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Abstract 
In the everyday business world, the sourcing process of multiple goods and services usually 
involves complex negotiations (via telephone, fax, etc) that include discussion of product and 
service features. Nowadays, this is a high-cost process due to the scarce use of tools that 
streamline this negotiation process and assist purchasing managers’ decision-making. With the 
advent of Internet-based technologies, it has become feasible the idea of tools enabling low-
cost, assisted, fluid, on-line dialogs between buyer enterprises and their providers wherever 
they are located. Consequently, several commercial systems to support on-line negotiations (e-
sourcing tools) have been released. And yet, it is our view that there is still a need for these 
systems to incorporate effective decision support. This article presents the foundations of 
Quotes, a sourcing commercial application developed by iSOCO that, in addition to cover the 
whole sequence of sourcing tasks, incorporates decision support facilities based on Artificial 
Intelligence (AI) techniques that successfully address previous limitations within a single and 
coherent framework. The paper focuses on the computational realisation of sourcing tasks 
along with the decision support facilities they require. While supported negotiation events are 
Request for Quotations/Proposals (RFQs/RFPs) and reverse auctions, decision support 
facilities include offer generation, offer comparison, and optimal bid set computation (winner 
determination) in combinatorial negotiations. Additionally, the paper presents a compound of 
experiences and lessons learned when using Quotes for real sourcing processes.  

Keywords: negotiation tools, e-procurement, sourcing, combinatorial auctions, multi-attribute 
auctions, artificial intelligence. 
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1 Introduction  
The sourcing process of multiple goods or services usually involves complex negotiations that 
include discussion of products’ features as well as quality, service and availability issues. 
Consequently, several commercial systems to support on-line negotiations (e-sourcing tools) 
have been released. In fact, e-sourcing is becoming an established part of the business 
landscape (Stephens Inc., 2001).  

By industry, the highest penetration (Stephens Inc., 2001) is in chemicals and pharmaceuticals 
(24 percent) and automobile manufacturing (20 percent), whereas retail, wholesale and 
distribution, metals and metal products, finance, banking, and accounting are at 4 percent each. 
Across all industries, e-sourcing adopters are using the technology primarily for MRO goods (71 
percent), followed by standard parts (67 percent) and raw materials (57 percent). 

However, there is still an enormous challenge confronting users who want to get the maximum 
value out of e-sourcing. Many companies have realized this value on a transactional level but 
failed to see it through to the bottom line. The early value of e-sourcing tools has been tactical 
rather than strategic (Aberdeen Group, 2002), as most adopters got into e-sourcing primarily to 
negotiate price reductions. Therefore there is still a need for these systems to incorporate 
effective decision support to enact the focus on strategy.  

Traditionally, the core of the sourcing process comprises the following tasks:  

• Request for Quotation/Proposal (RFQ/RFP) elaboration;  

• Provider selection for RFQ/RFP delivery;  

• Offer generation;  

• Negotiation through offer-counteroffer interaction or reverse auction; and 

• Selection of best offers.  

This paper aims at describing how the above-mentioned sourcing tasks are performed by 
Quotes. 

Although several commercial systems to support on-line negotiations have been released, to 
the best of our knowledge, not a single system can claim to address the full complexity of on-
line negotiations. The first generation of sourcing tools merely incorporate single-item, price-
quantity reverse auctions mechanisms (see (Ariba 2002) and (Commerce One 2002)). Others 
only offer basic negotiation capabilities that are usually reduced to a demand-offer matching tool 
(for example, on-line vertical marketplaces such as MetalSite (MetalSite, 2003)). In general 
terms, there is a lack of decision support functionalities (decision making in sourcing can involve 
a few hundred offerings each of which is described by several dozen attributes). Finally, there is 
a lack of technology support for computationally complex negotiation paradigms, which inhibit 
the application of interesting models such as combinatorial reverse auctions (Kalagnanam 
2003, Sandholm 2002, De Vries et al. 2001) and multi-stage negotiations.  

This article presents Quotes (Reyes-Moro et al. 2002) as a solution for strategic sourcing that 
we believe satisfactorily addresses previous limitations within a single and coherent framework. 
Quotes is a commercial tool that supports all sourcing tasks enumerated above. These tasks 
are solved by means of different Artificial Intelligence (AI) techniques that might be not 
theoretically new but that together form an innovative tool that pose an opportunity to proof 
them useful in real sourcing events. 

From the point of view of decision support, we have identified three processes where to apply AI 
techniques that help buyers and providers in their decision making processes. These three 
processes have been studied and implemented in Quotes with satisfactory results. Although 
they are thoroughly described along different sections in this paper, next we briefly summarize 
them: 

1. Automated offer generation. Providers can translate their business knowledge into 
bidding rules that allow instantaneous and automatic construction of recommended 
offers. A random neighborhood search algorithm controlled by a rule based system 



reasons with these rules in order to construct an initial offer that maximizes both buyer 
and provider preferences, thus rapidly conducting negotiations to win-win situations. 

2. Multi-attribute, multi-item scoring algorithm. Based on the importance assigned by the 
buyer to each item attribute in an RFQ (price, quality, delivery time, etc.) and his 
flexibility to accept offers beyond his preferences, a fuzzy offer-matching algorithm 
scores each offer and ranks it accordingly. In this manner, the buyer can easily 
discriminate competitive from non-competitive offers. Analogously, providers can benefit 
from the very same algorithm in order to discriminate incoming RFQs. 

3. Computation of the optimal bid set (winner determination) for multi-item (combinatorial) 
negotiations. Given a set of offers for either a multi-item RFQ or an auction, a mixed 
integer programming algorithm obtains the optimal subsets of offers according to 
various criteria such as minimization of price, start/finish date, maximization of product 
quality, etc. Multi-criteria optimisation can be supported by using multi-attribute scoring. 
Although the used algorithm is not new, the way the problem is formulated can be 
considered as an important contribution to research in combinatorial negotiations. 

 

The rest of the paper is organised in nine different sections that can be grouped into two main 
blocks. First six sections correspond to the sourcing tasks enumerated above, whereas the last 
three sections are dedicated to more general aspects.  

• The first block starts with section 2 describing RFQs elaboration. Section 3 introduces 
the supplier side by introducing the definition of production profiles and provider 
selection for RFQ delivery. Still on the provider side, Section 4 describes manual and 
automated (via business rules) offer generation. Next, offer-counteroffer interaction and 
reverse auctions are presented separately, in sections 5 and 6 respectively. Finally, 
section 7 details negotiation closing through selection of preferred offers.  

• The second block starts with section 8 presenting how different negotiation stages 
(RFQ/RFP and reverse auctions) can be interleaved in a single sourcing event. Section 
9 compiles iSOCO’s experiences when organizing real sourcing events with the Quotes 
tool. Finally, some conclusions and related work are provided in Section 10. 

2 Request for quotation (RFQ) elaboration  

Quotes supports multi-attribute, multi-item RFQs, enabling the creation of multiple types of 
RFQs (commodity, catalogue, BOM1 or group-by). Furthermore it provides the expressiveness 
needed to cope with multi-criteria negotiation procedures.  

Typically a buyer creates an RFQ by sequentially adding items. Each item specifies a product, 
be it either a good or service. Figure 2-1 shows an RFQ composed of several items, a so-called 
multi-item RFQ. A paradigmatic example of multi-item RFQ occurs at industrial settings. The 
production plan outlined by some company’s ERP (Enterprise Resource Planning) or SCM 
(Supply Chain Management) application comes in the shape of a list of items to be produced 
along with the parts required for each product, the so-called bill of material. It is the basis for the 
buyer to start out multiple sourcing events, each one devoted to the procurement of the parts of 
each one of the items whose production has been planned out. 

The process of including an item is composed of two steps: template selection and RFQ value 
setting. Next we explain both subprocesses in detail. 

