
Managing quality in agent dialogues

Mariela Morveli-Espinoza and Josep Puyol-Gruart

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus UAB. 08193 Bellaterra. Spain.
{mmorvelie,puyol}@iiia.csic.es

http://www.iiia.csic.es

Abstract. This article presents quality measures to rate responses given
by agents, in order to drive the control of communication and dialogues
among agents. Depending on the available time or the urgency of the
requirement, agents can produce answers with different levels of quality.
Assuming that in real world is normally better to receive an answer with
poor quality than no answer, agents are able to give partial answers based
on its current knowledge. Autonomy implies taking the best decision
with the available information, obtained from perception or from the
communication with other agents, avoiding blocking situations and no
action. Agents use specialization calculus as inference engine to generate
such kind of answers.

Introduction

In multiagent systems, agents have particular goals. Conversations among delib-
erative agents aim to obtain information in order to produce solutions to those
goals. Consider a rule-based agent. The classical inference mechanisms could
take a long time to generate definitive results, depending on the availability of
external information—from the environment or from other agents. A promising
approach is the specialization reasoning model described below, because it can
generate partial results or answers in a much shorter period of time.

It may be reasonable to think about different strategies of reasoning using
partial information, i.e. when a concrete timeout has been reached or when a
value is needed, a less precise but useful answer could be used. Improved accuracy
or quality of results can be attained over time, and then the agent goals could
persist until it is no possible to obtain more precise values.

Time is another important issue, to deal with this aspect we consider anytime
algorithms. They were first used by Dean and Boddy in the late 1980’s [2]. The
main characteristic of these algorithms is that the quality of its results can be
measured and that it improves gradually as computation time increases. This
kind of algorithms are normally related to real time, where time granularity is
thinner than the long time needed to calculate a complete solution. They are able
to communicate the best result obtained when interrupted or they can establish
a compromise to deliver it in a given time. In our approach both absolute and
relative quality will be introduced as a quality measure of agents answers.

In the context of logics and knowledge-based systems some authors talks
about progressive (or anytime) reasoning or deduction [7, 6]. Anytime concepts
are important for this techniques to build intelligent systems, for instance in
probabilistic reasoning, ontologies or constrain propagation [3, 13, 15].

In this paper we will introduce how reasoning based on specialization of
rule-based systems can be the central mechanism to deliberate and also to pro-
duce reasonable dialogues among conversational agents [1, 4, 11]. We consider
that agents are anytime reasoners producing answers with different levels of
quality [5]. We assume that in the real world normally is better to receive an
answer with poor quality than no answer. The answer can be good enough for
the receiver or the receiver can spend more time to wait for a better answer.

Section 2 is devoted to quality measures. In Section 3 we formally describe
the specialization as an anytime mechanism and its impact over quality and pre-
cision. We present the description of the agent and its pragmatics in Section 4.
Comments on performance and validation of our approach are presented in Sec-
tion 5. Finally, some conclusions and future work are developed in Section 6.

1 Preliminaries

In this section we will define the language used and the core of our approach:
specialization calculus [8–10].

Language L = 〈V,Σ,S〉 is defined by:
– Truth-values V ∈ [0, 1] where 1 and 0 are the booleans True and False

respectively. Int(V) = {[i, j] | i, j ∈ V, i ≤ j} are intervals of truth-values
in V .

– Σ is a set of propositional variables (atoms or facts).
– Sentences S composed by: literals (a, I), (¬a, I), with a ∈ Σ and I ∈
Int(V) and rules of the form (p1 ∧ p2 ∧ · · · ∧ pn → q, [i, 1]), where i ∈ V ,
pi and q are literals, and ∀i, j(pi 6= pj , pi 6= ¬pj , q 6= pj , q 6= ¬pj).

