
Model Checking Electronic Institutions
Marc-Philippe Huget

�

and Marc Esteva
�

and Steve Phelps
�

and Carles Sierra
�

and Michael Wooldridge
�

Abstract. The design and development of open multiagent sys-
tems is one of the main areas in multiagent research. Human soci-
eties have successfully coped with a similar issue by creating insti-
tutions, which can broadly be understood as formal or semi-formal
frameworks that provide commonly understood collections of rules
within which people can interoperate. In ongoing work, we have been
developing a framework called ISLANDER for the specification and
developed of electronic institutions, within which software agents
can meet and interoperate within a commonly understood terms of
reference. This framework includes both a formal specification lan-
guage for institutions and software tools to assist in their construc-
tion. In this paper, we are concerned with providing tools to support
the design-time verification and validation of such institutions. We
present some preliminary results in the use of a SPIN-based multia-
gent model checking framework called MABLE to enable verifica-
tion of ISLANDER models.

1 Introduction

The design and development of open multiagent systems where a
vast amount of heterogenous agents can interact is one of the main ar-
eas in multiagent research. Human societies have successfully coped
with a similar issue, by creating institutions [13]. Institutions repre-
sent the rules of the game in a society. They define which human
interactions may take place, defining what individuals are forbidden
and what are permitted and under what conditions. Human institu-
tions not only structure human interactions but also enforce individ-
ual and social behaviour by obliging everybody to act according to
the norms.

Early multiagent systems research identified the advantages of or-
ganisational structuring as one of the main issues in order to cope
with the complexity of designing DAI systems [6, 14, 2, 20]. In this
sense, we advocate the use of electronic instituions for modelling
open multiagent systems [16, 4]. Such institutions define the partici-
pant roles, the valid interactions between participants, and the norms
that will govern them. We focus on the macro-level (societal) aspects
referring to the infrastructure of electronic institutions, instead of the
micro-level (internal) aspects of agents. Such a task is widely admit-
ted by the multiagent community as highly critical [11].

Motivated by these concerns, we have developed the ISLANDER

framework for electronic institutions [3, 9]. The ISLANDER frame-
�

Dept. Computer Science, University of Liverpool, Liverpool, L69 7ZF, UK;
mph@csc.liv.ac.uk�
Artificial Intelligence Research Institute, IIIA-CSIC, 08193 Bellaterra,
Barcelona, Spain; marc@iiia.csic.es�
Dept. Computer Science, University of Liverpool, Liverpool, L69 7ZF, UK;
sphelps@csc.liv.ac.uk�

Artificial Intelligence Research Institute, IIIA-CSIC, 08193 Bellaterra,
Barcelona, Spain; sierra@iiia.csic.es	
Dept. Computer Science, University of Liverpool, Liverpool, L69 7ZF, UK;
mjw@csc.liv.ac.uk

work includes a specification language for institutions with a well-
defined formal semantics, and a graphical specification tool for de-
veloping ISLANDER specifications. On the one hand, ISLANDER tries
to make the work of the institution designer as easy as possible, by
combining textual and graphical elements for the specification, and
on the other hand, it gives support to the verification of the speci-
fications. This later point is crucial due to the complexity of these
type of systems. The aim is that the tool checks the correctness of
the specifications before the engineer starts the development of the
infrastructure for the institution. Part of this checking involves model
checking the institution, making use of the MABLE multiagent de-
sign and verification language [22], which is in turn implemented on
top of the SPIN system for LTL model checking of finite state sys-
tems [7, 8].

The remainder of this paper is structured as follows. We begin,
in the following section, by giving an overview of the ISLANDER

framework and the language used to specify institutions, and go on
to give a brief overview of the MABLE system. We then describe
a prototype tool we have implemented, which will take as input an
ISLANDER specification, and will generate as output a MABLE rep-
resentation of this institution, together with formal claims about the
behaviour of this system, which can be automatically checked us-
ing MABLE and SPIN. We present two short examples, illustrating
the tool, and conclude by discussing some potential future research
directions.

2 ISLANDER: Electronic Institution Design

The ISLANDER editor is a graphical tool developed at the IIIA as part
of the E-Institutor project. The main goal of the E-Institutor project
is to model agent-mediated electronic institutions. These institutions
seem to be a convenient approach to tackle numerous heterogeneous
agents in multiagent systems since they define the participant roles,
the valid interactions and the norms that will govern them.

