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Abstract. In this paper we study how agents can autonomously deliberate on
norms and cognitions in the context of a normative multiagent system. We pro-
pose Thagard’s cognitive theory of coherence as a tool to achieve this autonomous
deliberation. Taking a proof-theoretic approach, we first provide a formalization
of coherence theory, focusing on a particular type of coherence, namely deductive
coherence. We then propose a mechanism to compute coherence values between
nodes in a coherence graph, making it fully computational. We further introduce
a semantic interpretation of coherence using the notion of degrees of consistency
by Ruspini. Finally, we illustrate the formalism in a normative multiagent setting
where the norms are established to share a common resource, in this case water.
We use graded logic to incorporate uncertainty reasoning in our example.
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1 Introduction and Motivations

A normative multiagent system is a multiagent system where the agent interactions are
governed by norms. In such a system, agents have the explicit right over adherence to
the norms [3]. However, there is a lack of mechanisms for autonomous norm evaluations
in agents. We try to address this lack for obligatory norms, norms that restrict agents
behavior.

Recent works study the relation between agents and norms, in particular the archi-
tectural implications of autonomous normative agents [4, 6, 17, 2]. Conte et al. make
the process of norm adoption explicit by specifying what it means for agents to adopt a
norm, differentiating norm recognition from norm acceptance [6]. However they leave
open the various ways an agent can actually reason about norms. BOID [4] is an ar-
chitecture specially designed for conflict resolution in the context of norms, however
the extend of autonomy provided in BOID is limited to agent types. That is, in this ar-
chitecture, all agents of a certain type, if faced with the same conflict, would come up
with the same resolution. Thus, statically assigning priorities between cognitions and
norms will not make an agent truly autonomous. Situations are in general the major
cause for reevaluation of cognitions and norms, and hence any mechanism intending to
bring about agent autonomy ideally should choose those cognitions and norms that best
satisfy the constraints imposed by the situation.



Cognitive coherence [14] is such a theory suggesting that humans accept or reject a
cognition (external or internal) depending on how much it contributes to maximizing the
constraints imposed by situations and other cognitions. Pasquier et al. [10] introduced
the possibility of extending agent reasoning with Thagard’s theory of coherence. While
their contribution introduces the concept of coherence in the field of multiagent systems,
a detailed and formal treatment of cognitive coherence is still called for.

According to coherence theory, there are coherence and incoherence relations be-
tween concepts depending on whether the concepts support (a positive constraint) or
contradict (a negative constraint) each other. If two concepts are not related then there
is no coherence (constraint) between them. Normally a graph with nodes1, and weighted
edges are used to represent the set of concepts, and constraints between pairs of con-
cepts. Given such a coherence graph, Thagard defines a mechanism to compute coher-
ence based on maximizing constraint satisfaction, where certain principles are defined
to characterize and differentiate different types of coherence relations. Understanding
these principles and deducing methods to compute the coherence values between con-
cepts is vital for it to be useful in any application of the theory. Without this important
formalization, practical realizations of coherence are hard to imagine.

In this paper we have chosen to analyze one such type of coherence, namely the
deductive coherence, because the theorems of logical deduction from which it is de-
rived are well understood. Our aim is to generate coherence values between concepts
(in this case, formulas in a language) by formalizing the relationship between coher-
ence and logical entailment. Coherence as a logical relation is significant in itself and
has important implications. One of the properties of coherence that makes it different
from other branches of logic is its tolerance to inconsistencies. In addition, our setting
allows us to work with deductive systems without structural rules such as weakening.
We introduce also a semantic characterization of the notion of deductive coherence in
terms of similarities between possible worlds [12].

In summary, we advance the state of the art, by introducing coherence as a means
to reason about norms in normative multiagent systems. We provide a proof-theoretic
account of cognitive coherence, based on Thagard’s characterization of deductive co-
herence [14] (Section 3), and a semantic interpretation of coherence using Ruspini’s
degrees of consistency [12] (Section 4). Our approach differs from previous formal-
izations of coherence in the fact that we introduce a fully computational model of co-
herence, and that we use graded logic to incorporate uncertainty reasoning [5]. Finally
our formalization is independent of the underlying logic, that is, given a fixed logic
that represents the agent’s mental states, the deductive relation of this logic allows us
to calculate a degree of coherence between the different sentences of this language.
In Section 2 we briefly provide the background on the coherence framework we have
proposed in earlier papers [9, 8]. Section 5 is devoted to illustrating how the coherence
formalism can be used in a normative multiagent system for autonomous norm evalua-
tion. In Section 6 we compare and contrast our work with that of the state of the art and
conclude with a few lines on our future work.