Inference Rules We will use the following inference rules:
– Not-introduction: from (a, [i, j]) infer (¬a, [1− j, 1− i])
– Not-elimination: from (¬a, [i, j]) infer (a, [1− j, 1− i])
– Parallel composition1: from (a, I1) and (a, I2) infer (a, I1 ∩ I2)
– Specialization: from (pi, [i, j]) and

(p1 ∧ · · · ∧ pi−1 ∧ pi ∧ pi+1 ∧ · · · ∧ pn → q, [k, 1])
infer (p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn → q, [T (i, k), 1])

The conjunction operator T is a binary operation such that the following
properties hold ∀a, b, c ∈ Vn:

– T1: T (a, b) = T (b, a)

1 When the intersection is empty, then it is considered to be a contradiction in the
knowledge base.

– T2: T (a, T (b, c)) = T (T (a, b), c)
– T3: T (0, a) = 0
– T4: T (1, a) = a
– T5: if a ≤ b then T (a, c) ≤ T (b, c) for all c

We can use general triangular norms like:

– Lukasiewicz TL(x, y) = max{0, x+ y − 1},
– Product TP (x, y) = (x · y), or
– Minimum Tm(x, y) = min(x, y)

We can see that in this calculus both rules and facts are weighted using
intervals of truth-values, and that both conditions and conclusions of rules can
be negated. The specialization rule defined above is the core of the progressive
reasoning algorithm. When a rule is specialized it produces a new rule with less
conditions and a new updated truth-value. When a rule is totally specialized
(there are no more conditions) it produces a final value for the literal of the
conclusion.

Consider a fact q with truth-value [α, β] and the set of rules Rq = R+
q ∪R−q

deducing it. We can distinguish between the rules R+
q deducing q (positive ones)

and R−q deducing ¬q (negative ones). Following the specialization inference rule,
positive rules (positive evidences) will contribute to the minimum of the interval
α and negative ones (negative evidences) to the maximum β.

From T4 and T5 we can deduce the property T (a, b) ≤ min{a, b}. Given
a rule (P → q, [k, 1]) ∈ R+

q , we can obtain values (q, [ρ, 1]), with ρ ≤ k. The
most precise value (q, [k, 1]) for the conclusion will be obtained when P is true,
or [0, 1], because of the specialization rule and the T4 property of T . Similarly,
given (P → ¬q, [k, 1]) ∈ R−q , the most precise value will be (¬q, [k, 1]) and then
for the positive literal (q, [0, 1− k]).

Fact q is initially unknown, that is, its value is the most imprecise interval
[0, 1]. Using the values obtained from totally—positive and negative—specialized
rules we will obtain a more precise interval for q by means of the applications of
parallel composition rule.

Most precise value Given an agent A with a set of rules Rq = R+
q ∪ R−q

deducing q: r rules R+
q with truth-values {[α1, 1], . . . , [αr, 1]} and s rules R−q

with truth-values {[β1, 1], . . . , [βs, 1]}. The most precise interval from R+
q will

be [maxr
i=1(αi), 1] and [0,mins

i=1(βi)] from R−q .
Finally we can say that the expected most precise interval for q from the
knowledge Rq of agent A will be

[maxr
i=1(αi),mins

i=1(βi)]

We have to take into account that each specialization step produces a new
knowledge base and then the expected most precise interval will be changed.

The new rules are provisional if they are deduced with provisional informa-
tion otherwise they are definitive. Facts are definitive if they are deduced with
definitive information and there are no more rules that can improve its value.
Depending on this, rules can be deleted or not, see Section 4.3.

2 Quality measures

Quality measures and their properties are important for anytime algorithms [16].
Quality has to be (i) Measurable and recognizable: the quality of an approximate
result has to be determined precisely and easily at run time, (ii) Monotonic: the
quality of the result is a non-decreasing function of time and input quality, and
(iii) Consistent: the quality of the result is correlated with time and input quality.

Quality is evaluated based on a three-dimensional criterion that measures
the level of certainty, precision and completeness of a given value. In our case,
these three measures will be used to determine the quality of the answers given
by agents, which values are intervals of thuthvalues.

