xi and Xki respec-
tively.

Similarly, for each clique ai, GDL computes an approximation of the marginal
contribution of its variables, z̃i : Xi → R+, as:

z̃i(Xi) = max

[
ψi(Xi), max

aj∈N (ai)
µj→i(Xji)

]
(7)

Now, the idempotency of max, the multiplicative operator [11], allows us to
make a number of changes to the standard GDL formulation, which we explain
below.

Idempotency implies that, for all r ∈ R+, max(r, r) = r. Hence, the idempo-
tency of the multiplicative operator implies that repeatedly combining the same
information will not produce new information. Moreover, when an operator is
idempotent, it defines a partial ordering over the set R+. In our case, both op-
erations are idempotent. For the min operator, the order is the natural order of
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real numbers: i.e., r ≤ s if and only if min(r, s) = r. Meanwhile, for the max
operator, the order is the inverse of the natural ordering of numbers: i.e., r ≥ s
if and only if max(r, s) = r. From these, we can deduce that, as min orders the
elements in exact inverse to max, min(r,max(r, s)) = r.

Given all this, due to the idempotency of the min-max commutative semiring,
the following equality holds for any X′i, Xi where X ′i ⊆ Xi:

max

[
ψi(Xi),min

X′i

ψi(X
′
i)

]
= ψi(Xi) (8)

This idempotency property is a feature we exploit in our implementation
of min-max, to improve efficiency. In more detail, the idempotency of the min-
max semiring, a property not shared with other non-idempotent GDL semirings,
allows us to simplify the GDL equations such that:

– in Equation (6), when an agent ai sends a message to a neighbour aj , it does
not need to marginalise out any previously received messages from aj , thus
reducing computation at agents.

– in Equation (7), the agent’s marginal contributions can be computed recur-
sively by combining messages from multiple iterations, which, again, reduces
computation at the agent. This is because repeatedly combining messages
from previous iterations will not change the approximate marginal contribu-
tion at an agent.

Thus, in the next section, we will introduce min-max based on these simplified
equations, instead of the original GDL Equations ((6) and (7)), allowing us to
simplify the computation at each agent when sending messages.

In addition to this, the idempotency property provides two further proper-
ties that make the min-max algorithm more efficient than non-idempotent GDL
algorithms: (1) it is guaranteed to converge, even in cyclic graphs (Theorem 1);
and (2) it provides an online per-instance bound on the optimal solution value
of the problem that it approximates (which we will discuss later on, in Section
5.3). In what follows, we provide the formal proof of convergence.

Theorem 1. The min-max algorithm is guaranteed to converge in a finite num-
ber of iterations.

Proof. [2] prove the termination of idempotent commutative semirings (Theo-
rem 8). Given the fact that min-max is an idempotent semiring, the min-max
algorithm must terminate.

Now that we have shown why the min-max algorithm carries useful proper-
ties, in the next section, we present our decentralised task distribution algorithm
(DTDA). Our algorithm consists of an algorithmic instantiation of the min-max
algorithm, which, when combined with a value propagation phase, allows online
per-instance bounds on solution quality to be obtained at each agent.
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5 Decentralised Task Distribution Algorithm

Broadly speaking, the DTDA consists of two key steps: applying the min-max
algorithm to compute an allocation of tasks to agents, and value propagation to
ensure all agents choose the same assignment, and to compute the per-instance
bound.

In more detail, the first step of the min-max algorithm propagates informa-
tion across the agents to produce a set of solutions (we will explain how this can
be a set later on). In the second phase (value propagation), agents are arranged
in a tree structure, and one solution is chosen that is consistent with all other
agents’ solutions. We elaborate on these steps in what follows.

5.1 Applying min-max

In the first step of the DTDA, we apply the min-max algorithm over the junction
graph described in Section 3, in order to find a set of solutions (distributions of
tasks to agents).1

Algorithm 1 minmax() at agent ai.