 

                                                   
1 BOM: Bill Of Materials  



 

Figure 2-1: Example of a multi-item RFQ 

2.1 Item Template selection 
The process starts when some buyer creates an RFQ item by selecting a template from a list of 
product templates. Product templates are previously created by the system administrator and 
consist of a list of attributes describing the product. Each attribute makes reference to a physical 
characteristic or negotiable condition or term. Figure 2-2 shows a typical product template for 
Engine Oil (whose attributes are named Price, Quantity, Viscosity grade, etc.). Each of these 
attributes is defined in terms of a name and its domain. The name is used as an identifier and 
provides semantics to the template if a meaningful string is associated. The domain specifies 
the universe of possible values that an attribute can take on. There are five different types of 
attributes, namely: 

• Any Number. For attributes that can take any numerical value. This type is 
recommended for attributes whose values cannot be constrained (for instance, ‘Delivery 
time’ as shown in Figure 2-2). 

• Range of Numbers. This type is intended for attributes whose possible values belong to 
a numerical range and it is always associated to a maximum and a minimum value 
definition. For example, ‘Quantity’ can only take values between 100 and 1000.  

• Set of Labels. Non-numerical values can be of type ‘set of labels’ when there is an 
associated list of predefined textual values and there is no order among them. For 
instance, a list of labels (‘Conventional’, ‘Semi-synthetic’, and ‘Full-synthetic’) defines 
the domain for the (engine oil )’Type’ attribute. 

• Ordered Set of Labels. This type of attribute can be used for quantitative measures. In 
this case there needs to be an order for associated values. As an example we can think 
of ‘Temperature resistance’ degrees such as ‘Low’, ‘Medium’, and ‘High’. 

• Free Text. Finally, a free text attribute is added so that both the buyer and provider have 
the opportunity to add information that is not included in the template (see the 
‘Additional features’ attribute in the example). 



Domain specification also includes the measurement units that are associated to numerical 
attribute values. Hence Quotes enhances each attribute specification with a variety of 
associated fields that provide both functional flexibility, semantic enrichment, and high 
expressiveness.  

 

 
Figure 2-2: A product template definition 

2.2 RFQ value setting  
Once a product template is selected, the buyer must specify desired values for each attribute. 
First of all the buyer must select a value type per attribute (which in turn depends on its attribute 
type). Next, the buyer sets the values to be requested per attribute along with its relative 
importance with respect to the rest of attributes. Figure 2-3 shows the interface available for 
buyers at this aim.  

In this manner, for an Any Number attribute a buyer can specify its desired value as either a 
single number or as a range of numbers satisfying his needs. In the last case, three values are 
required: a minimum, a maximum, and a preference slope indicating which values are most 
preferred within the range. The slope can take on three different values: 

• Flat. All values within the range are equally preferred.  

• More Is Better (MIB) indicates that higher values are more preferred than lower ones.   

• Less Is Better (LIB). On the contrary to MIB, the buyer chooses an LIB slope when 
smaller values are preferred.  

The same kind of single / range value specification can be used for the Range of Numbers and 
Ordered Set of Labels types. The only difference is that attribute values must belong to the 
domain defined by the corresponding attribute template. As an example, consider specifying 



that we are prepared to accept any value for attribute ‘Viscosity grade’ that is at least ‘15W’ but 
taking into account that the more viscosity the better.  

As to the Set of Labels type, the buyer is enabled to choose one value (label) or a subset of 
values. Notice though that since no order is associated, there is no need for defining any range 
or slope.  

Finally, a buyer assigns some value to a Free Text type by filling out a text field. In the example, 
it specifies ‘50L Barrels’ as an additional preference.  

 

 
Figure 2-3 : RFQ value specification. 

The buyer has also the capability of defining the importance that each attribute is expected to 
have during the negotiation process. Thus, the buyer assigns a value ranging from irrelevant to 
extremely important (as for the ‘Temperature resistance’ attribute). Additionally, if it is 
compulsory that offers submitted by providers satisfy the requested values, the buyer must then 
tick the must-have checkbox (as for the ‘Temperature resistance’ and ‘Delivery time’ attributes). 
The way Quotes exploits preferences and importance values is latter explained.  

An interesting issue that is beyond the scope of this paper is the problem of preference 
elicitation, i.e. discover and/or quantify the buyer’s preferences over a product configuration 
(Bichler 2002, Peyman 2001).  

 

Finally, the buyer assigns a reserve score, a threshold value, to the RFQ. Thus offers whose 
degree of matching with the RFQ fall below the reserve score are filtered out (subsection 7.1 
fully explains how offers are scored in relation to RFQs). That is, depending on the matching 
score value, Quotes automatically rejects offers that unsatisfactorily match buyers’ 
requirements.  



3 Automated provider selection  

3.1 Providers’ preferences and capabilities: production profiles 
While buyers need to specify their product requirements in terms of negotiable attributes, 
providers can analogously do the same regarding their product capabilities and their 
preferences over incoming RFQs. Thus each provider is capable of declaring the so-called 
production profiles thoroughly detailed lists of products he is capable of providing. Figure 3-1 
shows a production profile corresponding to the product specified in the template shown in 
Figure 2-2. 

 

 
Figure 3-1: A sample of production profile 

As discussed above, Quotes describes a product in terms of its negotiable attributes. 
Consequently, production profiles need to be specified for each attribute.  

When specifying their production profiles, providers are requested to specify both their 
production capabilities and their selling preferences: 

• Production capabilities (shown as ‘Allowed values’ in Figure 3-1) describe the products 
that can be offered. They are specified through the range of attribute values that can be 
provided. For example, suppose that some provider needs a minimum of seven days to 
deliver his goods or that he can only provide a minimum ‘Viscosity grade’. Since 
production capabilities determine which product demands the provider can actually 
accept, Quotes uses this information for RFQ delivery.  

• Selling preferences allow a provider to state which requests he may favour. This is a 
way of reducing the high cost involved in analysing large collections of RFQs. A 
provider might be interested in quickly identifying requests for large volumes or for a 
specific product model, while being less interested in requests for discontinued 



products. As Figure 3-1 shows, selling preferences are specified by means of a 
preferred values column and, once again, an associated importance. With this 
information, Quotes is able to aid the provider when deciding which RFQs to consider 
first (ordering RFQs is detailed in subsection 7.1.3 and is based on scoring 
computation). 

3.2 Provider selection 
Given a brand-new generated RFQ to request for a set of goods, provider selection is the 
automatic process that guarantees that only those providers supplying some of the required 
goods do receive the RFQ. In addition, providers will see customized views of these RFQs, so 
that the RFQ view for a given provider exclusively contains those items that he or she is 
capable of providing. 

Provider selection consists of two filtering steps. It has been already described how buyers and 
providers have interfaces that allow them to describe their necessities and capabilities based on 
commonly-shared product templates. The first filtering process solely requires identifying those 
providers offering products specified with the same template than the product the buyer is 
requesting. For every identified provider, the second filtering process focuses on attribute 
values. Internally, this commonly-shared language provided by templates allows the matching of 
each provider’s capabilities to the buyer requested values given that they belong to the same 
domain. As mentioned above, when a buyer specifies his requirements by assigning values to 
each attribute in a template, these values can be single values, sets of values or intervals. 
Additionally, a buyer can set to true a Must Have flag to indicate that the requested attribute 
value is mandatory. That is, for example, if the buyer requests engine oil with ‘Temperature 
resistance’ attribute values between ‘Medium’ and ‘High’ and selects Must Have (as shown in 
Figure 2-3), only those providers that have the capability to offer this item with values within this 
interval will see the item in their RFQ view. On the contrary, if it is not the case that this Must 
Have flag is active, then a provider producing engine oil whose ‘Temperature resistance’ is 
‘Low’ ought to receive the request, since that’s what negotiation is all about. Analogously to the 
Must Have flag, providers specify the attributes of the items they produce with an associated 
Will Listen Broader flag. This flag specifies whether a provider is willing to receive requests of 
items whose attribute values fall outside his capabilities. In this manner, in the previous 
example, the provider producing low temperature resistance oil would receive the request only if 
its Will Listen Broader flag was active (see third column in Figure 3-1). This flag allows providers 
to customize their RFQs filtering.  

Flag value combination (Must Have on the buyer side and Will Listen Broader on the provider 
side) are taken into account before requests are sent to providers. Each pair of values defines a 
case for which an interval or set intersection check must be performed over requested and 
produced attribute values so that RFQ views will be defined for products whose attributes 
accomplish these tests. 