The quality is determined based on the following characteristics:

Certainty: In an approximate reasoning context we want to know the degree
of truth or falsity of propositions. Then, given a set of knowledge deducing
a fact we are interested in using those relations that provides values close
to true or false. We assume a uniform distribution of the certainty in the
interval, the mean is then the expected value of the interval and it can be
representative of its certainty:

C[i, j] =
i+ j

2
Precision: Values of facts are intervals. The most precise information given by

the interval is when the difference between the maximum and the minimum
is 0, and the least precise is when that difference is 1, that is, the only case
[0, 1], or unknown.

P [i, j] = 1− (j − i)
Completeness: To determine the value of a fact we need to know the values of

other related facts contained in the rules that deduce that fact. Given two
facts, with the same level of certainty and precision, we will consider of more
quality that with less number of dependencies that could improve the result.

We have to distinguish between the quality of a certainty value in itself
and that related to the quality given by a concrete knowledge base (KB). For
instance, considering a fact q with truth-value 1, it is obvious that this value is
better than any other value less than 1. However, if the KB deducing fact q can
not produce a better value than 0.8—there is no rule with truth-value greater
than 0.8—this value is the maximum that the fact q can reach and then it is
considered of the best quality.

Taking into account the comments above we are going to define both absolute
and relative qualities. Absolute quality is used as an internal quality for helping
the agent to explore first the more promising rules. To know which is the next
rule to be used, we consider the absolute quality of the truth-values of the rules.
Both certainty and precision are used to calculate it. On the other hand, relative
quality is calculated using precision formula and it also uses completeness as
a complementary measure for that cases when more than one answer has the
same precision value. We use relative quality as a measure of the quality level of
answers given by agents.

2.1 Absolute quality

Precision and certainty are directly related because a good precision is more
interesting when the value of the fact is close to true or false. We can use the
following expression to calculate it, resulting values are between 0 and 1:

f(p, c) = p · |(2c− 1)|

Fig. 1. Representation of the quality function where x, y, z ∈ [0, 1] are the middle point
of the interval (certainty), the amplitude of the interval (precision) and the quality,
respectively. It is a symmetric function with respect to the plane x = 0.5

The first term p corresponds to the precision of the interval, better when
closer to 1. The second term c corresponds to the value represented by the
middle point of the interval, better when closer to 0 or 1, that is, true or false.
It is a symmetric function with respect to the plane i + j = 1. In Figure 1 we
can see the shape of the function. Finally, the absolute quality for an interval is:

Qa[i, j] = |P ([i, j]) · (2C([i, j])− 1)| =
∣∣i2 − (1− j)2

∣∣
2.2 Relative quality

The KB of an agent determines the maximum relative quality that can be
obtained for a given fact taking account all the available information. We can
consider a KB is good deducing a fact f when it can deduce that fact with high
precision and with values close to true or false. It depends on the programmer
of the KB because all rules and facts of the starting KB are in charge of the
system designer. For instance, consider a KB1 where the maximum expected
truth-value for rules deducing f is 0.7. This means that the highest value f can

reach is 0.7. This value is obviously less than 1, but for KB1 is the maximum
possible. On the other hand, the new values that an agent acquires over the time
can also modify the truth-values of rules. Therefore, we have to consider relative
measures with respect to the maximum quality level that is possible to obtain
with the current knowledge. Finally, the result for f will be a combination of
the KB and the values of facts used to make the deduction.

In the next Section we will see how this value change with (discrete) time,
when new information is acquired by the agent. After each execution cycle—to
include the new information—quality of the results can be evaluated. We can
know in each moment which is the most precise value agent A can obtain for the
fact a, PA

m(a), as explained in Section 1. We will use precision to evaluate the
relative quality.

QA
r (a, [α, β]) =

P [α, β]
PA

m(a)
If all the facts used to deduce the goal would have a definitive value then the
completeness will be of 100%. If all those facts would also have values—true of
false with the maximum precision—such that the premises of rules are true then
we will obtain the maximum quality degree.

3 Deduction and quality

The main component of the mental state of agents is the KB. It contains beliefs
(facts) and knowledge (rules) for deliberation [14]. In our model, both facts and
rules are weighted with intervals of truth-values.