1 weighted nodes in the case of graded cognitions



2 Coherence Graphs

In this section, we provide the basic definitions of the coherence framework introduced
in [9, 8]. In particular we go over the definition of coherence graphs, computation of
the coherence values, and the selection of concepts from a coherence graph in a way
that maximizes the overall coherence. For a more detailed discussion on the coherence
framework and its intuitions refer to [9, 8].

Definition 1. A coherence graph is a graph G = 〈V,E, α, ζ〉, where

1. V is a finite set of nodes representing concepts
2. E ⊆ V × V is a finite set of edges representing the coherence between concepts.
3. α : V → [0, 1] is a function that maps each node to a weight representing grades

(confidence) on the concepts
4. ζ : E → [−1, 1]\{0} is a coherence function that assigns a value to the coherence

between concepts.

According to coherence theory, if a concept is chosen as accepted (or declared true),
concepts contradicting it are most likely rejected (or declared false) while concepts
supporting it and getting support from it are most likely accepted (or declared true).
The important problem is not to find a concept that gets accepted, but to know whether
a set of concepts can be accepted together. Hence the coherence problem is to partition
the nodes of a coherence graph into two sets (accepted A, and rejected V \ A) in such
a way as to maximize the satisfaction of constraints. A positive constraint between two
nodes is said to be satisfied if both nodes are either in the accepted set or both in the
rejected set. Similarly, a negative constraint is satisfied if one of them is in the accepted
set while the other is in the rejected set. We express these formally as below:

Definition 2. Given a coherence graph g = 〈V,E, α, ζ〉, and a partition (A, V \A) of
V , the set of satisfied constraints CA ⊆ E is

CA =


(v, w) ∈ E

˛̨̨̨
v ∈ A iff w ∈ A, when ζ(v, w) > 0
v ∈ A iff w 6∈ A, when ζ(v, w) < 0

ff
In all other cases the constraint is said to be unsatisfied.

Definition 3. Given a coherence graph g = 〈V,E, α, ζ〉, the total strength of a partition
(A, V \ A) is

S(g,A) =

∑
(v,w)∈CA | ζ(v, w) | · α(v) · α(w)

| E |
(1)

Definition 4. Given a coherence graph g = 〈V,E, α, ζ〉 the coherence of g is

C(g) = max
A⊆V

S(g,A) (2)

If for some partition (A, V \ A), the coherence is maximum, that is, C(g) = S(g,A),
then the set A is called the accepted set and V \ A the rejected set of this partition.



3 Formalizing Coherence: a Proof-Theoretical Approach

Thagard introduces in [14] the notion of deductive coherence by means of a set of
principles:

1. Deductive coherence is a symmetric relation.
2. A proposition coheres with propositions that are deducible from it.
3. Propositions that together are used to deduce some other proposition cohere with

each other.
4. The more hypotheses it takes to deduce something, the less the degree of coherence.
5. Contradictory propositions are incoherent with each other.
6. Propositions that are intuitively obvious have a degree of acceptability on their own.
7. The acceptability of a proposition in a system of propositions depends on its coher-

ence with them.

In this section we give a proof-theoretical formalization of the notion of deductive co-
herence inspired by the principles put forth by Thagard2. We base our coherence func-
tions on logical deductive relations , in particular on multiset deductive relations. The
concept of a multiset is a generalization of the concept of a set. Intuitively speaking,
we can regard a multiset as a set in which the number of times each element occurs is
significant, but not the order of the elements. The introduction of multisets in our frame-
work will allow us to deal more adequately with logics as linear logics, relevance logics
or multi-valued logics. We denote a“multiset deductive relation” as MDR. We assume
that all the MDR we deal with are finitary and decidable. These MDRs are often called
simple consequence relations [1]. We define both a multiset and MDR in the following.

Definition 5. A multiset is a pair (A, f) with A a set of formulas of L and f : A → IN
a function from A to the set of positive natural numbers.