Table 3-1 presents this combination of values and checks, being:   

• RFQAttribute.MustHave the Must Have flag value on the buyer side 

• ProviderAttribute.WillListen the Will Listen Broader flag value on the provider side 

• RFQAttr the set of buyer’s attribute value preferences  

• ProvAttr the set of provider’s attribute value capabilities 
 

 RFQAttribute.MustHave=1 RFQAttribute.MustHave=0 

ProviderAttribute.WillListen=1 RFQAttr ⊆ ProvAttr? No test required 

ProviderAttribute.WillListen=0 RFQAttr ⊆ ProvAttr? RFQAttr ⊆ ProvAttr? 
Table 3-1: Flag value combination for capability matching. 



4 Offer generation 

Once an RFQ has been delivered to selected providers, those providers can then generate their 
first offers. Quotes allows offers to be elaborated either manually by providers or automatically 
by the system. Nevertheless, since providers in real sourcing events prefer to have complete 
control over their offering, the automated offer generation functionality limits to composing 
indicative offers (as opposed to firm offers).  

4.1 Manual offer elaboration  
Figure 4-1 shows an RFQ item description as seen by a provider. It contains its attributes, their 
importance (as horizontal bars beside each attribute name), their preferred values and, when 
these are intervals, the corresponding preference interval slope (this is shown through bold 
figures representing most preferred values, such as 10.0 euro in the price interval). There, a 
provider can specify offered values along the New Offer column. The only restriction being that 
they must belong to the template specifications (attribute value domains appear as intervals 
next to each textbox in the New Offer column or as the set of values that can be selected within 
a combo box). Additionally, if no Must Have flag is active, offered attribute values can lay 
outside preferred intervals. 

Notice also that, whilst an RFQ item represents a subspace of preferred attribute values within 
the space defined by the template, offers are restricted to represent points in the very same 
space. The reason to constrain providers to single-valued offers is mainly semantic, since 
assigning more than one value to each attribute could be ambiguous in representing 
interdependencies and could in fact be interpreted as different alternative offers. As an 
example, consider offering two values of ‘Price’ and ‘Viscosity grade’ attributes, this could mean 
that one viscosity grade is more expensive than the other, or that there are two prices for each 
viscosity grade. In this manner, single-valued attribute offers do not require to disambiguate all 
possible value combinations by increasing the complexity of the offer specification language: 
providers specify attribute value alternatives (disjunction) as separated offers. 

 



 
Figure 4-1. Offer edition for an RFQ item 

4.2 Automated provider response 
The system requires providers to specify their business rules so that they can be subsequently 
applied to automatically generate offers. Next we detail how these two steps are undertaken.  

4.2.1 Business rules as bidding rules 

Beyond declaring attribute capabilities and preferences, Quotes allows each provider to declare 
his own business rules in the form of bidding rules.  

 



 
Figure 4-2: Bidding rules sample 

A bidding rule is an if-then rule that checks and changes the value of one or several attributes. 
Examples of rules include discount per volume, additional charges for express delivery, no 
delivery charge when a minimum price is offered, etc. Figure 4-2 shows an example for Engine 
Oil. The general syntax to define bidding rules is shown in Figure 4-3. 

 

RULE: if CONDITION then ACTION; 

CONDITION: attribute_name1 [=, !=] value1   | 

  attribute_name1 [#,!#] (min_value, max_value)              | 

 (CONDITION)      | 

  CONDITION [and, or] CONDITION; 

ACTION: attribute_name2 [fix, +%, -%] value2 

Figure 4-3: Bidding rule syntax  

Operations for checks and changes can be selected among a list of available operations that 
depend on the chosen attribute type: 

• Condition operators are: =, !=, #, !#. Equality (=) and inequality (!=) operators can be 
chosen for all types of attributes (both numerical and sets of labels) and require a value 
to be compared with. On the contrary, membership (#) and non-membership (!#) 
operators only apply to types that allow to specify intervals (that is, any number, range 
of numbers, and ordered sets of labels). 

• Action operators are functions to be applied to the attribute that has been chosen to be 
affected. These are: assignment (fix), which can be applied to all attribute types, and 



percentage increment (+%) and decrement (-%), which are only applied to numerical 
types. 

Considering this syntax, the sample rules in Figure 4-2 set the price depending on the quantity 
(three first rules), increase the delivery time for semi-synthetic oil types (fourth rule) and for 
medium and high temperature resistant oils (fifth rule).  

Notice that the free text type is not supported because it is a natural language value whose 
automatic treatment goes beyond the scope of this application. However, the manual setting of 
a boolean value associated to free text types specifies if the provider meets the requested 
attribute value or not. 

4.2.2 Automated offer generation 

In this section we describe the module of Quotes that is in charge of generating indicative offers 
on behalf of providers exploiting the above-mentioned bidding rules. Such process takes place 
immediately after provider selection. Its objective is to build a complete offer (where each 
attribute is assigned some value). Moreover, the algorithm pursues to build the best complete 
offer in terms of either the buyer’s preferences or the provider’s preferences or both. For the 
sake of clarity, this section assumes an offer to be composed of a single item (that is, it is only 
offering one product), so that ‘offer’ is used instead of ‘offer item’. For the general case of 
offering more than one product, the process described below will be repeated for each item.  

The implemented algorithm is a variation of the well-known hill-climbing random neighbourhood 
search procedure. We start with an incomplete offer O as the candidate solution and then enter 
into an iteration phase. At each iteration, we generate a neighbouring offer O’ of O to which we 
apply the provider’s business rules (which have been already explained in the pervious 
subsection). If the new solution O’ is better than the candidate offer O we accept O’ as the 
current solution. The process continues until the termination criterion (no improvement for the 
last k iterations) is reached. 

In order to explain completely the optimisation procedures, the following definitions are in place. 

Definition 1: Space of solutions. 

We define an offer as a tuple o of the form <o1, o2,…, on > where oi ∈ (Ai
p ∩ Ai

b) ∪ ∅, i=1,..,n, 
being: 

• n the number of negotiable attributes of the offered item; 

• Ai
p the set of values produced by provider p for the i-th attribute (ai ); 

• Ai
b the set of values ask by buyer b for the i-th attribute (ai ); 

• the symbol ∅ denotes unassigned value. 

In other words, an offer o sets a value for each requested attribute (i.e., oi is the value offered 
for attribute ai), provided that such value is within both provider’s capabilities and buyer’s 
acceptable values.  

We say that an offer o is complete if oi ≠ ∅  ∀ i=1,..,n and partially complete if ∃i such that oi = 
∅. Additionally, we say that an offer o is more partially complete than o’ (denoted as 'oo f ) if o 
has less unassigned values than o’. 

The evaluation function defines the objective of the optimisation process in terms of determining 
if o’ is better than o. In our case the objective is twofold: obtain a complete offer that optimises a 
target function. 

Definition 2: Objective function. 

The objective function c: O→ℜ is defined over the set of offers O as  

)()()( oswoswoc bbpp ⋅+⋅=   

where 

• sp: O → [0..100] is the scoring function based on the preferences of provider p (as 
detailed in subsection 7.1). 



• sb: O → [0..100]  is the scoring function based on the preferences of buyer b. 

• wp and wb are weighting factors so that wp + wb =1 and wp ≥ 0,  wb ≥ 0   

Such evaluation function tries to favour high scorings while penalizing big differences between 
the buyer’s and the provider’s revenues. In other words, it prefers a 50 - 50 rather than an 80 - 
20 thus seeking win-win situations (and this is desirable because if a provider generates an 
offer that best suites his/her preferences without taking into account the buyer’s ones, it will be 
likely rejected by the buyer). Finally, wp and wb can be used to tune the objective function (for 
example, to focus more on the buyer’s preferences). 

Optimisation algorithm  

Informally, we say that an offer o’ is better than an offer o if o’ is more partially complete than o 
and c(o’) > c(o). Consequently, we only favour solutions that are closer to be complete and that 
improve the existing candidate solution. Figure 4-4 shows the pseudo-code for the optimisation 
algorithm. 