Specialization can be considered as an anytime algorithm because it allows to
obtain information before the completion of the inference process. It can be con-
sidered also a mechanism for progressive reasoning because it is a technique that
successively refines a solution while making available intermediate solutions. In
the following we will show the relation between specialization and both absolute
and relative quality.

3.1 Specialization and absolute quality

The main goal of the inference engine is try to find the most precise values for
the facts. The nature of the specialization inference, described above, avoids
producing less precise values for rules after a specialization step. However, this
is not so obvious for the quality of facts. Following parallel composition, we can
see that this quality is not a monotonic function with respect to the time. For
instance, an agent A can produce for the fact a the provisional value [0.4, 1] with
quality QA

a [0.4, 1] = 0.16. Consider that a new information [0, 0.6] arrives and
QA

a ([0.4, 1] ∩ [0, 0.6]) = QA
a [0.4, 0.6] = 0.

Consider a provisional result [α, β]. We will analyze the behavior of the spe-
cialization with respect to quality:

Positive rules They produce results in the form [γ, 1], and the middle point is
C[γ, 1] ≥ 0.5. We have to consider the following cases:

– When C[α, β] ≥ 0.5, ∀γ,Q([α, β] ∩ [γ, 1]) ≥ Q[α, β]
– When C[α, β] ≤ 0.5, and β ≥ 0.5, Q([α, β] ∩ [γ, 1]) ≥ Q[α, β] only for√

2(1− β)2 − α2 ≤ γ ≤ β
– Otherwise Q([α, β] ∩ [γ, 1]) < Q[α, β]

Negative rules They produce results in the form [0, δ], and the middle point
is C[0, δ] ≤ 0.5. We have to consider the following cases:
– When C[α, β] ≤ 0.5, ∀δ,Q([α, β] ∩ [0, δ]) ≥ Q[α, β]
– When C[α, β] ≥ 0.5 and α ≤ 0.5, Q([α, β] ∩ [0, δ]) ≥ Q[α, β] only for
α ≤ δ ≤ 1−

√
2α2 − (1− β)2

– Otherwise Q([α, β] ∩ [0, δ]) < Q[α, β]

These results are obvious in the sense that an interval with a middle point
greater that 0.5 is reinforced by positive rules producing a more precise result
more close to 1. The same occurs with intervals close to false and negative
rules. In the other cases when we combine two intervals with middle points in
opposite parts—greater and less than 0.5—it is necessary to compensate with
the precision the fact that the middle point of the resulting value now is farther
from true or false.

At the meta-level we will be interested in exploring the best rules first. It
seems reasonable to try first the rules that can contribute increasing the absolute
quality of facts. Notice that the values of rules change in each specialization step
and that it can not be guaranteed a monotonic behavior of absolute quality.

3.2 Specialization and relative quality

It is easy to see that precision of facts is a monotonic function with respect to
the time, new information will produce more precise facts by firing rules and
applying parallel composition with old values of facts

P ([α, β] ∩ [γ, δ]) ≥ max{P [α, β], P [γ, δ]}

Taking into account rules we can notice that their precision decreases with new
information because the specialization rule and the well-known property of t-
norms: T (a, b) ≤ min{a, b}

∀α ≤ k, P ([α, 1]) ≤ P ([k, 1])

We can conclude that new information will produce less or equal precision for
the set of rules and equal or more precision for the set of facts. This implied that
we can use provisional values of facts to deduce more provisional values, and no
belief revision is needed. We can use relative quality as the external quality of
an agent that deals with the more important property of an anytime algorithm,
monotonicity.

4 Deliberative agents and anytime reasoning

The model of reasoning described above could take a long time to generate defini-
tive results. This is not a consequence of the complexity of the deductive process.
We consider that specialization time is irrelevant for our time restrictions, which
are communication time, availability of agents, collaborative behavior, etc. The
time granularity depends on the application but we have to take into account
that the motivation is not classical real time.

Below an agent definition as anytime entity is presented. It is also showed
how agents work internally and how time impacts on its behavior.