1: procedure initialise

2: Initialize messages µi→j(Xij) = 0 ∀j ∈ N (i)
3: z̃i(Xi) = ψi(Xi) =

∑
xk∈Xi,xk=i χi(tk) // Intialise marginal contribution

4: Run procedure send messages.
5:
6: procedure received µj→i

7: if stored(j) 6= µj→i then // received different message

8: stored(j) = µj→i // update stored message

9: Run procedure update marginal contribution

10: Run procedure send messages.
11: end if
12:
13: procedure send messages

14: for j ∈ N (i) do
15: Send µi→j(Xij) to aj
16: end for
17:
18: procedure find solutions

19: X∗i = all states with value minXi z̃i(Xi)

We present the pseudocode for min-max in Algorithm 1. Now, an agent be-
gins by running the procedure initialise (lines 1–4). Each agent starts by

1 Note that we specify that a set of solutions is produced, because it is possible for
more than one solution to have the same value. This is because the solution value
is taken to be the largest makespan at one agent — therefore, many allocations of
tasks and agents could give the same makespan.
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initialising its stored outgoing messages to 0 (line 2), and its marginal contri-
bution function, z̃i(Xi), to the agent’s potential, ψi, which encodes the agent’s
own cost function, computed as given in (2) (line 3).

After initialisation, each agent exchanges a message, µi→j , with each of its
neighbours, aj ∈ N (ai), in order to find out their approximated marginal con-
tribution for each configuration of the variables they share. This is done via the
procedure send messages (lines 13–16). The message µi→j(Xij) is sent over all
combinations of the variables in Xij (i.e., the intersection of Xi and Xj). The
content of the message from an agent ai to aj is, therefore, agent ai’s marginal
contribution function:

µi→j(Xij) = min
Xi\j

z̃i(Xi) (9)

When an agent ai receives a message, it runs the procedure received (lines
6–11), in which the agent checks if the message it has received differs from the
last message it received from that agent. This is important to ensure that the
messages stop being sent when they stop changing, so the algorithm converges
to a solution. If the message does differ (line 7), then the ai updates its stored
entry for the sending agent (line 8). Afterwards, the agent ai runs the procedure
update marginal contribution (line 9), which updates its marginal contribu-
tion values as follows:

z̃i(Xi) = max

{
z̃i(Xi), max

aj∈N (ai)
µj→i(Xji)

}
(10)

This marginal contribution is approximate because, as we said earlier, GDL
algorithms can only compute exact solutions on acyclic graphs (i.e., a junction
tree instead of a junction graph). Finally, agent ai re-sends all of its messages
(line 10) in case its marginal contribution value has changed (for example, if a
new maximum µj→i(Xij) has been found).

These messages are passed amongst agents until their content no longer
changes — at which point, the agent will ascertain the best states for its vari-
ables using the procedure find solutions (lines 18–19). In more detail, this is
done by assessing the configuration X∗i , with cost z̃∗i , that minimises the agent’s
marginal contribution (line 19):

X∗i = arg min
Xi

z̃i(Xi) (11)

Hence, this equation provides an approximation of (3). We show in our empir-
ical evaluation (in Section 6) that the solutions DTDA gives are of very good
quality on a general problem. Next, we describe our value propagation phase
which ensures that all agents apply the same solution and that computes the
online per-instance bound of the approximate solution.

5.2 Value Propagation

Once the messages amongst agents have converged, and no further messages
need to be sent, we introduce a two-part value propagation phase to ensure the
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agents all set their values to produce a valid state, and are aware of the quality
of their bound. This is required in part due to the likelihood of multiple solutions
being present.