 

 o = <∅ , ∅,…,∅> 

While termination_criterion not reached 

 randomly select an attribute ai in the condition of a bidding rule. 

 randomly obtain a new value oi’ for the chosen attribute. 

 obtain o’ as the result of executing the set of bidding rules over <o1,…,oi’, …,on> 

 if  o’>o then o = o’ 

end_while 

If O is complete return with success 

else return with failure 
 

Figure 4-4. Optimisation offer algorithm 

If the process ends with success, a complete offer is obtained and Quotes automatically 
submits it as an indicative offer. Assuming wp = wb = 1 the offer is likely to be close to a win-win 
agreement and thus reducing the number of buyer-provider interactions. However the 
negotiation process may progress further since the submitted offer is set as indicative.  

4.2.3 Example 

Consider a buyer request consisting of 10 units (non-mandatory) of memory SIMMS of exactly 
128Mb at 133Mhz. Furthermore, the buyer is not willing to pay more than 10000. Additionally, 
we assume there is a provider of SIMM Modules whose bidding rules are shown in Figure 4-5.  

 



 
Figure 4-5: Bidding rules example 

Table 4-1shows the evolution of an offer through the optimisation algorithm execution. Since we 
assume the provider has not specified any preferences (and thus it is not possible to compute 
his scoring), we only show the evolution of the buyer’s score.  

 

Iteration Price Quantity Size Speed Package sb(o) 

0 ∅ ∅ ∅ ∅ ∅ -- 

1 ∅ ∅ ∅ 133 ∅ -- 

2 ∅ ∅ ∅ 133 Branded -- 

3 ∅ 8 ∅ 133 Branded -- 

5 10400 8 128 133 Branded 35% 

12 9960 19 128 133 Branded 66% 

36 9960 11 128 133 Branded 80% 
Table 4-1: Evolution of an automatically generated offer 

The algorithm quickly assigns values for speed, package and price. Speed and price only admit 
one value each, and the value selected for Package has no effect on the buyer’s score. At fifth 
iteration, the algorithm has managed to obtain a complete offer. At 12th iteration, a random 
move of quantity enables the application of a volume-based discount rule (last bidding rule in 
Figure 4-5). This improves the buyer’s score since it fixes the price below 10000. From this 
point, the only allowed movement is to decrease the number of units to match as much as 
possible the quantity required by the buyer. The algorithm successfully terminates with the offer 
<9960,11,128,133,Branded>, which guarantees the price to be below 10000 offering only an 
additional unit. 

5 Negotiation 
So far potential providers have been requested for offers and even some of them have already 
submitted either manual offers or automatically-generated indicative offers. The process now 
enters into a negotiation phase. Negotiation is conducted through multiple, simultaneous, 
structured dialogs. Each dialog is established between the buyer and a single provider and it is 
ruled by a negotiation protocol. Buyer actions can be: offer acceptance, offer rejection, counter-
offer submission, and request for firm (offer). Provider actions are limited to the submission of 
either firm or indicative offers. Nevertheless, a provider can negotiate for an RFQ both by 
submitting offers sequentially (following a negotiation dialog) or in parallel (offering different 
alternatives to the buyer).  

The following sequence illustrates a typical negotiation. 



1. The buyer submits an RFQ asking for service1 and service2. 

2. Quotes identifies a potential provider and automatically constructs two indicative offers 
on his behalf based on his bidding rules: offer1 for service1 and offer2 for service2.  

3. The buyer evaluates offer1 and submits a counter-offer asking for lowering the price. 

4. The provider responds with an extension of offer1 so that it also includes an offer for 
service2. In other words, he is accepting a price reduction provided that the buyer 
acquires both service1 and service2. 

5. The buyer rejects offer2. 

6. The buyer evaluates the modified offer1’, agrees with it and requests a firm offer. 

7. The provider concedes the firm offer. 

8. The buyer accepts the firm offer and therefore the negotiation successfully finalises. 

Formally, negotiation can be described by means of a finite state automaton where messages 
between a buyer and a provider define the transition between negotiation states. Next Figure 
5-1 depicts it. 

Notice that the buyer holds a one-to-many negotiation with providers. Quotes allows that 
multiple dialogs take place in parallel between the buyer and the providers competing for some 
RFQ. And at the same time, each provider is allowed to simultaneously hold several dialogs 
with the buyer whenever each dialog corresponds to a different offer. 
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Figure 5-1: Negotiation finite state automaton.  

As we have previously stated, negotiation assumes an RFQ has been sent, so negotiation 
formally starts with a provider sending an offer. This initial state switches either to an Indicative 
Offer state (reached when an “Ind. Offer” message is sent) or to a Firm Offer state. Intermediate 
states are Counter-offer, RFF (Request For Firm), and Rejected. 



Negotiation ends when the buyer accepts a firm offer. This corresponds to an Accepted state (in 
black). Another final state is Failure, which can be reached from any other state (although it has 
been omitted for the sake of clarity). In addition to this, neither the buyer nor provider are 
directly responsible for generating the transition to this state: Quotes causes it as a 
consequence of an internal action (such as a system exception, a timeout, etc.).  

6 Auctions 
In order to start an auction, an RFQ is required together with a selection of qualified providers. 
Only selected providers will be invited to participate in a buyer-customized auction event. 
Auctions in Quotes include several parameters (Sandholm, 2000) (most of them are shown in 
Figure 6-1): 

• When to clear the auction. Available options are: to be cleared by buyer, when a 
specific time is reached (thus, an ending date must be provided), or when no bids have 
been received for a specified time. 

• Begin date: when to launch the auction. Prior to the auction start, its terms are 
accessible to invited providers. 

• First bid unconstrained allows a provider to bid for the first time with an offer that does 
not necessarily overbid the best bid. As a consequence the winner remains the same 
but auction competitiveness is increased. 

• What information is revealed to bidders. Three different levels of information visibility 
concerning providers’ identities can be established: none, nickname or full identity. 

• What bidding information is revealed to bidders while the auction stage (highest bid, all 
bids, or none). 

• Ranking revelation. If enabled, each bidder can visualise the relative position of his 
bids. 

• Voyeur providers. Whether providers that have not submitted any bid can see 
information about the auction evolution or not.  

• Maximum number of auction extensions and time per extension. 

• Extension detection time. Extensions are launched when bids are submitted within this 
period of time. 

Additionally, bidding constraints can be imposed on providers, lots, items, or attributes: 

• Constraints on providers affect bidding capabilities for certain bidders, as for example, 
different starting values for attributes, fixed bids for specific items, etc.  

• Constraints on lots and items fix the maximum/minimum bid increment/decrement.  

• Constraints on attributes specify starting and target values as well as 
increment/decrement constraints. 



 
Figure 6-1. Auction parameters’ setting 

In the most general case, Quotes supports combinatorial multi-attribute reverse auctions 
(Sandholm et al. 2002). This allows providers to directly bid for bundles of items. They are 
convenient for providers that have non-additive values for bundles of items (providers’ offers for 
bundles of items may be better than for their separate items). Furthermore, they allow providers 
to express complementarities (interdependencies) over the requested items to avoid the risk of 
being awarded incomplete bundles. Notice also that providers are allowed to place multiple bids 
for bundles of items. Figure 6-2 and Figure 6-3 depict how buyers and providers visualise the 
very same combinatorial auction. 

 



 
Figure 6-2. Buyer façade of an ongoing auction 

 



 
Figure 6-3. Provider façade of an ongoing auction 

7 Selection of best offers 
Ideally, both negotiations and reverse auctions should finish with the award of items to the best 
offers. Nevertheless, when dealing with complex (multi-item, multi-attribute) negotiation events, 
this is not a straight forward task. In order to assist buyers, Quotes provides a decision support 
module (the so called RFQ-offer matching module) for offer and bid assignment endowed with 
ranking and comparing facilities. They are based on scoring criteria fully detailed below.  

Furthermore, Quotes incorporates an additional decision support module that determines the 
best offers in combinatorial negotiations whose implementation is presented in subsection 7.2. 

7.1 Scoring criteria: Fuzzy matching 
Quotes provides both buyers and providers with a fuzzy matching module that allow them to 
score the negotiation messages (RFQs and offers) they receive based on their own 
preferences. In this manner, a buyer can order incoming offers from different providers in the 
same way that a provider can order incoming RFQs from different buyers. This is specially 
useful when dealing with a large number of negotiation messages because the more interesting 
a message the earlier it should be identified and answered. And the sense of interest is 
extracted from buyers’ and providers’ preferences. 