Definition 6. Given a logical language L, we define a multiset deductive relation
(MDR) on a set Σ of formulas of L, as being a binary relation ` between finite multisets
of formulas of L with the following properties: For all Γ1, Γ2,∆1,∆2 ⊆ L and for all
γ ∈ L

1. Reflexivity: γ ` γ, for every formula γ
2. Transitivity: if Γ1 ` ∆1, γ and γ, Γ2 ` ∆2, then Γ1, Γ2 ` ∆1,∆2.

3.1 Coherence Functions

Notation: As usual in sequent calculi, we denote by ` β the fact that β can be deduced
from the empty multiset, and we denote by Γ ` the fact that the multiset Γ has as
consequence the empty multiset. For example, in case that L is classical propositional
logic, ` β means that β is a tautology and Γ `means that the multiset Γ is inconsistent.

2 we do not model principle 3 for now, as in a logic this could mean any proposition is related
to any other. However the correct interpretation of this should exempt trivial deductions such
as p, q ` p ∧ q.



We approach the formalization of the deductive coherence by first deriving a co-
herence function from an MDR. We use Thagard’s principles to relate an MDR and
the coherence function C. The intuition behind these principles is that whenever two
propositions are related by a deductive relation, then there exists a positive coherence
between them, the degree of the coherence being inversely proportional to the number
of propositions involved in the deduction. If they form a contradiction, then there is a
negative coherence between them. We express these in terms of a support function SD
on the MDR as below.

Definition 7. Let ` be a MDR and T a finite set of formulas of the language L. A
support function SD for T is a partial function with

SD(δ, β) =


n + 1 if there exists Γ ⊆ T with cardinality |Γ | = n such that Γ, δ ` β

and Γ, δ 6` and Γ 6` β and |Γ | is the minimum.
1 if ` β and δ 6`
−1 if δ, β `

Observe that, for any given MDR, the support function SD satisfies the following:

1. if δ ` β, then SD(δ, β) = 1
2. If SD(γ, δ) = 1 and SD(δ, β) = 1, then SD(γ, β) = 1
3. In general, if SD(γ, δ) = n + 1 and SD(δ, β) = m + 1, then

max (n, m) + 1 ≤ SD(γ, β) ≤ n + m + 1

Given a MDR ` and a finite set T of formulas of the language L, we define a
deductive coherence function ζ : T × T → [−1, 1] on T in the following way:

Definition 8. For any pair (δ, β) of formulas in T , a a coherence function ζ is a partial
function with

ζ(δ, β) =
{

1/ min(SD(δ, β), SD(β, δ)) if both SD(δ, β) and SD(β, δ) are defined
1/SD(δ, β) if SD(δ, β) is defined, SD(β, δ) undefined

For any given MDR, the deductive coherence function ζ is a symmetric function.
ζ is not transitive in general, however transitivity holds except in the cases where both
γ ` δ and β ` δ are true or both δ ` γ and δ ` β are true.

3.2 MDR Coherence Properties

We can classify logics according to structural rules or connectives available in it. There
are two types of connectives: the internal connectives, which transform a given sequent
into an equivalent one that has a special required form, and the combining connec-
tives, which combine two sequents into one. For instance, classical propositional logic
is monotonic, has the above connectives, and makes no difference between the combin-
ing and the corresponding internal connectives. On the other hand, propositional linear
logic is nonmonotonic, has the above connectives but distinguish between internal and
combining ones. Intuitionistic logic differs from classical propositional logic in its im-
plication connective and does not contain any internal negation. In this section, we study
the MDR classifications that give rise to different properties of the coherence functions.
We prove certain logical properties of the support and deductive coherence functions
over this MDR.



Combining Conjunction: A connective ∧ is a combining conjunction iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ ` ∆, δ ∧ β iff Γ ` ∆, δ and Γ ` ∆, β

By the definition of combining conjunction the following properties hold:

1. If SD(γ, δ) = 1 and SD(γ, β) = 1, then SD(γ, δ ∧ β) = 1
2. If SD(γ, δ ∧ β) = n + 1, then 0 ≤ SD(γ, δ) ≤ n + 1 and 0 ≤ SD(γ, β) ≤ n + 1
3. If SD(γ, δ ∧ β) = 1, then SD(γ, δ) = 1 and SD(γ, β) = 1
4. SD(δ ∧ β, δ) = 1 (whenever δ, β 6`)

If δ, β 6` and 6` δ and 6` β:

1. ζ(δ ∧ β, δ) = 1
2. If ζ(γ, δ ∧ β) = 1, then ζ(γ, δ) = 1 and ζ(γ, β) = 1 (except when δ ∧ β ` γ)

Internal Conjunction: It is said that a connective ◦ is a internal conjunction iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ, δ, β ` ∆ iff Γ, δ ◦ β ` ∆

By the definition of internal conjunction the following properties hold:

1. If SD(δ ◦ β, γ) = n + 1, then 0 < SD(δ, γ) ≤ n + 2 and 0 < SD(β, γ) ≤ n + 2
2. SD(δ, δ ◦ β) = 2 (if δ, β 6`)
3. ζ(δ ◦ β, δ) = 1/2 (if δ, β 6`)

Combining Disjunction: It is said that a connective ∨ is a combining disjunction iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ, δ ∨ β ` ∆ iff Γ, δ ` ∆ and Γ, β ` ∆

By the definition of combining disjunction the following properties hold:

1. If SD(γ, δ) = n + 1 or SD(γ, β) = m + 1, then 0 < SD(γ, δ ∨ β) ≤ min(n +
1,m + 1)

2. If SD(δ, γ) = n + 1 and SD(β, γ) = n + 1, then SD(δ ∨ β, γ) ≤ n + 1 (in
presence of weakening3).

3. If SD(δ, γ) = 1 and SD(β, γ) = 1, then SD(δ ∨ β, γ) = 1
4. If SD(δ ∨ β, γ) = n + 1, then SD(δ, γ) ≤ n + 1 and SD(β, γ) ≤ n + 1
5. SD(δ, δ ∨ β) = 1

If δ, β 6` and 6` δ and 6` β:

1. ζ(δ ∨ β, δ) = 1
2. If ζ(γ, δ) = 1 and ζ(γ, β) = 1, then ζ(γ, δ ∨ β) = 1
3. If ζ(δ ∨ β, γ) = 1, then ζ(δ, γ) ≤ 1 and ζ(β, γ) ≤ 1

3 It is said that a MDR has the weakening rule when Γ ` Σ iff Γ, δ ` Σ



Internal Disjunction: It is said that a connective ◦ is a internal disjunction iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ ` ∆, δ, β iff Γ ` ∆, δ + β

By the definition of internal disjunction the following properties hold:

1. If SD(γ, δ) = n + 1 or SD(γ, β) = m + 1, then 0 < SD(γ, δ + β) ≤ min(n +
1,m + 1) (in presence of weakening)

2. If SD(δ, γ) = n + 1 and SD(β, γ) = m + 1, then SD(δ + β, γ) ≤ n + m + 2
3. If SD(δ, γ) = 1 and SD(β, γ) = 1, then SD(δ + β, γ) = 1
4. SD(δ, δ + β) = 1 (in presence of weakening)
5. ζ(δ + β, δ) = 1 (in presence of weakening, if δ, β 6`)

Combining Implication: It is said that a connective ⊃ is a combining implication iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ, δ ⊃ β ` ∆ iff Γ ` ∆, δ and Γ, β ` ∆.

By the definition of combining implication the following properties hold:

1. If SD(γ, β) = m + 1, then 0 < SD(γ, δ ⊃ β) ≤ m + 1
2. If SD(δ ⊃ β, γ) = n + 1, then SD(β, γ) ≤ n + 1
3. SD(β, δ ⊃ β) = 1
4. SD(δ ⊃ β, β) = 2 (in presence of weakening).

If δ, β 6` and 6` δ and 6` β:

1. ζ(δ ⊃ β, β) = 1
2. If ζ(γ, β) = 1, then ζ(γ, δ ⊃ β) = 1 (except for the case when β ` γ)
3. If ζ(γ, δ ⊃ β) = 1, then ζ(γ, β) = 1 (except for the case when γ ` δ ⊃ β)

Internal Implication: It is said that a connective → is a internal implication iff:

For all Γ,∆ ⊆ L, δ, β ∈ L we have Γ, δ ` β iff Γ ` δ → β

By the definition of internal implication the following properties hold:

1. If SD(γ, β) = m+1, then 0 < SD(γ, δ → β) ≤ m+1 (in presence of weakening)
2. If SD(γ, β) = 1, then SD(γ, δ → β) = 1 (in presence of weakening)
3. If SD(γ, δ → β) = n + 1, then SD(γ, β) ≤ n + 2
4. If SD(β, γ) = n + 1, then SD(δ → β, γ) ≤ n + 2
5. SD(δ → β, β) = 2

If δ, β 6` and 6` δ and 6` β:

1. ζ(δ → β, β) = 1/2
2. If ζ(γ, δ → β) = 1, then ζ(γ, β) = 1/2 (except when γ, δ → β ` γ))



Involutive Negation: It is said that a negation is internal iff:

For all Γ,∆ ⊆ L, δ ∈ L we have Γ, δ ` ∆ iff Γ ` ∆,¬δ

Internal negations are involutive (that is, for every formula δ, δ ` ¬¬δ and ¬¬δ ` δ).
In this case, we have SD(δ,¬¬δ) = 1 and SD(¬¬δ, δ) = 1 and hence ζ(δ,¬¬δ) = 1.
Let us assume that δ, β 6` and 6` δ and 6` β. For internal negations we have:

1. SD(δ, β) = −1 iff SD(δ,¬β) = 1
2. SD(δ,¬β) = −1 iff SD(δ, β) = 1
3. If ζ(δ, β) = −1, then ζ(δ,¬β) = 1
4. If ζ(δ,¬β) = −1, then ζ(δ, β) = 1
5. If ζ(δ,¬β) = 1, then either ζ(δ, β) = −1 or ζ(¬δ,¬β) = −1
6. If ζ(δ, β) = 1, then either ζ(δ,¬β) = −1 or ζ(¬δ, β) = −1

4 Formalizing Coherence: a Semantical Approach

In this section we propose a semantical formalization of coherence using the notion of
degrees of consistency introduced by Ruspini in [12]. Ruspini in his work interprets the
similarity between two propositions, by the similarity between the worlds in which the
propositions are true. Using this interpretation, we define coherence as the similarity
between possible worlds.

We first introduce the basic definitions from Ruspini’s degree’s of consistency and
then define coherence in terms of it. For the sake of clarity we restrict now our attention
to propositional languages. Let L be a propositional language and W a set of classical
interpretations of L (i.e., a set of possible worlds). For any w ∈ W and any proposition
p ∈ L, we denote by w |= p the fact that proposition p is true in the interpretation w.
First we introduce some basic definitions.

Definition 9. A function T : [0, 1]× [0, 1] → [0, 1] is a triangular norm if and only if:

1. T is commutative and associative
2. T is non-decreasing in both arguments
3. T (1, x) = x and T (0, x) = 0 for all x ∈ [0, 1]

Definition 10. Given a triangular norm T , ST : W × W → [0, 1] is a T-similarity
function if and only if ST satisfies the following properties: For all w,w′, w′′ ∈ W

1. Reflexivity: ST (w,w) = 1
2. Symmetry: ST (w,w′) = ST (w′, w)
3. T-Transitivity: ST (w,w′) ≥ T (ST (w,w′′), ST (w′′, w′))

where T is a triangular norm function that is continuous (t-norm for short).

The function assigns a degree of similarity between 0 (corresponding to maximum dis-
similarity) and 1 (corresponding to maximum similarity). For the sake of simplicity, ST
is required to fulfill that ST (w,w′) = 1 implies w = w′. The transitivity requirement
allows ST to become a generalized equivalence relation.



Ruspini generalizes the semantical entailment relationship between propositions.
He defines both an implication function and a consistency function between proposi-
tions. The definition of partial implication between propositions is based on conditions
that determine whether, given two propositions p and q, one of them implies the other
to the degree n. Observe that the degree of consistency Con is a symmetric measure
while the degree of implication Imp is not. Nevertheless, Imp has the T-transitivity
property of similarity. Moreover, for any formulas p, q ∈ L, Con(p | q) ≥ Imp(p | q).
We introduce the formal definitions below:

Given a T -similarity relation ST and propositions p, q ∈ L, the degree of implica-
tion Imp(p | q) is defined as:

Imp(p | q) = inf
w′|=q

sup
w|=p

ST (w,w′)

and Ruspini introduces also the degree of consistency Con(p | q) in the following way:

Con(p | q) = sup
w′|=q

sup
w|=p

ST (w,w′)