In the first part of this phase (see Algorithm 2, lines 1–10), we arrange the
agents into a Depth-First Search (DFS) tree using distributed DFS. In particular,
a DFS tree must always ensure that agents which are adjacent in the original
graph are in the same branch. This ensures relative independence of nodes in
different branches of the tree, allowing parallel search. For any given graph, our
DFS tree is considered ‘valid’ if no ties (variable overlaps) between agents in
different subtrees of the DFS tree exist. The outcome of this DFS is that each
agent has set the values of its parent and children variables shown in Algorithm
2. Once this has occurred, the root node decides on a configuration of its variables
to propagate, X∗i , as computed in (11), and sends this, along with vi = ψi(X

∗
i )

(the actual value of the current solution) and zi(X
∗
i ) (the value of the current

solution as computed by min-max) to the node’s children. Each of these children
adds their own variables onto X∗i (line 2), takes the maximum of v and z with
what they have received (lines 3 and 4, respectively), and sends these new values
onto their own children (line 5).

Algorithm 2 valueprop at agent ai
Require: parent, children
1: procedure received(〈X∗p, vp, z̃∗p〉) from parent
2: X∗i = arg minXi\p z̃i(Xi\p;X∗p)
3: vi = max(vp, ψi(X

∗
i ))

4: z̃∗i = max(z̃∗p , z̃i(X
∗
i ))

5: Send 〈X∗i , vi, z̃∗i 〉 to all aj ∈ children
6: if children = ∅ then
7: Send 〈vi, z̃∗i 〉 to parent
8: end if
9:

10: procedure received(〈vp, z̃∗p〉) from child
11: if Received messages from all child ∈ children then
12: vi = max(vp, ψi(X

∗
i ))

13: z̃∗i = max(z̃∗p , z̃i(X
∗
i ))

14: ρ = z̃∗i /vi
15: Send 〈vi, z̃∗i 〉 to parent.
16: end if

Once this first phase is complete (i.e., the messages have reached the leaf
nodes), the leaf nodes pass their marginal contribution and makespan values
(the actual value of the solution) back up the tree (lines 6 and 7), to ensure
every agent can compute the quality of the solution. Then, when an agent has
received such a message from each of its children (line 11), it will update its v
and zi(X

∗
i ) values (lines 12 and 13, respectively), calculate its approximation

ratio ρ (line 14) — which is the agent’s per-instance bound (this will be clarified
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in the next section), and send the new v and zi(X
∗
i ) values to its parent (line 15).

Once these messages have reached the root of the tree, the DTDA is complete,
all variables have values consistent across all agents, and all agents are aware of
the quality of their solution.

5.3 Proving the Per-instance Bound

Next, we prove that the maximum value of the solution that minimises the
approximate marginal contributions of the agents in min-max, or, more formally,
z̃ = maxai∈A minXi z̃i(Xi), is a lower bound on the cost of the optimal solution
of the R||Cmax problem, as formulated in Equation (3) (Theorem 2). This lower
bound can be used by agents to assess the quality of the min-max solution by
bounding its error.

Before proving Theorem 2, we define the relation of equivalence among two
functions.

Definition 1 (equivalence). Given two functions α(Xα) and β(Xβ) we say
they are equivalent if they: (1) are defined over the same set of variables Xα =
Xβ; and (2) return the same values for all possible configurations, α(X) = β(X).
We denote such relation of equivalence as α ≡ β.

Next, we prove two lemmas, that help to assess Theorem 2. First, in Lemma 1,
we state that, at any iteration of the min-max algorithm, the function that results
from the combination of the agents’ marginal contributions, namely Z̃(X) =
maxai∈A z̃i(Xi), is equivalent to the objective function to minimise in R||Cmax,
Ψ(X) = maxai∈A ψi(Xi). Thus, under Lemma 1, Z̃ ≡ Ψ . Second, in Lemma
2, we state that z̃, defined as the maximum of the individual agents’ marginal
solutions, is a lower bound on the value of the optimal value of function Z̃.

We provide formal proofs for these two lemmas below.

Lemma 1. At any iteration τ of the min-max algorithm, function Z̃τ (X) =
maxai∈A z̃

τ
i (Xi) is equivalent to the to the objective function to minimise in

R||Cmax, Ψ(X) = maxai∈A Ψi(Xi).