Most commercial offer selection tools are based on simple implementations of Multi attribute 
utility theory (MAUT, Keeny and Raiffa 1993). We extend these techniques by incorporating 
fuzzy functions in the RFQ-offer matching module (see Ribeiro 1996). At this aim, we firstly 
represent both requested and offered attribute values as fuzzy functions. Secondly, this pair of 
fuzzy functions are combined and defuzzyfied (by computing the supremum of their 
intersection) in order to obtain a scoring (a degree of matching) at attribute level. These crisp 
values are then weighted with the importance of each attribute so that the scoring for an item is 



obtained. Finally, the scorings for all items in a message are aggregated to yield a total scoring 
value. 

After the work by Baas and Kwakernaak (1977) fuzzy functions have been mostly applied as 
triangular fuzzy numbers representing preferences. On the other hand, preferences over 
continuous attributes can be modelled by linear functions in the [0, 1] interval. We go further in 
three aspects: we parametrize fuzzy functions’ support (positive values), we model interval 
preferences with trapezoidal fuzzy functions, and we allow values in the central part of the 
preferred intervals to increase or decrease linearly. The three extensions are determined based 
on users’ preferences. 

 

7.1.1 Fuzzy functions 

As we have previously seen, both buyers and providers define their preferences. On the one 
hand, buyers specify their preferences when assigning values to RFQ item attributes (see 
subsection 2.2). On the other hand, providers specify their preferences when defining preferred 
values in their product profiles (see subsection 3.1). Internally, these preferences are 
represented as fuzzy functions. 

A remarkable feature of fuzzy logic (Godo et al., 1993) is its ability to handle the concept of 
relative truth of one proposition “x is P” through the specification of a membership function that 
represents predicate P. In our case, we can see a preference as a predicate, and the degree of 
truth of the proposition as the degree of the preference satisfaction of an offered value x. For 
example, consider a domain of four quality values (‘low’, ‘medium’, ‘high’, and ‘luxurious’), a 
buyer requesting ‘luxurious’ quality, and a provider offering ‘high’ quality. In this case we cannot 
state that the provider satisfies completely the buyer’s preference, but, since ‘high’ is close to 
‘luxurious’, satisfaction should neither be zero.  

In Quotes, this degree of satisfaction is computed by means of a fuzzy function (also known as 
membership function of the fuzzy set defined by predicate P), which is defined for each 
preference over each item attribute. This section shows how these functions are defined for 
different types of preferences.  

These fuzzy functions have been designed taking into account the considerations listed below. 
Most considerations constitute design guidelines whose application should result in fuzzy 
functions modelling intuitive human satisfaction (i.e., buyers’ and providers’ intuitive 
evaluations). Additionally, three different examples of the resulting fuzzy functions are 
presented. 

Design guidelines for attribute satisfaction fuzzy functions  

• Value preferences for each item attribute define a fuzzy function, whose universe is 
defined to be the attribute value domain specified in the corresponding item template 
(offered values do belong to the same domain). 

• Satisfaction values belong to the [0,1] interval. When an offered attribute value oi 
coincides with a preference, its satisfaction degree is 1. Otherwise, it will take 
decreasing values (down to 0) as oi goes further away from the preference inside the 
domain.  

This implies that satisfaction must behave asymptotically when the domain is not limited 
(that is, for Any Number template attribute type).  

• If no slope information is associated to a preference (i.e. neither ‘LIB -Less is better-’ 
nor ‘MIB -More is better-’ slopes have been defined), satisfaction must behave 
symmetrically (and, by following the previous consideration, must assign satisfaction 
values that decrease proportionally with the distance to the preferred values). For 
example, if the preferred value is 4, both 3 and 5 offered values should take the same 
satisfaction degree. 

• Multiple values within a preference mean that they are different preferred options (i.e., 
the preference would be satisfied with any of the values). Thus, all values in a Flat 
preference interval (or preference set) take the maximum satisfaction: 



∀ oi ∈ Preference interval or Preference Set,  Satisfaction(oi) = 1 

• When preferences are specified through intervals with non-Flat slopes (i.e., MIB and 
LIB), satisfaction values range from ∝ to 1, being 1≥ α ≥ 0 the minimum satisfaction 
degree that preferred values can take inside the preferred interval.   

∀ oi ∈ Preference MIB or LIB interval,  Satisfaction(oi) ≥ α 

In our implementation α has been set to 0.5. The value has been fixed because of 
usability reasons (to relieve users from specifiying intrincate non-intuitive customisation 
values).  

• Outside non-Flat intervals, those values ‘close enough’ to the preferred side (i.e., 
maximum value in an MIB interval or minimum value in an LIB interval) would also take 
satisfaction values inside [α, 1]. By ‘close enough’ we consider values within a 
neighbourhood of the interval (computed as a percentage β of the interval length).  

Formally, if the preference interval is defined as [minp,maxp] over an attribute whose 
domain is defined by [mind, maxd] (where mind, maxd are infinite for Any value domains), 
we distinguish two cases: 

if preference interval has an MIB slope then: 

     ∀ oi ∈ (maxp, min(maxd, maxp+(maxp-minp) ⋅ β/100))]   Satisfaction(oi) ≥ α 

Otherwise, if preference interval has an LIB slope then 

     ∀ oi ∈ [max(mind , minp -( maxp - minp) ⋅ β/100)), minp)   Satisfaction(oi) ≥  

The rest of values always take satisfaction values under α.  

   MIB:   ∀ oi ∉ (minp, min(maxd, maxp +( maxp - minp) ⋅ β/100))]   Satisfaction(oi) ≤ α 

   LIB:   ∀ oi ∉ [max(mind , minp -( maxp - minp) ⋅ β/100)), maxp)   Satisfaction(oi) ≤ α  

Considering neightbourhood intervals is aimed to soften abrupt decreasing 
(discontinuities) in satisfaction degrees. The value of β been fixed to 10% for usability 
reasons.  

• Simetry does not apply for non-Flat preference intervals. In this manner, satisfaction 
degrees for offered values falling on the right side outside an MIB interval should 
decrease with a smoother slope than left-sided values.  

The same applies for LIB intervals: left sided values outside the interval should 
decrease with a smoother slope than right sided values. 

• In case an offer contains multiple offered values (oi1
,.., oim

) for an attribute, the 
satisfaction of the offer for this attribute must correspond to the best offered value 
satisfaction: 

Satisfaction (oi1
,.., oim

) = max (Satisfaction(oi1
),...,Satisfaction(oim

)) 

As previously seen, offers are restricted to take on a single value per attribute. 
Nevertheless, this consideration has been included so that RFQs can be also scored 
against provider’s preferences using the same scoring computation method. Thus, for 
example, if a provider’s preference for an attribute is 4 and an RFQ requests the 
attribute values to be 3 or 4, the computed satisfaction must be 1.  

Keeping these considerations in mind, we present tree different examples of fuzzy functions 
defined for different types of attribute domains and preferences (the rest of cases result in 
analogous fuzzy functions, and thus can be naturally inferred from these ones): 

Example 1: Fuzzy function definition for an attribute whose domain is ‘range of numbers’ 
and its preference type is ‘single’ 

Figure 7-1 shows the fuzzy function defined for a single preference value of 10 whose template 
defines its domain as the [-20, 20] range of numbers. The function is generated so that 
satisfaction is 1 at 10 and it decreases down to 0 at the further extreme of the domain interval 



(which in this case is -20). Since simetry must be respected (no slope can be defined for single 
preferences), the same decreasing slope is applied to values at the right side of the preferred 
value. In this manner, the maximum value for the domain –wich is 20- will take a satisfaction 
degree of 0.66. 

 

 
Figure 7-1: Fuzzy function for a single preference inside a range of numbers domain. 

Example 2: Fuzzy function having domain attribute type = ordered set of labels and 
preference type = flat interval.  