4.1 Agents as anytime entities

Consider a multi-agent system with m agents Am = {A1, . . . , Am}. Each agent
has the following structure:

Agents A deliberative agent is a tuple Ai = 〈KBi, Gi, Ii, Oi, ti〉 where:
– KBi is the knowledge base of agent Ai.
– Gi is the set of goals of Ai. A goal g is a tuple 〈x,Aj , tb〉, where x ∈ Σ,
Aj ∈ A is the agent that queries Ai about x and tb is the remaining time
for deadline.

– Ii is the input interface of Ai, the set of external facts that can be
obtained by querying other agents. These are tuples 〈x,Aj〉, where x ∈
Σ, Aj ∈ A and Aj 6= Ai.

– Oi is the output interface of Ai; this is, the set of facts agent Ai can
answer to other agents.

– ti is the deadline for giving an answer.

There are two types of anytime algorithms [12]: the interruptible one may
be halted at any time and produces a result with a more or less good quality
and the contract one has a contract time—it must know the total allocation
of time in advance—if interrupted at any point before the termination of the
contract time, it might not produce results. We can consider that our agents
could have both anytime behaviors. A contract algorithm because the deadline
is known in advance—autonomy gives agents freedom to define its own deadline
independently of other agent’s deadlines. It also could have an interruptible
behavior because it can be asked at any time giving the current value, in the
worst case unknown.

An agent has a set of processes: (i) an interface communication manager, (ii)
an specialization engine, (iii) an answering machine, (iv) an evaluation machine
and (v) an integration machine; and a set of data repositories: the KB are the
facts and rules of the problem domain, the current commitments (goals), and
the data about other agents (acquaintances) and data about its abilities and
capacities (competences). In Figure 2 you can see an scheme of the relations
among all these components.

Fig. 2. Agent architecture.

4.2 Agent architecture

– Communication Interface manager (CIM) manages the input and output of
queries and answers:
• When it receives a query q and q ∈ Oi, a new goal is added to the goal

list: Gi := Gi ∪ {〈q, Aj , tf 〉}.
• When it receives an answer, it sends it to the integration machine.
• It sends the answers and queries to the other agents, following the correct

protocols and reporting all the activity.
– The specialization engine receives as inputs fact values and performs a spe-

cialization cycle: S : KB × f → KB′ is a data-driven process that begins
when the input is a new fact value f . This triggers a complete specialization
process over the KB and a new specialized KB′ is generated.

– The integration machine receives as input a complete answer (facts and
eventually a set of rules) and incorporates them into the KB.

– The answering machine receives as input a trigger signal indicating:
i A goal deadline ends. If the goal doesn’t have a definitive value, then

the answering machine has to elaborate other kinds of answers (see Sec-
tion 4.3)

ii The definitive value for a goal is found, and then the obvious response
is the definitive value.

– The evaluation machine is a goal-driven process I : KB × g → g∗ that
begins when the agent process a goal g. It triggers a complete exploring
process obtaining a set of new goals g∗, which are necessary to find values
of g with better quality, as seen in Section 3.1.

4.3 Responses

One important topic in our model is the different variety of answers agents can
give. Below, the definition of agent responses and the kinds of responses are
defined:

Responses A response is a tuple R = 〈f, V, S,KB〉 where:
– f is the fact which is been answered.
– V is the value of fact f (an interval of truth-values).
– S is the state of the fact f value, i.e. provisional, definitive or pending2.
– KB is a knowledge base useful to improve the value of f .

1. Definitive value R = 〈f, V, def, ∅〉: this is the most useful result because it
means that there is no more information that can improve the result, this is
the most precise. After the specialization agents can substitute a rule using
it by its specialized version.

2. Provisional value R = 〈f, V, prov, ∅〉: this is not a definitive value, it can be
improved later. Agents can use it to produce only more provisional values.
Agents can not delete rules that use it because they will be useful to produce
more precise values.

3. Provisional value and a set of knowledge related to it, R = 〈f, V, prov,KBf 〉:
this is similar to the case above but the answer includes all the information
needed for improving the value. Agents can use this provisional value and
start the mechanism to find more information.