By definition of the implication and consistency measures it is easy to check that
Imp(p | q) = 1 iff q |= p whereas Con(p | q) = 1 iff q 6|= ¬p. Now we state some
basic properties of the consistency degree for L with p, q, r ∈ L and n, m ∈ [0, 1]:

1. Con(p ∧ q | q) = 1 iff p, q 6`
2. Con(p ∨ q | q) = 1 iff p, q 6`
3. If Con(r | p) = n and Con(r | q) = m, then Con(r | p ∨ q) = max(n, m)
4. If Con(r | p ∧ q) = 1 then Con(r | p) = 1 and Con(r | q) = 1
5. If Con(r | p ∨ q) = n then Con(r | p) ≤ n and Con(r | q) ≤ n
6. Con(p | ¬p) = 0

Now we can define a coherence function C ′ : T × T → [−1, 1] on T in terms of
degrees of consistency as follows:

Definition 11. For any pair (p, q) of formulas in T , a coherence function C ′ : T ×T →
[−1, 1] on T is C ′(p, q) = Con(p, q)

The relationship between consistency and coherence is a subject of our future work.

5 Example - Norm evaluation

We apply the formalism developed in the previous Sections to model norm evaluation
in a real scenario. The example is motivated by the water sharing treaty signed between
the southern states of India during 1892 and 1924 and the disputes thereafter [16].
The objectives of this example are threefold. First, to demonstrate how self-interested
agents working together evaluate norms. Second, to show the need for norm adaptation
inspired by individual coherence evaluations, whereas the grander aim is to set up a
framework for norm adaptation itself, which will be our future work. And third, to
open new application areas in norm evaluation where such cognitive theories could be
applied.



We simplify the case for brevity, considering just two agents s and t standing for
two distinct Indian states. We model the reasoning of s in two snapshots of time, one
when the first treaty is about to be signed (i.e, the decision to adopt the norm) and the
second after a period of working together, when the situation has evolved.

5.1 Coherence Maximizing Agent

We describe now the reasoning performed by a coherence maximizing agent. Our agents
have graded cognitions [5], as it gives a more realistic representation of agent cog-
nitions, agents often have uncertainty about their cognitions. Hence B(p, d) means
agent believes that proposition p is true (in a near future world4) with probability
d. (D(p, d), and I(p, d) are desires and intentions and are interpreted analogously).
Proposition p is a statement about a world and is expressed as triples of the form
〈object, attribute, value〉. For instance 〈urbanization, growth index, high〉 states
that there is a high growth in urbanization. The probability degree d of a compound
formula is derived from those of its constituents using the formalism as in [5].

Further we have a multi-context (MC) agent [5] which contains three basic com-
ponents: units or contexts (for the cognitive agents considered here, the contexts are
Cb, Cd and Ci corresponding to the belief, desire and intention cognitions), logics, and
bridge rules that channel the propagation of consequences between contexts. Hence an
MC specification of an agent is a group of interconnected units: 〈{Ci},∆br〉. Each con-
text is a tuple, Ci = 〈Li, Ai,∆i〉 where Li, Ai and ∆i are the language, axioms, and
inference rules respectively. ∆br is the set of bridge rules, which function as inference
mechanisms between contexts. In our extension of MC, each context is associated with
a coherence graph. We further extend bridge rules to operate on the coherence graphs
so that we can perform inferences between graphs and combine graphs. For the details,
refer [9]. For example, a b:B(ψ,δ),d:D(ψ,β)

i:I(ψ,min(δ,β)) we introduce in the coherence graph of the
cognitions g = 〈V,E, α, ζ〉 the following:

– add nodes I(p17, 0.95) if B(p17, 0.95), D(p17, 0.95) to V

– α(I(p17, 0.95) = 0.95
– add edges {(B(p17, 0.95), I(p17, 0.95)), and (D(p17, 0.95), I(p17, 0.95))} to E

– ζ(B(p17, 0.95), I(p17, 0.95)) = 0.3, ζ(D(p17, 0.95), I(p17, 0.95)) = 0.3

The bridge rules we use in the water-sharing example are br1 = i:I(ψ,δ)
d:B(ψ,δ) and br2 =

b:B(ψ,δ),d:D(ψ,β)
i:I(ψ,min(δ,β)) . However, the bridge rules chosen here are only indicative and depend

on the agent types that one wants to model.
In our implementation we use a Prolog-based meta interpreter to extract proofs of

each sentence in the BDI base of the agent where these proofs will give raise to the
coherence values between pairs of sentences using the support function SD of Section
3. We further use a semi-definite programming max-cut approximation algorithm to
evaluate the coherence of the graph and to determine the nodes in the accepted set [15].