This second example corresponds to a fuzzy function whose domain is an ordered set of labels 
{QA, QB,.., QI} and whose preference is the flat interval [QC, QE] (that is, all QC, QD, QE 
values are equally preferred) (see Figure 7-2). In this case, labels inside the interval have 
satisfaction equal to 1, and as in the previous example, satisfaction values decrease for labels 
down to 0 at QI (the further label). Again, labels on the left of the preferred interval decrease 
with the same slope than the right side, so QA is assigned a satisfaction degree of 0.5.  

 

 
Figure 7-2: Fuzzy function for a flat interval preference and ordered set of labels domain 

Example 3: Domain attribute type: any number, preference type: MIB interval.  

Last example corresponds to an MIB (more is better) interval preference ([-20,20]) considering a 
non-restricted numerical domain (that is, any number is allowed). Satisfaction values for this 
domain are computed using a 4-piece formula considering α=0.5 and β=10 (see Figure 7-3) :  

(1) ∀ oi ∈[-20, 20],   Satisfaction(oi)= 
80

20
5.0

+
+ io

  

(2) ∀ oi ∈[20, 24],   Satisfaction(oi)= 
8

201 −
− io

  



(3) ∀ oi > 24,   Satisfaction(oi)= σ
µ

⋅
−

−
2

)( 2
io

e  where: 

σ = spread ⋅ (Length2 ([-20,20] ∪ [20, 24]))2 ·⋅ ρ   

µ = 24 , spread= 2, ρ = 2  

(4)  ∀ oi < -20,   Satisfaction(oi)= σ
µ

⋅
−

−
2

)( 2
io

e where: 

σ = spread ⋅ (Length ([-20,20] ∪ [20, 24]))2 ⋅ ρ 

µ = -20, spread= 2, ρ = 1  

First piece (1) corresponds to the satisfaction inside the preference interval, and increases 
linearly from 0.5 at the minimum up to 1 at the maximum.  

Second piece (2) corresponds to the 10% additional interval, which in this example is 4 units 
long, and decreases from 1 at the maximum of the preference interval (i.e., 20) down to 0.5 at 
the maximum of the additional 10% interval (i.e., 24).  

Third and forth pieces define satisfaction degrees for the domain values outside the previous 
intervals. Since the domain is not restricted, we use probabilistic functions that decrease 
asymptotically along the x axis. Mean (µ) values are set to be the preference interval point that 
is closer to the described side, (assuming the interval to be the union of both defined preference 
and additional neighbourhood intervals). In this manner, for the right side (3) mean is the 
maximum of the additional neighbourhood interval (i.e., 24) and for the left side (4) it is the 
minimum of the defined preference interval (i.e., -20). 

Regarding variance (σ) values, they are assigned as the product of a spread value, a ρ value, 
and the square value of the length of the interval. Spread is fixed to 2 for both sides, but since 
simetry is not desired for an MIB interval, ρ takes different values for each side. More 
concretely, ρ is set to 2 on the right side (3) and to 1 on the left side (4), so that variance in the 
side closer to the more preferred values is twice the variance of the other side.  

 

 
Figure 7-3: fuzzy function for an MIB interval preference and any number domain. 

7.1.2 Offer evaluation 

An RFQ specifies buyer’s preferences over a set of items that describe products (or services) in 
terms of attributes. Quotes scores providers’ offers for an RFQ so that the buyer can have an 
ordered list of offers, ranking first the offers that best satisfiy his preferences. Therefore, in order 
to score an offer in relation to an RFQ, it is necessary to compute satisfaction values at the level 

                                                   
2 Length([min,max])= max-min being [min,max] an interval 



of attributes and propagate them to the item level and up to the offer level (since an offer may 
encompass several items).  

In a more formal manner, given an offer o composed of m items oj j=1..m, we describe an offer 
item j as the n-tuple of the form <oj

j1
, oj

j2
,…, oj

jn
 > where oj

ji
 represents the i-th attribute value of 

item j.  

In order to compute attribute scoring, Quotes creates the above-described fuzzy functions. 
Offered attribute values, which are always single, are then used to compute satisfaction 
degrees:  

(5)     scoring(oj
ji
) = Satisfaction (oj

ji
) 

Attribute satisfaction degrees are then weighted to obtain offer item scoring. Since preferences 
are RFQ attribute values, weights wj

ji
 are taken to be the importance the buyer assigned to an 

attribute i in the j-th RFQ item (see subsection 2.2).  
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Finally, we compute offer scoring as a weighted combination of item scorings.    
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where wj stands for the weight of the j-th item. 

In the current implementation, all item weights are set to 1 and scoring values are translated 
from the [0,1] to the [0,100] range. 

7.1.3 RFQ evaluation 

Similarly to offer scoring functionality, Quotes facilitates providers an RFQ scoring computation 
that prioritises buyers’ requests. Again, fuzzy functions are generated for each attribute, using 
its domain as defined by templates along with preferences as providers’ preferred values (see 
subsection 3.1).  

The main difference appears in the computation of the formula number (5). The reason is that 
attribute values in RFQ items are not restricted to be single, so that value intervals or sets must 
be evaluated against these fuzzy functions. In this case, Quotes assumes attribute scoring to be 
the best satisfaction degree of all values x defined in the attribute value range rfqj

i.  
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7.2 Winner determination in combinatorial scenarios 
Allowing providers to bid on combinations of goods has the interesting feature of enhancing 

economic/service efficiency. Thus suppliers may offer more competitive bids with the 
perspective of gaining more business (Rothkopt et al., 1995). However, the determination of an 
optimal winner combination is a complex problem which, excluding very small instances, cannot 
be manually solved with common data analysis tools. Thus, consider the decision problem 
faced by a buyer when negotiating with providers. While in direct auctions, the items that are 
going to be sold are physically concrete (they do not allow configuration), in a negotiation event 
involving multiple, highly customisable goods, buyers need to express relations and constraints 
between attributes of different items. On the other hand, it is common practice to buy different 
quantities of the very same product from different providers, either for safety reasons or 
because offer aggregation is needed to cope with high-volume demands. This introduces the 
need to express business constraints on the number of providers and the amount of business 



assigned to each of them. Not forgetting the provider side, providers may also impose 
constraints or conditions over their offers. Offers may be only valid if certain configurable 
attributes (e.g. quantity bought, delivery days) fall within some minimum/maximum values, and 
assembly or packing constraints need to be considered. Once the buyer collects offers, he is 
faced with the burden of determining the winning offers. The problem is essentially an extension 
of the combinatorial auction (CA) problem, which can be proven to be NP (Rothkopt 1995). 
Hence that it would be desirable to relieve buyers from solving such a problem. However, 
although the application of combinatorial auctions (CA) to e-procurement scenarios (particularly 
reverse auctions) may be thought as straightforward, the fact is that we identify multiple new 
elements that need to be taken into consideration.  

Current CA reviewed do not model these features with the exception of (Collins et al. 2001) 
and (Sandholm et al. 2002), where coordination and procurement constraints can be modelled. 
The rest of work focuses more on computational issues (CA is an NP-hard problem (Rothkopt 
1995)) than in practical applications to e-procurement. Suppose that we are willing to buy 200 
chairs (any colour/model is fine) for the opening of a new restaurant, and at that aim we employ 
an e-procurement solution that launches a reverse auction. If we employ a state of the art CA 
solver, a possible resolution might be to buy 199 chairs from provider A and 1 chair from 
provider B, simply because it is 0.1% cheaper and it was not possible to specify that in case of 
buying from more than one supplier a minimum of 20 chairs purchase is required. On the other 
hand the optimum solution might tell us to buy 50 blue chairs from provider A and 50 pink chairs 
from provider B. Why, because although we had no preference over the chair’s colour, we could 
not specify that regarding the colour chosen all chairs must be of the same colour. Although 
simple, this example shows that without means of modelling these natural constraints, solutions 
obtained are seen as mathematically optimal, but unrealistic and with a lack of common sense, 
thus obscuring the power of decision support tools, and preventing the adoption of these 
technologies in actual-world settings. 

In this section we present iBundler, a decision support component acting as a combinatorial 
negotiation solver (solving the winner determination problem) for both multi-item, multi-unit 
negotiations and auctions. Thus, the component can be employed by both buyers and 
auctioneers in combinatorial negotiations and combinatorial reverse auctions (Sandholm 2002) 
respectively. Furthermore, it extends current combinatorial auction models by accommodating 
both operational constraints and attribute-value constraints. 