An electronic institution is composed of four elements: a dialog-
ical framework, scenes, performatives structure and norms.The dia-
logical framework defines the valid illocutions that agents can ex-
change and which are the participant roles and their relationship.
The dialogical framework provides the structure for helping hetero-
geneous agents to interact together thanks to a common ontology.

The activities in electronic institutions are the composition of mul-
tiple, distinct, possibly concurrent, dialogical activities, each one in-
volving different groups of agents playing different roles. For each
activity, interaction between agents are articulated through agent
group meetings, also called scenes. Agents can enter or leave scenes
at some particular states of the scenes and according to their role in
this scene.

The performative structure specifies the connections between
scenes, that is which scenes are available for the agents when they

textual-specification ::= definition-list

definition-list ::= definition
|definition definition-list

definition ::= ins-def
|dialog-frame-def
|performative-def
|ontology-def
|scene-def
|norm-def
|illocution-def

ins-def ::= (define-institution institution-id as
dialogic-framework = dialogic-framework-id
performative-structure = performative-structure-id
[norms = (norm-ids)])

dialog-frame-def ::=
(define-dialogic-framework dialogic-framework-id as
ontology = ontology-id
content-language = cl
illocutionary-particles = (illocutionary-particle-ids)
[external-roles = (ex-role-ids)]
[internal-roles = (in-role-ids)]
[social-structure = (social-structure-def)])

ontology-def ::= (define-ontology ontology-id as
type-def-list)

type-def-list ::= type-def
|type-def type-def-list

type-def::= (type type-id)
|(datatype type-id = constructor-id of type-ids)
|(function-id : type-ids -> type-id)

performative-def ::=
(define-performative-structure performative-structure-id as
scenes = (scene-dec-list)
transitions = (transition-dec-list)
connections = (ps-conections-def-list)
initial-scene = scene-id
final-scene = scene-id
)

scene-def ::=
(define-scene scene-type-id as
roles = (role-ids)
scene-dialogic-framework = dialogic-framework-id
states = (state-ids)
initial-state = initial-state-id
final-states = (final-state-ids)
access-states = (role-access-states)
exit-states = (role-exit-states)
[agents-per-role = (min-max-def-list)]
[connections = (sc-connection-def-list)])

norm-def ::=
(define-norm norm-id as

antecedent = antecedent-def
[defeasible-antecedent = (action-list)]
consequent = (obligation-list)

antecedent-def ::= (action-list)
|((action-list) literals-list)

action-list::= (scene-id illocution-scheme)
|(scene-id illocution-scheme) action-list

obligation-list ::= (obligued agent-var illocution-scheme scene-id)
|(obligued agent-var illocution-scheme scene-id) obligation-list

Figure 1. BNF for the ISLANDER textual language.

are in a specific scene and role. Finally, norms define what is permit-
ted, what is forbidden and what is obliged. For instance, in auction
institution, agents are obliged to pay the seller the amount that they
specified in any winning bid.

Scenes in ISLANDER are defined through a grammar, given in Fig-
ure 1. We can find the following information in a scene: the partic-
ipant roles, the dialogic framework, the number of participants for
each role and the different states of the scene. Scenes can be seen as
graphs with an initial state and several final states. Moreover, each
role can enter and leave the scene at different states.

We identify four basic elements of an electronic institution: dia-
logic framework, scenes, performative structure and norms. The di-
alogic framework defines the valid illocutions that agents can ex-

change and which are the participant roles and their relationship.
In the most general case, each agent immersed in a multiagent en-
vironment is endowed with its own inner language and ontology.
In order to allow agents to successfully interact with other agents
we must address the fundamental issue of putting their languages
and ontologies in relation. For this purpose, we propose that agents
share what we call the dialogic framework. Institutions establish the
acceptable illocutions by defining the ontology (vocabulary) —the
common language to represent the “world”— and the common lan-
guage for communication and knowledge representation. Moreover,
the dialogic framework defines which will be the participant roles in
the institution and the relationships among them. Each role defines
a pattern of behaviour within the institution and any agent within an

institution is required to adopt some of them. The identification and
regulation of roles is considered as part of the formalisation process
of any organisation [17]. We distinguish between two types of roles:
the internal and external roles. The internal roles can only be played
by what we call staff agents, that is the agents that pertain to the in-
stitution. We can see them as the electronic version of the workers in
human institutions. Never an external agent can play an internal role.
By sharing a dialogic framework, we enable heterogeneous agents to
exchange knowledge with other agents.