4. A set of rules related to the question R = 〈f, [0, 1], pending,KBf 〉: the same
that the case above but without a provisional value.

Since we consider that agents have a deadline to answer a question. When it
is not possible to obtain a definitive value for a query and the deadline has been
reached, agents can answers with less quality answers as provisional or pending.
Provisional values are less precise and can be used also to produce provisional
deduction and so provisional values for other facts.

In summary, answers can contain the best value, a provisional one because it
can be improved later, or a conditional answer because the agent ignores some
information needed to build the answer.

4.4 Evaluation cycle

When an agent’s life begins and receives a simple query, the agent begins a goal-
driven—backward chaining style—work. This task will produce new goals that
have to be solved. The evaluation machine judges the impact of these new goals
in the quality of the original one. Some of them can be internal and others have to
be obtained from other agents. Internal goals are considered a self-commitment
and the agent starts a search process in order to find which are the new goals it
needs.
2 A pending fact is a fact that is provisionally unknown [4].

When new facts are known—maybe from other agents answers—it is started
a data-driven task of specialization—forward chaining style. The transition from
one solution to a more precise one happens in this specialization step.

An incomplete answer to a query is generated when there is no enough time to
complete the query processing or there are agents that do not answer. Each agent
goal could achieve a definitive or a provisional value. The evaluation machine
decides if this value is enough. If further reasoning is required to improve the
quality, new requirements are sent to the corresponding agents.

Agents can send and receive facts and rules as conditional answers or knowl-
edge communication. When the deadline of a goal ends and it has a provisional
value, the agent can send rules as part of the answer (see Section 4.3). There are
sets of criteria that are out of the scope of this paper like privacy or protocol
constraints that can limit the contents of rules in an answer. It is not necessary
to send the provisional rules because with the provisional values of facts and the
original rules we can easily deduce the provisional ones.

5 On performance and validation

Performance profiles are used to describe the expected output quality value as
a function Q(t) with execution time t [16]. Normally they have to be calculated
using statistics over a set of inputs and they are normally monotonic functions.
In our case it is easy to see that given the quality measures in Section 2 and the
analysis in Section 3 the performance profile of an agent is a monotonically non-
decreasing function. New information improves the completeness and precision
of the results.

There are other forms of performance profiles. For instance the conditional
performance profile, where P (qout|qin, t) is the probability of obtaining a result
with quality qout, given an input of quality qin at time t. It is desirable that
when the input quality improves the output quality also will do. From the spe-
cialization and parallel compositions rules we can see that it is true.

It is obvious that an anytime system can produce answers before a standard
one. The problem is to determine when this is or not an advantage. An agent
can make a decision or execute an action depending on information of different
quality. Depending on the available time or the urgency, the agent can accept a
level of quality enough to exceed a particular threshold and then take action. Au-
tonomy implies taking the best decision with the available information, avoiding
blocking situations and no action.

Performance profiles can be objective measures of validation, but we are
also interested in experimenting on subjective aspects of agent’s behavior as the
emergence of conversations among agents. We are interested in seeing if a very
simple rule-based mechanism—as presented above—can produce conversations
similar to humans.

6 Conclusions and future work

In this paper we have presented an anytime mechanism for deliberative agents
based on a monotonous reasoning over intervals of truth values. Both absolute
and relative quality measures have been defined. After the respective analysis,
relative measures fit better with anytime quality measures properties.

Deadline is considered fix for the sake of simplicity, but it could be variable
and be calculated to improve agent’s performance. Criteria like communication
channels cost, confidence and agent’s capacity can be considered for its esti-
mation and effects on performance profiles. We have said that when an agent
receives a provisional value it can be used to produce more provisional values,
but we can think in a timeout or other rational subjective criteria to consider
that a provisional value becomes definitive.

We have to study other type of performance profiles taking into account that
our system is a multi-agents system. We can think in social or join performance
profiles and in the dependency of performance profile measures with respect to
the deadline time of agents and other parameters.

We are also designing a protocol to deal with provisional values and the
knowledge received. It is reasonable to think that when a provisional value is
received, agents can insist later in order to improve the value or use their own
means to obtain that information.