7.2.1 Desiderata 

Next we detail the capabilities required by buyers in the kind of negotiation scenario outlined 
above. The requirements below are intended to capture buyers’ constraints and preferences 
and outline a powerful bidding language for providers: 

1) Negotiate over multiple items. A negotiation event is usually started with the preparation of 
a request for proposal (RFQ) form. The RFQ form describes in detail the requirements 
(including attribute-values such as volume, quality specifications, dates as well as drawings and 
technical documentation) for the list of items (goods or services) defined by the negotiation 
event.  

2) Offer aggregation. A specific item of the RFQ can be acquired from several providers 
simultaneously, either because not a single provider can provide with the requested quantity at 
requested conditions or because buyer’s explicit constraints (see below). 

3) Business sharing constraints. Buyers might be interested to restrict the number of 
providers that will finally trade for a specific item of the RFQ, either for security or strategical 
reasons. It is also of usual practice to define the minimum amount of business that a provider 
may gain per item.  

4) Constraints over single items. Every single item within an RFQ is described by a list of 
negotiable attributes. Since: a) there exists a degree of flexibility in specifying each of these 
attributes (i.e. several values are acceptable) and b) multiple offers referring the very same item 
can be finally accepted; buyers need to impose constraints over attribute values. An example of 
this can be the following: suppose that the deadline for the reception of certain item A is two 
weeks time. However, although items may arrive any day within two weeks, once the first units 
arrive, the rest of units might be required to arrive in no more than 2 days after. 



5) Constraints over multiple items. In daily industrial procurement, it is common that 
accepting certain configuration for one item affects the configuration of a different item, for 
example, when dealing with product compatibilities. Also, buyers need to express constraints 
and relationship between attributes of different items of the RFQ. 

6) Specification of providers’ capacities. Buyers cannot risk to award contracts to providers 
whose production/servicing capabilities prevent them to deliver overcommitted offers. At this 
aim, they must require to have providers’ capacities per item declared. 

Analogously, next we detail the expressiveness of the bidding language required by 
providers. The features of the language below are intended to capture providing agents’ 
constraints and preferences. 

7) Multiple bids over each item. Providers might be interested in offering alternate 
conditions/configurations for a same good, i.e., offering alternatives for a same request. A 
common situation is to offer volume-based discounts. This means that a provider submits 
several offers and each offer only applies for a minimum (maximum) number of units.  

8) Combinatorial offers. Economy efficiency is enhanced if providers are allowed to offer (bid 
on) combination of goods. They might lower the price, or improve service assets if they achieve 
to get more business.  

9) Multi-unit offering. Each provider needs to specify that they will only participate in trading if 
a minimum (maximum) amount of business is assigned to him. 

10) Homogeneous combinatorial offers. Combinatorial offering may produce inefficiencies 
when combined with multi-unit offering. Thus a provider may wind up with an award of a small 
number of units for a certain item, and a large number of units for a different item, being both 
part of the very same offer (e.g. 10 chairs and 200 tables). It is desirable for providers to be able 
to specify homogeneity with respect to the number of units for complementary items. 

11) Packing constraints. Packing units are also a constraint, in the sense that it is not 
possible to serve an arbitrary number of units (e.g. a provider cannot sell 27 units to a buyer 
because his items come in 25-unit packages). Thus providers require to be capable of 
specifying the size of packing units. 

12) Complementary and exclusive offers. Providers usually submit XOR bids, i.e., exclusive 
offers that cannot be simultaneously accepted. Also, there may exist the need that an offer is 
selected only if another offer is also selected. We refer to this situation as an AND bid. This type 
of bids allows to express volume-based discounts. For example, when pricing is expressed as a 
combination of base price and volume-based price (e.g. first 1000 units at €2.5 per unit and 
then €2 each). 

Obviously, many more constraints regarding pricing and quantity can be considered here. But 
we believe these faithfully address the nature of the problem. Actually, iBundler has been 
applied to scenarios where some of these constraints do not apply while additional constraints 
needed to be considered. This was the case of a virtual shopping assistant, an agent that was 
able to aggregate several on-line supermarkets and optimise the shopping basket. To do so, it 
was necessary to model the fact that delivery cost depends on the amount of money spent at 
each supermarket. 

7.2.2 Implementing winner determination 

Consider the problem faced by a buyer aiming at choosing the optimal set of offers sent over by 
providers taking into account the features of the negotiation scenario described above. The 
problem is essentially an extension of the combinatorial auction (CA) problem in the sense that 
it implements a larger number of constraints and supports richer bidding models. The CA 
problem is known to be NP-complete, and consequently solving methods are of crucial 
importance. Many of the works reviewed in the literature adopt global optimal algorithms as a 
solution to the CA because of the drawbacks pointed out for incomplete methods. Basically two 
approaches have been followed: traditional Operations Research (OR) algorithms and new 
problem specific algorithms (Fujishima et al. 1999 and Sandholm 2002) . It is always an 
interesting exercise to study the nature of the problem in order to develop problem specific 
algorithms that exploit problem features to achieve effective search reduction. However, the fact 
is that the CA problem is an instance of the multi-dimensional knapsack problem MDKP (as 



indicated in (Holte 2001)), a mixed integer program well studied by the operation research 
literature. It is not surprising that, as reported in (Anderson et al. 2000), many of the main 
features of these problem specific new algorithms are rediscoveries of traditional methods in the 
operations research community. In fact, our formulation of the problem can be regarded as 
similar to the binary multi-unit combinatorial reverse auction winner determination problem in 
(Sandholm et al. 2002) with side constraints (Sandholm et al. 2001). Besides, expressing the 
problem as a mixed integer programming problem with side constraints enables its resolution by 
standard algorithms and commercially available, thoroughly debugged and optimised software 
which have shown to perform satisfactorily for large instances of the CA problem.  

With these considerations in mind, the core of the iBundler decision support service has been 
modelled and implemented as a mixed integer programming (MIP) problem. We have 
implemented two versions: one using ILOG CPLEX 7.1 in combination with SOLVER 5.2; and 
another one using iSOCO’s Java MIP modeller that integrates the GLPK library (Makhorin 
2001). In both cases it takes the shape of a software component. 

7.2.3 Winner determination performance 
Since combinatorial auction solvers are computationally intensive, a major issue is whether our 
service is to behave satisfactorily in highly-demanding trading scenarios. At this aim, we have 
conducted some empirical measures on the performance of iBundler. Figure 7-4 shows how it 
behaves when solving negotiation problems as the number of bids, the number of items, and 
the items per bid increase. Notice that in order to run our tests, we devised a customisable 
generator of data sets which artificially created negotiation problems by wrapping the solution 
with noisy bids. In this way, not only were we able to measure the performance of iBundler, but 
also to automatically verify the sound behaviour of the service in a large variety of negotiation 
scenarios demanding the many capabilities of the service. 
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Figure 7-4. Average performance of the iBundler decision support component 

8 Multi-stage sourcing events 
Once the different tasks that are usually involved in sourcing events have been detailed in 
previous sections, this section aims to describe Quotes support for multi-stage negotiations.(E-
negotiation group 2000) 

A typical situation in industry is the specification of sourcing events that involve several stages. 
Depending on whether the product features are not fully known by the buyer, the product’s 
complexity and/or the number of potential providers, sourcing professionals design the sourcing 
process as a sequence of steps (stages) with various objectives.  

Consider the negotiation of a new frame contract for raw material: 



• Typically the sourcing event will start with new providers being invited to an RFI 
(request for information) with the goal to qualify them. An RFI negotiation is performed 
analogously to RFQ negotiations (it requires an RFI elaboration task similar to RFQ 
elaboration as well as providers’ responses). The result of this stage is the 
determination of winning (qualified) providers. Notice that already qualified providers 
will not be invited to this stage.  

• At the end of the RFI stage, qualified providers are then invited to an RFQ with the aim 
of negotiating required product features and transaction terms. On the providers’ side, 
offers are either manually or automatically built as responses to the received RFQ by 
assigning values to the product features and transaction terms. Thereafter, the buyer 
can conduct simultaneous one-to-one negotiations as part of the one-to-many 
negotiation process.  