Proof. We prove this by induction on τ .
For τ = 0 the case is trivial, Z̃0(X) = maxai∈A z̃

0
i (Xi) = maxai∈A ψi(Xi) =

Ψ(X).
Then we prove τ = n+ 1: that is, that Zn+1 ≡ Zn, assuming that τ =

n holds. Z̃n+1(X) = maxai∈A max(z̃ni (X),maxaj∈N(ai) minXj\i z̃
n
j (Xj\i)). Since

the max operator is commutative and associative, Z̃n+1(X) can also be written
as maxai∈A max(z̃ni (Xi),maxaj∈N (ai) minXi\j z̃

n
i (Xi\j)). Then, by exploiting the

idempotency of the max operator (see Equation (8)), Z̃n+1(X) simplifies to
maxai∈A z̃

n
i (Xi) and Z̃n+1 ≡ Z̃n ≡ Ψ . ut

Lemma 2. Given Z̃(X) = maxai∈A z̃i(Xi), let z̃∗ be the value of the assignment
x∗ that minimises Z̃(X). Then, z̃ = maxai∈A minXi z̃i(Xi) is a lower bound on
z̃∗, z̃ ≤ z̃∗.
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Proof. We prove this by contradiction. Assume that there is an assignment X
of X such that Z̃(X) ≤ maxai∈A minXi

z̃i(Xi). This leads to a contradiction,
because it implies that at least one function z̃i evaluated at x is lower than its
minimum, minXi

z̃i(Xi). ut

Finally, we combine these two lemmas to prove our main result, in Theorem
2.

Theorem 2. Let z̃τi (Xi) be agent ai’s marginal contribution function at itera-
tion τ of the min-max algorithm. Then, z̃ = maxai∈A minXi z̃

τ
i (Xi) is a lower

bound on the value of the optimal solution, namely z̃ ≤ minX Ψ(X), where
Ψ(X) = maxai∈A ψi(Xi).

Proof. Since the optimal solution of two equivalent functions is the same, the
result follows directly from Lemmas 1 and 2. ut

Therefore, under Theorem 2, at each iteration of the min-max algorithm, the
maximum of the agents’ marginal contributions, z̃ = maxai∈A minXi

z̃τi (Xi), is
a lower bound on the value of the optimal solution. Notice that, at each itera-
tion, the agents’ marginal contribution functions combine information from the
messages using the max operator, so minXi z̃

τ
i (Xi) ≤ minXi z̃

τ+1
i (Xi). There-

fore, the sequence of lower bounds is guaranteed to monotonically increase over
iterations of min-max, thus providing a better approximation of the value of the
optimal solution at each iteration. As shown in section 5.2, agents can, at the
end of the min-max algorithm, assess this lower bound value to bound the error
of the approximate solution found when running the min-max algorithm.

In the next section, we present our empirical evaluation of the DTDA. It is
necessary for us to do this to show our algorithm finds good solutions, as the
bound we provide on the quality of the approximations we give is per-instance,
as opposed to an overall offline bound.

6 Empirical Evaluation

In this section, we compare the approximation found by the DTDA to a num-
ber of other algorithms, thus establishing the first decentralised benchmark for
R||Cmax. Namely, we compare the DTDA against an optimal centralised algo-
rithm, and a greedy algorithm. In more detail, the optimal centralised algorithm
(CA) operates by solving a mixed integer program to find the optimal solution.
We formulate the problem as a binary integer program, and then use IBM ILOG
CPLEX2 to find an optimal solution assigning tasks to agents. Next, in the global
greedy algorithm (Greedy), tasks are allocated to the agent that can complete
them the fastest, and are considered in order of time required, from highest to
lowest. In both these cases, we consider exactly the same problem the DTDA
does — i.e., each agent can only perform a subset of the tasks. In addition, we
plot the maximum bound found at an agent after executing the DTDA, ρ, as

2 See www.ibm.com/software/integration/optimization/cplex-optimizer/
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(a) σt = 2 (b) σt = 3

Fig. 4. Empirical Results: Utility gained for varying graph density.

computed in the value propagation phase, found in Section 5.2. Note that we
do not compare to any existing approximate algorithms for R||Cmax because,
as we said earlier, there exist no decentralised algorithms for R||Cmax. Hence,
our result establishes the first communication and computation benchmark for
distributing the solution of R||Cmax problems.