The activities in an electronic institution are the composition of
multiple, distinct, possibly concurrent, dialogic activities, each one
involving different groups of agents playing different roles. For each
activity, interactions between agents are articulated through agent
group meetings, which we call scenes, that follow well-defined com-
munication protocols. In fact, no agent interaction within an institu-
tion takes place out of the context of a scene. We consider the proto-
col of each scene to model the possible dialogic interactions between
roles instead of agents. In other words, scene protocols are patterns
of multi-role conversation. Then, they can be multiply instantiated by
different groups of agents. A distinguishing feature of scenes is that
they allow agents either to enter or to leave a scene at some particular
states of an ongoing conversation depending on their role.

While a scene models a particular multiagent dialogic activity, the
performative structure captures more complex activities by establish-
ing relationships among scenes. This issue arises when these conver-
sations are embedded in a broader context, such as, for instance, or-
ganizations and institutions. If this is the case, it does make sense to
capture the relationships among scenes.

In general, the activity represented by a performative structure can
be depicted as a collection of multiple, concurrent scenes. Agents
navigate from scene to scene constrained by the rules defining the
relationships among scenes. Moreover, the very same agent can be
possibly participating in multiple scenes at the same time. Likewise,
there may be multiple concurrent instantiations of a scene, so we
must also consider whether the agents following the arcs from one
scene to another are allowed to start a new scene execution, whether
they can choose to join just one or a subset of the active scenes, or
even join all the active scenes. Furthermore, we may associate con-
straints with the arcs connecting scenes that agents must satisfy in
order to traverse the arc. In order to capture the relationship between
scenes we use a special type of scenes, the so-called transitions. The
type of transition allows us to express agents synchronization: choose
points where agents can decide which path to follow or parallelisa-
tion points where agents are sent to more than one scene. Transitions
can be seen as a type of router in the context of a performative struc-
ture.

From a structural point of view, performative structures’ speci-
fications must be regarded as networks of scenes. The connections
among the scenes define which agents depending on their role can
move from one scene to other(s) through the defined transitions. In
other words, the performative structure defines which scenes can be
reached by each one of the different roles.

3 MABLE: Model Checking Multiagent Systems

MABLE is a language intended for the design and automatic ver-
ification of multiagent systems [22]. MABLE is essentially a con-
ventional imperative programming language (similar to C), enriched
by some additional constructs from the agent-oriented programming
paradigm [18, 15, 10]. A MABLE system contains a number of
agents, each of which is programmed using the MABLE impera-

fmla ::=
forall IDEN ":" domain fmla /* universal quantification */�
exists IDEN ":" domain fmla /* existential quantification */�
any acceptable MABLE condition /* primitive conditions */�
"(" fmla ")" /* parentheses */�
"[]" fmla /* always in the future */�
"<>" fmla /* sometime in the future */�
fmla "U" fmla /* until */�
"!" fmla /* negation */�
fmla "&&" fmla /* conjunction */�
fmla "||" fmla /* disjunction */�
fmla -> formula /* implication */

domain ::=
"agent" /* set of all agents */�
NUMERIC ".." NUMERIC /* number range */�
" � " IDEN, . . . , IDEN " � " /* a set of names */

Figure 2. The syntax of claims in MABLE.

tive programming language. In addition, each agent in MABLE has
a mental state consisting of “beliefs”, “desires” and “intentions”.
An agent’s beliefs intuitively correspond to the information that the
agent has about its environment. For example, an agent might be-
lieve that the temperature of the room is 20 degrees Celsius, or that
Bill Clinton is a liar. Agents can have nested beliefs; thus an agent
might believe that Bill Clinton did not believe of himself that he was
a liar. For technical reasons, we require that an agent only believes
state formulae. Turning to desires, the idea is that an agent’s desires
represent those states of affairs that, ideally, it would like to bring
about. For example, an agent might have a desire that the temperature
in the room be 20 degrees Celsius, or might have a desire that Bill
Clinton be impeached. As with beliefs, an agent’s desires must be
state formulae. An agent’s intentions represent desires that the agent
has committed to bring about; typically, intentions must be mutually
consistent (whereas desires need not), and will persist over time [1].

Agents in MABLE are able to communicate with one-another us-
ing asynchronous message performatives in the style of the FIPA

agent communication language [5]; it is in fact possible for the
MABLE developer to specify the semantics of performatives, al-
though we do not describe this mechanism here.