4 In our representation we refer to future worlds as the agent is trying to anticipate the coherence
of future worlds where the norm is accepted or rejected.



5.2 Norm Adoption

Year : 1892
Agent : s
Action: Evaluating the proposal of the water sharing treaty.
Facts: s is under considerable threat and is not fully autonomous.
Norm to be evaluated: agent s should release 300 billion ft3 of water to agent t annually.

The agent s reasons by injecting into its internal coherence graph
g1 = 〈V1, E1, α1, ζ1〉, the anticipated consequences of the norm adoption and
compares its coherence on signing the treaty as opposed to not accepting it. Here we
use coherence as the primary mechanism for decision making, however in the future
we would like to analyze also the influence of sanctions, and rewards. Although in our
framework sanctions related to norms are not modeled explicitly, we take into account
their influences in forming the agent modalities. Below we list the propositions relevant
to forming the agent cognitions and then the cognitions of agent s:
p11 〈river basin, water index, adequate〉
p12 〈rain fall, index, good〉
p13 〈water release, quantity,300 billion ft3〉
p14 〈s2 threat, type,military force〉
p15 〈s2 threat, status, realized〉
p16 〈norm proposal, status, accepted〉
p17 〈internal demand, status, satisfied〉

– Beliefs: {B(p11, 0.90),B(p12, 0.75), B(p14, 1), B(p16, 1), B(p11 ∧ p12 ∧ p13) →
p17, 1), B(p14 ∧ ¬p16 → p15, 1), B(p16 → ¬p15, 1)}

– Desires: {D(p17, 0.95), D(¬p15, 1)}
– Intentions:{I(p17, 0.95), I(¬p15, 1)}

Below we analyze the hypothetical reasoning that agent s does to evaluate the norm,
signing of the treaty i.e p16.

Case 1: s accepts signing the treaty. Accepting to sign the treaty is equivalent to
incorporating an additional belief that at a near future world, p16 is true with probablity
1. That is V1 := V1 ∪ {B(p16, 1), I(p16, 1)}. Below we calculate the coherence of the
agent in conjunction with this additional cognition. Applying the max-cut algorithm, we
have one of the coherence maximizing partition (A, V \ A) as shown in the Figure 1.
The corresponding coherence of the graph, C(g1) is 4.41/16 = 0.28.

Case 2: s rejects signing the treaty. The differences if s decides not to accept the norm
are that it has the additional belief B(p15, 1) whereas it removes the intention I(¬p15, 1)
as it is reasonable to assume that agent t will realize the threat upon rejecting the treaty.
That is V1 := V1 ∪ {B(¬p16, 1), B(p15, 1)} \ {I(¬p15, 1)}. With these changes, we
have the the coherence of the graph as C(g1) = 3.07/16 = .19. As a coherence agent
seeks coherence maximization, s prefers to adopt the norm guided by its coherence
value. However we do not rule out the possibilities of other considerations of the agent
that can influence its final decision.
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Fig. 1. Coherence graph (g1), with norm accepted C(g1) = 0.28

5.3 The incoherence buildup

Year : 1991
Agent : s
Action: Updating cognitive graph based on situation change.
Facts: s experiences large-scale industrialization, urbanization, higher water usage,
threat from t to obey the norm, and less amount of rain fall.
Below we list the propositions capturing this change in situation and the changed cog-
nitions of the agent s:
p21 〈urbanization, growth index, high〉
p22 〈industrialization, growth index, high〉
p23 〈water usage, growth index, high〉
p24 〈revenue, growth index, high〉

– Beliefs: {B(¬p11, 0.90), B(¬p12, 0.75), B(p14, 0.75), B(p21, 0.90), B(p22, 0.90),
B(p23, 0.95), B(p13, 1), B(p16, 1), B(¬p11 ∧ ¬p12 ∧ p23 ∧ p13 → ¬p17, 0.90),
B(p14 ∧ ¬p16 → p15, 0.75), B(p21 ∧ p22 → p23, 1), B(p24 → p21, 1), B(p24 →
p22, 1), B(p17 → p24, 0.75), B(p16 → ¬p15, 1), B(p24 → p23, 0.80)}