• This negotiation phase may end up with the buyer accepting some offer(s) or may be 
continued as a reverse auction stage with a subset of the most competitive providers. 
At this point, the buyer may opt for launching a reverse auction with the objective of 
increasing comptetitiveness along those product features and transaction terms whose 
negotiated values remain unsatisfactory.  

 

As we have observed in current market solutions there is little support for creating customized 
sourcing events as compositions of negotiation processes. Quotes allows buyers to undertake 
multi-stage sourcing events by means of stage switching as described above. Moreover RFI, 
RFQ, and auction stages can be interleaved (and repeated) by the buyer at will. Conditions and 
product requirements can be changed from stage to stage, for instance, attribute importance 
adjustments or new product requirements. Offers can be migrated from stage to stage as long 
as they still satisfy these new requirements. Additionally, this will help the buyer to determine 
providers that should be excluded out of the next stage (although in some cases providers may 
still be invited but only to compete for a subset of a multi-item RFQ). Obviously, new providers 
can always be invited to a next stage.  

Quotes controls the status of the whole process as well as the state of each provider, thus 
communicating to them their inclusion or exclusion in the next stage.  

Figure 8-1 shows how Quotes implements multi-stage sourcing events. 
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Figure 8-1. Multi-stage sourcing at Quotes 

A sourcing event starts with the definition of a new RFx (RFI, RFP, RFQ and reverse auction 
mechanism). The RFx is published and executed. When the RFx finishes the buyer can 
determine winners and close the stage, thus finalizing the sourcing event. Alternatively the 



buyer can undergo a switch-to-stage procedure. By doing so, Quotes creates a new RFX stage 
based on the current one. The buyer can then change the requirements (add or remove items, 
add or remove attributes) and determine the negotiation mechanism (RFI, RFP, RFQ or 
auction). Quotes automatically filters out (rejects) offers that do not satisfy newly requirements 
and allows the buyer to manually cancel others. Finally, the buyer decides which providers 
continue with the next event and has the choice of inviting new ones. 

 

9 Results 

Quotes has been successfully applied to several real-life negotiation scenarios of varying 
complexity (from single line to multi-line, multi-attribute) and economic value (few thousand € to 
frame contracts of several million €). Next we summarize the most remarkable outcomes. 

• Actual buyers encountered Quotes scoring mechanism as a simple, intuitive, and 
powerful way to quickly differentiate good from bad offers. However, when making final 
decisions or comparing similar offers they often obviated the scoring values provided 
by Quotes and fine-analysed offers by means of other evaluation functions. We are 
currently trying to incorporate alternative scoring functions that cope with the full needs 
of sourcing professionals along with preference elicitation mechanisms (although this 
issue remains the Achilles tendon of sourcing applications).      

• A common agreement was the convenience of modelling off-line negotiation processes 
in a natural way, without introducing inefficiencies and frictions derived from changing 
the “rules of the game” (that is, for example, substituting the off-line negotiation 
processes by on-line auctions or using negotiation artefacts that do not model previous 
processes). Furthermore, providers appreciated the transparency introduced by the 
tool (since all participants actions can be audited).  

• Buyers belief is that combinatorial offering introduces high complexity for providers to 
bid and to understand auction dynamics. Consequently, Quotes’ combinatorial 
capabilities have been solely applied to small set of actual-world scenarios where the 
buyer pre-defines valid item combinations on which providers can bid.  

• The possibility of automatic offer submission is seen with interest for repetitive sourcing 
events in private e-sourcing platforms where providers and business rules are well 
known or belong to a provider qualification procedure or a frame contract. Nonetheless, 
the full application of such automatisms faces cultural barriers such as providers being 
not so keen on revealing capabilities/preferences to third parties; perception of e-
sourcing tools as a hazard for sourcing professionals, etc.  

• Leading users suggested additional auction rules that best suited their necessities. For 
example, a buyer forced Quotes to incorporate a bidding rule that resulted in an 
increase of the number of participants in an auction event. This rule allowed inactive 
bidders to send their first bid without overbidding the best bid. 

Finally, the results obtained in terms of economic outcome were no different than the promises 
made  by e-sourcing analysts. Negotiation time was reduced from weeks to days, mostly due to 
the elimination of communication synchronism (telephone, fax) and administrative tasks. Price 
and condition benefits were also obtained. Obviously, price savings were more noticeable in 
auctions (13,6% in average), but on-line negotiation also achieved price/service reduction below 
target, a result that increased buyer’s satisfaction with the tool.  
 

10 Conclusions 
E-sourcing is becoming an established part of the business landscape (Stephens Inc., 2001). 
We are witnessing the continuous, tightly competitive progress of e-sourcing applications in the 
market. Nonetheless we can still identify two major, unsatisfactorily solved issues that prevent 
them from supporting effective strategic sourcing, namely:  



• Capability to support sourcing processes for varying industries and businesses. Since 
sourcing processes are highly dependent on each business case (because of each 
industry’s particularities and individual businesses’ practices) it is extremely complex to 
capture in a single product all processes and negotiation requirements of a general-
purpose solution. Along this direction, perhaps the major drawback of most market 
solutions is the lack of support for creating customised sourcing events as 
compositions of negotiation processes (multi-stage negotiation processes). For 
instance, a sourcing event might be composed of a pre-defined sequence of  auctions 
or an interleave of auctions and negotiations. In this work we have presented an e-
sourcing solution that does indeed support customisable multi-stage negotiations. 

• Decision support tools for strategic thinking. Strategic sourcing is founded on the 
availability of powerful decision support tools. Nonetheless current vendors’ solutions 
are lacking as to this matter. As an example, most tools share the commonality of not 
providing support for determining the winner in multi-item, multi-attribute negotiations 
and auctions. The unavailability of such support poses an intricate, combinatorial 
problem to professional buyers that leads them to either relinquish or opt for 
alternative, and less efficient, non-combinatorial protocols. In this work we have tried to 
make headway in providing decision support  

In this paper we have tried to exemplify how the sourcing process can be highly automated, 
allowing companies to achieve enormous benefits: cost savings, processing time reduction, less 
time-to-market, and more time left to strategy. We have presented our contribution along this 
direction by dissecting Quotes, an Internet-enabled sourcing solution capable of streamlining 
the sourcing process. Quotes’ main strengths can be summarised as follows: 

• It allows goods and services to be represented and managed with all their attributes, 
overcoming rigid and unreal price-discovering approaches. 

• It provides a powerful negotiation framework based on the composition of structured 
negotiation protocols and flexible reverse auctions.  

• It provides with the necessary tools to help users manage the complex sourcing 
mechanisms involved in multi-item, multi-unit, multi-attribute, multi-stage negotiations. 

The fundamental contribution of Quotes lies on the incorporation of highly valuable decision-
making support functionalities targeted at spurring the transition of sourcing processes from 
transactional to strategy-centered. This paper describes three decision support systems that 
have been studied and implemented in Quotes with satisfactory results, namely: 

• Automated offer generation. Providers can translate their business knowledge into 
bidding rules that allow instantaneous and automatic construction of recommended 
offers. 

• Scoring algorithm. Based on the importance assigned by the buyer to each item 
attribute in an RFQ and his flexibility to accept offers beyond his preferences, a fuzzy 
offer-matching algorithm scores each offer and ranks it accordingly. Analogously, 
providers can benefit from the very same algorithm in order to discriminate incoming 
RFQs. 

• Computation of the optimal bid set for combinatorial negotiations. Given a set of offers 
for either a multi-item RFQ or an auction, the iBundler component obtains the optimal 
subsets of offers according to various criteria (f.i. minimization of price, start/finish date, 
maximization of product quality, etc.), or a combination of them specified through 
scoring. Although the used algorithm is not new, the way the problem is formulated can 
be considered as an important contribution to research in combinatorial negotiations. 

Finally, there is an important aspect affecting the successful exploitation of e-sourcing 
applications: negotiation design matters. Indeed there are many dimensions involved in the 
design of negotiation scenarios. Thus we must keep in mind that careless, faulty designs of 
such scenarios may eventually lead to terribly catastrophic outcomes as reported through 
several case studies in (McAfee, 1995). 
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