The MABLE language has been fully implemented. The imple-
mentation makes use of the SPIN system [7, 8], a freely available
model checking system for finite state systems. Developed at AT&T

Bell Labs, SPIN has been used to formally verify the correctness of
a wide range of finite state distributed and concurrent systems, from
protocols for train signalling to autonomous spacecraft control sys-
tems [8]. SPIN allows claims about a system to be expressed in propo-
sitional Linear Temporal Logic (LTL): SPIN is capable of automati-
cally checking whether or not such claims are true or false.

The most novel aspect of MABLE is that agent definitions may
be interspersed with claims about the behaviour of agents, expressed
in �����	� , a subset of the
����	� language introduced in [21].

����	� is a quantified multi-modal temporal logic, which in addi-
tion to containing the modalities of linear temporal logic (LTL) also
contains modal operators for referring to the beliefs, desires, and in-
tentions of agents. Claims can be automatically checked; in this way,
we can automatically verify the behaviour of MABLE systems.

A claim is introduced outside the scope of an agent, with the key-
word claim followed by a �����	� formula, and terminated by a
semi-colon. The formal syntax of �����	� claims is given in Fig-
ure 2. Quantification is only allowed over finite domains, and in par-
ticular, over:

W0

W1

request

W2 W3

accept request request

deny

W4

inform inform

Figure 3. Graphical representation of the buyer admission scene

� agents (e.g., “every agent believes
�

”);
� finite sets of objects (e.g., enumeration types); and
� integer number ranges.

The MABLE compiler takes as input a MABLE system and asso-
ciated claims (in � � �	�) about this system. MABLE generates as
output a description of the MABLE system in PROMELA (the system
description language for finite-state systems used by the SPIN model
checker), and a translation of the claims into the LTL form used by
SPIN for model checking. The techniques used to achieve this trans-
lation, together with a more detailed description of the MABLE lan-
guage, are described in [22].

Once MABLE has generated PROMELA source code and LTL

claims, the SPIN model checker can be used either to automatically
verify the truth (or otherwise) of the claims, or else simulate the ex-
ecution of the MABLE system using the PROMELA interpreter pro-
vided as part of SPIN.

4 Using MABLE to Verify ISLANDER Scenes

In this section, we describe our approach to the automatic formal
verification of ISLANDER specifications. The basic idea of the ap-
proach is as follows. An ISLANDER specification can be seen as de-
scribing a particular kind of finite state machine, with transitions in
the state machine labelled with illocutionary particles. We can ex-
tract this state machine from the ISLANDER specification, and easily
translate it into MABLE code. We can then express the properties
that we wish to prove as claims expressed using � � �	� , and run
MABLE (and hence SPIN) to determine whether these properties do
indeed hold. This entire procedure has been automated in a software
tool called trans. We describe the approach in more detail, together
with a description of the trans tool, by way of two detailed exam-
ples.

Example 1: The Buyer Admission Scene

In order to exemplify the model checking of ISLANDER scenes, we
begin with one scene from the Fishmarket project and we check
whether the final state is reachable. The purpose of the Fishmarket
project6 is to model a kind of auction that takes place in the fish mar-
ket in the town of Blanes in Spain [12, 19].
�

http://www.iiia.csic.es/Projects/fishmarket/newindex.html

Islander scene

trans

MABLE code

MABLE

Promela code

spin

output

interpretation

Figure 5. Model checking ISLANDER scenes

This ISLANDER code for the buyer admission scene from the Fish-
market is illustrated in Figure 4. In this scene, potential buyers at-
tempt to join an auction. This scene involves two roles: the buyer
admitter and the buyer. We have only one buyer admitter for this
scene but several buyers. The meaning of this scene is as follows.
Buyers who want to join the scene request their admission by a re-
quest message (see Figure 3). This message contains the login and
the password of the buyer. The buyer admitter can either accept the
admission (the accept message) or refuse the admission (the deny
message). In the latter case, the buyer admitter explains the reason
of the deny. If buyers cannot access, they can request once again the
buyer admitter. When the auction closes, the buyer admitter informs
buyers and finishes the scene protocol. Figure 3 gives a graph-like
representation of the scene protocol, expressed as an automaton: the
initial state is indicated by an arrow entering state W0, while the final
state (W4) is indicated with a double circle.