– Desires: {D(p17, 0.95), D(p24, 0.85), D(¬p15, 1)}
– Intentions: {I(p17, 0.95), I(p24, 0.85), I(¬p15, 1), I(p16, 1)}

The coherence graph g2 of the agent s with changed cognitions is shown in Figure 2.
Some of the cognitions that do not influence the result have not been included in g2 for
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Fig. 2. coherence graph (g2), C(g2) = .29

the sake of clarity. Using the coherence equations, the coherence maximizing partition
(A, V \A) is shown in Figure 2. The partition interestingly places the cognitions about
p24 and p17 in set A while the cognitions about p16 and ¬p15 in set V \ A. It is clear
from the coherence evaluation that all these intentions cannot coexist while maintaining
the maximum coherence. That is the agent has to choose between obeying the norm,
hence avoiding the threat of military action and satisfying the internal demands for
water, hence economic progress. Even though the ultimate decision can vary from other
considerations of the agent, a purely coherence maximizing agent will choose to violate
the norm in order to keep a maximal state of coherence. With this example we show how
a coherence maximizing agent evaluates norms in the context of its cognitions.

5.4 Discussion

Even though the example only demonstrates the case of a single norm, the same can be
extended to cases where there are multiple norms and there is a need to choose among
the norms. In terms of coherence, this is selecting a norm which maximizes the coher-
ence of the graph. By performing the hypothetical analysis of a norm being accepted,



norms can be ordered according to the coherence each would generate in the resulting
adoption. Another point to note is that here we have assumed our agents to be coherence
maximizing. But in reality there are other criteria that need to be considered. Some of
them already mentioned and represented in the graph are sanctions and rewards. An-
other important factor by which an agent makes a decision to adopt a norm is observing
the behavior of other agents. We can represent this as cognitive models of other agents.

6 Related and Future work

As discussed in the introduction, the work of Pasquier et al. [10] proposes an agent rea-
soning theory based on cognitive coherence. The authors have developed a computa-
tional model of cognitive coherence based on Thagard’s theory of coherence [14]. Tha-
gard in his characterization of coherence, differentiates types of coherence that needs
to be accounted for in order to formalize coherence. In our proposal we develop further
this idea and take the first step in this direction by giving a proof-theoretic characteriza-
tion of coherence. Our approach differs from Pasquier et al. as our research is centered
on calculating coherence measures, without which a computational model of coherence
is hard to realize. Further we understand coherence as a tool not only for maintaining
the cognitions of individual agents but also for that of an agent society.

The work of Piwek [11] attempts to model dialogue coherence in terms of generative
systems based on natural deduction. The main argument in the paper is that it is possible
to generate coherent dialogues by relying on entailments in the agents knowledge base.
The paper primarily deals with information seeking dialogue where the definition of
whether an agent knows a fact a is equated to whether a can be logically entailed. This
is an interesting way to look at dialogue coherence in which the concern is semantic
rather than structural. However, here the properties of cognitive coherence as a relation
are neither exploited nor modeled. The coherence in this paper refers to the meaning
of the term in a linguistic sense, i.e, what makes a text or conversation semantically
meaningful, whereas the coherence we deal with is a property of the cognitive state.
Though coherence is related to entailment, coherence is not equivalent to it, and it is
important to capture and model the differences.

The work of Valencia and Sansonnet [13] models agent dialogue based on the the-
ory of dissonance [7]. This paper exploits the drive to reduce dissonance as a cause
to initiate and terminate dialogues. It is curious to note that many authors who have
used the theory of dissonance in dialogue initiation and termination [10, 13] have not
considered the fact that not all incoherences are dissonances, but dissonance seeks out
specialized information or actions. The most important difference between this paper
and ours is that for them coherence (or the lack of it) is a local phenomenon concerning
only the new arriving fact and the fact that it contradicts with, whereas for us coherence
is a global phenomenon affecting the entire knowledge base of the agent. As in the case
of Piwek, the authors equate coherence with logical entailment.

As part of our future work, we plan to develop how norm coherence can be analyzed
in a normative agent society, study how agents can agree upon or adapt norms. We also
would like to explore the semantic interpretation of coherence which is introduced in



this paper. Finally we also would investigate more into the example scenario presented
in the paper.
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