Acknowledgements.

Authors acknowledge partial support by the Spanish projects IEA (TIN2006-
15662-C02-01), MULOG2 (TIN2007-68005-C04-01) and Agreement Technologies
(CONSOLIDER CSD2007-0022, INGENIO 2010). Mariela Morveli-Espinoza is
supported by the Programme Alβan, the European Union Programme of High
Level Scholarships for Latin America, scholarship No.(E06D101440PE). We would
like to thank the referees for their valuable suggestions and comments.

References

1. M Barbuceanu and WK Lo. Conversation oriented programming for agent interac-
tion. In Issues in Agent Communication, volume 1916 of Lecture Notes in Artificial
Intelligence, pages 220–234, 2000.

2. T. L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings
of the Seventh National Conference on Artificial Intelligence, AAAI 88, pages 49—
54, 1988.

3. B. Jaumard and A. D. Parreira. An anytime deduction algorithm for the probabilis-
tic logic and entailment problems. International Journal of Approximate Reasoning
(IJAR), 50(1):92–103, 2009.

4. Mariela Morveli-Espinoza and Josep Puyol-Gruart. On partial deduction and con-
versational agents. In Teresa Alsinet, Josep Puyol-Gruart, and Carme Torras,
editors, Artificial Intelligence Research and Development, volume 184 of Frontiers
in Artificial Intelligence and Applications, pages 60–69. IOS Press, 2008.

5. Mariela Morveli-Espinoza and Josep Puyol-Gruart. Anytime reasoning mechanism
for conversational agents. In Sandra Sandri, Miquel Sànchez-Marrè, and Ulises
Cortés, editors, Artificial Intelligence Research and Development, volume 202 of
Frontiers in Artificial Intelligence and Applications, pages 215–223. IOS Press,
2009.

6. Abdel-Illah Mouaddib. A study of a dynamic progressive reasoning system. Journal
of Experimental and Theoretical Artificial Intelligence, pages 101–122, 2000.

7. Abdel-Illah Mouaddibllah Mouaddib and Shlomo Zilberstein. Knowledge-based
anytime computation. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 95, pages 775–783, 1995.

8. J. Puyol, L. Godo, and C. Sierra. A specialisation calculus to improve expert
system communication. In Bern Neumann, editor, Proceedings of the 10th European
Conference on Artificial Intelligence, ECAI’92, pages 144–148, Vienna, August
1992. Jonh Wiley & Sons, New York.

9. J. Puyol-Gruart, L. Godo, and C. Sierra. Specialisation calculus and communica-
tion. International Journal of Approximate Reasoning (IJAR), 18(1/2):107–130,
1998.

10. J. Puyol-Gruart and C. Sierra. Milord II: a language description. Mathware and
Soft Computing, 4(3):299–338, 1997.

11. F Rago. Conversational agent model in intelligent user interface. In Fuzzy Logic
and Applications, volume 2955 of Lecture Notes in Artificial Intelligence, pages
46–54, 2006.

12. S. J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings of the
Twelfth International Joint Conferences on Artificial Intelligence, pages 212—217,
1991.

13. S. Schlobach, E. Blaauw, M. El Kebir, A. ten Teije, F. van Harmelen, S. Bortoli,
M. Hobbelman, K. Millian, S. Stam Y. Ren, P. Thomassen, R. van het Schip,
and W. van Willigem. Anytime classification by ontology approximation. In Ruz-
ica Piskac et al., editor, Proceedings of the workshop on new forms of reasoning for
the Semantic Web: scalable, tolerant and dynamic, pages 60–74, 2007.

14. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
15. Alan Verberne, Frank Van Harmelen, and Annette Ten Teije. Anytime diagnostic

reasoning using approximate boolean constraint propagation. In Constraint Propa-
gation, Int. Conference on Principles of Knowledge Representation and Reasoning
(KR’00), pages 323–332, 2000.

16. Shlomo Zilberstein. Using anytime algorithms in intelligent systems. The AI
magazine, 17(3):73–83, 1996.