We now describe our approach to checking electronic institutions;
an overview is given in Figure 5. The core of the approach is a tool
called trans. This tool takes as input a textual representation of an
ISLANDER institution (as in Figure 4). The tool generates as output:

� A MABLE representation of the institution.
� A set of basic claims defining desirable properties of the institu-

tion. By default, the claims generated simply express the fact that
whatever state the scene is in, it is possible to exit cleanly from it.

The trans tool then invokes MABLE on the MABLE code so as to
translate this MABLE code into PROMELA, which is then fed into the
SPIN system for checking. The output of the verification process is
then parsed, and the ISLANDER editor tool is informed of any prob-
lems.

The default claims that are checked against the system generated
is that exiting “cleanly” is possible whatever state the scene is in. It
is more convenient (as usual in SPIN) to look for negative examples
of such claims, which we can express in the notation of LTL as:

�����	��
���
���������� ��
�������

where
�!�"
���

is a variable holding the current state of the scene,
�#�

is a constant denoting a state, and

������

is a proposition that is only
true when the scene has ended cleanly. This LTL formula expresses
the fact that it is always the case () that whatever state the system
is in, it is always not possible to exit. Notice we hope such claims are
false.

(define-scene buyer-admission-scene as
roles = (buyer-admitter buyer)
scene-dialogic-framework = buyer-admission-df
states = (W0 W4 W3 W2 W1)
initial-state = W0
final-states = (W4)
acces-states = ((buyer-admitter (W0)) (buyer (W0 W3 W2)))
exit-states = ((buyer-admitter (W4)) (buyer (W4 W3 W2)))
agents-per-role = (
(1 <= buyer-admitter <= 1)
(buyer <= 1))

connections = (
(W2 W4 (inform (!y buyer-admitter) (all) (close)))
(W0 W1 (request (?x buyer) (?y buyer-admitter) (admission (?login ?password))))
(W3 W1 (request (?x buyer) (!y buyer-admitter) (admission (?login ?password))))
(W3 W4 (inform (!y buyer-admitter) (all) (close)))
(W2 W1 (request (?x buyer) (!y buyer-admitter) (admission (?login ?password))))
(W1 W3 (deny (!y buyer-admitter) (!x buyer) (deny (?deny-code))))
(W1 W2 (accept (!y buyer-admitter) (!x buyer) (accepted ("admission"))))

)
)

Figure 4. The buyer admission scene in ISLANDER.

Expressed as MABLE claims for the buyer admission scene, we
have the following:

claim []((scene_agent_state == W0) ->
[]!(exit_agent_scene_agent));

claim []((scene_agent_state == W1) ->
[]!(exit_agent_scene_agent));

claim []((scene_agent_state == W2) ->
[]!(exit_agent_scene_agent));

claim []((scene_agent_state == W3) ->
[]!(exit_agent_scene_agent));

claim []((scene_agent_state == W4) ->
[]!(exit_agent_scene_agent));

If a “claim violated” message is generated for all of these claims,
then we know that whatever state the scene is in, it is possible to
exit cleanly. For reference, the MABLE code automatically gener-
ated from the ISLANDER buyer admission scene (excluding claims)
is given in Figure 6. This code only provides one agent for the scene
since, at the current stage of the project, we only check the structure
of the scenes and not the agents involved in the scenes.

Notice that at this point it is possible to insert additional �����	�
claims to check against the MABLE code developed. For example,
we might wish to check that whenever the system is in state W2, it
always subsequently enters state W4:

claim []((scene_agent_state == W2) ->
<>(scene_agent_state == W4));

The final stage of the process is to parse the output of SPIN, and
to find if the claims are violated or not. If all of them are violated,
then we know it is possible to exit cleanly from all scene states. The
trans tool automatically extracts this information from the SPIN

output and feeds it back into the ISLANDER tool.