To evaluate the performance of DTDA, we plot the solutions obtained as a
mean percentage of the optimal centralised solution, with error bars represent-
ing 95% confidence intervals in the mean. We calculate the mean approximation
ratio of solutions obtained by each of these algorithms by dividing the achieved
makespan by the optimal makespan (i.e., those obtained by CA), over 100 ran-
dom scenarios, and use this to plot the percentage of the optimal obtained. In
addition, we plot the mean total number of messages sent by DTDA, and the
mean time taken to find a solution by DTDA.

We compare our algorithms in a number of average cases: specifically, sparse
random graphs, and dense random graphs. In more detail, we generated 500
random scenarios with |A| = 20, |T | = {20, 25, 30, 25, 40}, and σt ∈ {2, 3}, where
σt is the average degree of each task. The time taken for agent ai to perform
task tj was calculated as ci× cj , where ci ∈ {1, . . . , 100} and cj ∈ {0.1, . . . , 1.1},
where ci and cj are both taken from uniform distributions. We present the
utility results of these experiments in Figure 4, and the communication and
computation results in Figure 5.

Figure 4(a) shows the performance of the DTDA versus greedy in a sparse
environment, where each task can, on average, only be performed by two agents.
Conversely, in Figure 4(b), we have the performance of DTDA versus greedy in a
more dense environment, with an average of three agents being able to perform
each task. The DTDA clearly outperforms greedy in the sparse graph by up to
16%; however, in the more dense graph, it is clear that the performance of DTDA
does not warrant its application over greedy in this case. This shows that the
DTDA is best applied on sparse graphs, as we intended, and is consistent with
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(a) Messages Sent. (b) Computation Time.

Fig. 5. Empirical Results: Communication and Computation used where σt = 2.

other GDL algorithms [1]. Nevertheless, the DTDA’s performance ranges from
97% of the optimal to 86% in the sparse graphs. In addition, the graphs show
that the bound produced by the DTDA provides a very accurate estimation of
the solution gained by the DTDA — so much so, that the two lines on the graph
are barely distinguishable. Finally, in terms of communication and computation,
Figure 5 (a) shows that the number of messages sent by DTDA increases almost
linearly as the number of tasks increases. In contrast, Figure 5 (b) shows that
the computation time increases exponentially in the number of tasks. Note that
in Figure 5 we only plot results for σt = 2, as σt = 3 gave similar results.

7 Conclusions and Future Work

We have presented the first decentralised algorithm for finding solutions to the
scheduling on unrelated parallel machines problem, known as R||Cmax. Our al-
gorithm (DTDA) is also the first known application of the min-max algorithm to
solve R||Cmax in the literature. In addition, we are able to provide a per-instance
bound on the quality of the solutions given, online. Empirically, we showed that
the bound we find provides an accurate estimation of the global solution value,
that the communication required by the DTDA scales linearly in the size of the
environment, and that DTDA is able to find good quality solutions in environ-
ments which can be formulated as a sparse graph (from 97–86% of the optimal).
In addition, we drew the parallel between R||Cmax and multi-agent task allo-
cation problems. However, we found that the DTDA holds no advantage over
a greedy algorithm in more dense environments, partly because the state space
explored at each agent in DTDA grows exponentially, and partly because the ap-
proximation given by using the min-max algorithm is not of high enough quality.
While using the algorithm makes sense in task allocation environments where an
agent only considers a limited number of tasks, the computation needed scales
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exponentially in the size of the environment. Therefore, future work will focus on
reducing the state space at each agent (e.g., by using techniques such as branch
and bound), using spanning trees to improve solution quality on denser graphs,
so that we can successfully apply DTDA to a wider range of problems, and evalu-
ating DTDA’s performance on other graph topologies, such as scale-free graphs.
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