Example 2: Shutting Down

Our second example is a scene in which a “terminator” agent tells
all agents participating in a particular scene that the scene is about to
be “shut down”. The scene begins with the terminator informing all
agents that the application is going to close, and the participants in
the scene answer that they have received the message. The termina-
tor finally informs agents that the application is closed. We have sev-
eral paths in order to consider the different combination of receiving

#define W4 0
#define W3 1
#define W2 2
#define W1 3
#define W0 4

int scene_agent_state;

agent scene_agent {

scene_agent_state = W0;

while (1) {

switch(scene_agent_state) {
case W3:

choose(scene_agent_state, W1, W4);
if (scene_agent_state == W1) {

print("request");
}
if (scene_agent_state == W4) {

print("inform");
exit(1);

}
case W2:

choose(scene_agent_state, W4, W1);
if (scene_agent_state == W4) {

print("inform");
exit(1);

}
if (scene_agent_state == W1) {

print("request");
}

case W1:
choose(scene_agent_state, W3, W2);
if (scene_agent_state == W3) {

print("deny");
}
if (scene_agent_state == W2) {

print("accept");
}

case W0:
print("request");
scene_agent_state = W1;

}
}

}

Figure 6. MABLE code generated for the buyer admission scene
(excluding claims).

messages: accountant, agora-keeper, and cerberus. The
ISLANDER code for this is illustrated in Figure 7.

Again, the trans tool processes this example and generates a
number of claims in order to verify that it is possible to exit cleanly.

5 Conclusion

A key problem in multiagent systems research is that of support-
ing open environments, in which agents can join conversations ar-
bitrarily. We have advocated the development of electronic institu-

(define-scene exitt as
roles = (terminator cerberus accountant agora-keeper external)
scene-dialogic-framework = exit
states = (W9 W8 W7 W6 W5 W4 W3 W2 W1 W0)
initial-state = W0
final-states = (W9)
acces-states = ((terminator (W0)) (cerberus (W1)) (accountant (W1)) (agora-keeper (W1)) (external (W1)))
exit-states = ((terminator (W9)) (cerberus (W8 W9)) (accountant (W8 W9)) (agora-keeper (W8 W9))) (external (W8 W9)))
agents-per-role = (
(1 <= terminator <= 1)
(cerberus <= 1)
(accountant <= 1)
(agora-keeper <= 1))

connections = (
(W1 W7 (inform (?ac accountant) (!t terminator) (gone)))
(W6 W8 (inform (?a agora-keeper) (!t terminator) (gone)))
(W5 W6 (inform (?ac accountant) (!t terminator) (gone)))
(W5 W3 (inform (?a agora-keeper) (!t terminator) (gone)))
(W1 W5 (inform (?c cerberus) (!t terminator) (gone)))
(W4 W8 (inform (?c cerberus) (!t terminator) (gone)))
(W3 W8 (inform (?ac accountant) (!t terminator) (gone)))
(W2 W4 (inform (?ac accountant) (!t terminator) (gone)))
(W2 W3 (inform (?c cerberus) (!t terminator) (gone)))
(W1 W2 (inform (?a agora-keeper) (!t terminator) (gone)))
(W0 W1 (inform (?t terminator) (all) (gone)))
(W8 W9 (inform (!t terminator) (all) (closed) ?closingtime))
(W7 W4 (inform (?a agora-keeper) (!t terminator) (gone)))
(W7 W6 (inform (?c cerberus) (!t terminator) (gone)))

)
)

Figure 7. The exitt scene in ISLANDER.

tions as a solution to this problem, and as a proof of concept of this
approach, we have developed the ISLANDER framework for speci-
fying and implementing such institutions. A key problem when de-
signing ISLANDER institutions is to check that these designs satisfy
certain desirable properties. We have developed and implemented a
prototype approach to the automatic verification of ISLANDER in-
stitutions by way of the MABLE multiagent design verification lan-
guage, which in turn builds upon the well-known SPIN LTL model
checker. This basic approach has been validated by means of a num-
ber of worked examples.

In future work, we plan to integrate the model checking approach
instigated in this report much more deeply into our general ap-
proach for developing multiagent systems. MABLE has many fea-
tures for defining multiagent systems than are currently exploited in
the trans tool. An obvious next step is to integrate the checking of
institutions with the checking of multiagent systems themselves, so
that it is possible to tell (for example) whether a particular multiagent
system conforms to the rules of a given institution. In addition, we
plan to extend the verification approach to support the checking of
such institutional properties as “bidders must submit offers that are
monotonically increasing in value”.
Acknowledgements. This research was supported by the EC under
project IST-1999-10948 (SLIE), the UK government under EPSRC

project GR/R27518 (Verifiable Languages and Protocols for Mul-
tiagent Systems), and the Spanish CICYT project eINSTITUTOR
(TIC2000-1414). Marc Esteva enjoys the CIRIT doctoral scholarship
1999FI-00012.

REFERENCES

[1] P. R. Cohen and H. J. Levesque, ‘Intention is choice with commitment’,
Artificial Intelligence, 42(3), 213–262, (1990).

[2] Daniel David Corkill and Victor Lesser, ‘The use of meta-level control
for coordination in a distributed problem solving network’, in Proceed-
ings of the Eighth International Joint Conference on Artificial Intelli-
gence, eds., Alan H. Bond and Les Gasser, pp. 748–756. Karlsruhe,
Federal Republic of Germany, Morgan Kaufmann Publishers, (August
1983).

[3] David de la Cruz, ISLANDER un editor d’institucions electròniques,
Master’s thesis, Universitat Autonoma de Barcelona, 2001.

[4] Marc Esteva, Juan A. Rodrı́guez-Aguilar, Carles Sierra, Pere Garcia,
and Josep L. Arcos, Agent Mediated Electronic Commerce. The Eu-
ropean AgentLink Perspective, chapter On the Formal Specification of
Electronic Institutions, 126–147, number 1991 in Lecture Notes in Ar-
tificial Intelligence, Springer-Verlag, 2001.

[5] FIPA, Specification, Foundation for Intelligent Physical Agents,
http://www.fipa.org/repository/fipa2000.html, 2000.

[6] L. Gasser, C. Braganza, and N. Herman, Distributed Artificial Intelli-
gence, chapter MACE: A flexible test-bed for distributed AI research,
119–152, Pitman Publishers, 1987.

[7] G. J. Holzmann, Design and Validation of Computer Protocols,
Prentice-Hall, 1991.

[8] Gerard J. Holzmann, ‘The model checker spin’, IEEE Transactions on
Software Engineering, 23(5), (May 1997).

[9] Islander editor. http://e-institutor.iiia.csic.es/e-
institutor/software/islander.html.

[10] Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B.
Scherl, ‘Foundations of a logical approach to agent programming’, in
Intelligent Agents II (LNAI Volume 1037), eds., M. Wooldridge, J. P.
Müller, and M. Tambe, 331–346, Springer-Verlag, (1996).

[11] Victor R. Lesser, ‘Reflections on the nature of multi-agent coordination
and its implications for an agent architecture’, Autonomous Agents and
Multi-Agent Systems, 1, 89–111, (1998).

[12] P. Noriega, Agent mediated auctions: The Fishmarket Metaphor, Ph.D.
dissertation, Universitat Autnoma de Barcelona, 1998.

[13] D. North, Institutions, Institutional Change and Economics Perfo-
mance, Cambridge U. P., 1990.

[14] H. Edward Pattison, Daniel D. Corkill, and Victor R. Lesser, Dis-
tributed Artificial Intelligence, chapter Instantiating Descriptions of Or-
ganizational Structures, 59–96, Pitman Publishers, 1987.

[15] Anand S. Rao, ‘Agentspeak(l): BDI agents speak out in a logical com-
putable language’, Technical Report 64, Australian Artificial Intelli-
gence Institute, (February 1996).

[16] Juan A. Rodrı́guez-Aguilar, On the Design and Construction of Agent-
mediated electronic institutions, Ph.D. dissertation, Universitat Au-
tonoma de Barcelona, 2001. Also to appear in IIIA mongraphy series.

[17] W. R. Scott, Organizations: Rational, Natural, and Open Systems, En-
glewood Cliffs, NJ, Prentice Hall, 1992.

[18] Y. Shoham, ‘Agent oriented programming’, Journal of Artificial Intel-
ligence, 60, 51–92, (1993). Elsevier.

[19] C. Sierra, N. Jennings, P. Noriega, and S. Parsons, ‘A framework for
argumentation based negotiation’, in (ATAL97) Intelligent Agents IV,
eds., M. P. Singh, A. Rao, and M. J. Wooldridge, number 1365 in LNAI,

pp. 177–192. Springer-Verlag, (1998).
[20] Eric Werner, Distributed Artificial Intelligence, chapter Cooperating

Agents: A Unified Theory of Communication and Social Structure, 3–
36, Pitman Publishers, 1987.

[21] Michael Wooldridge, Reasoning about Rational Agents, MIT Press,
2000.

[22] Michael Wooldridge, Michael Fisher, Marc-Philippe Huget, and Simon
Parsons, ‘Model checking multi-agent systems with mable’, in Pro-
ceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 02),
Bologna, Italy, (July 2002).

