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Abstract. This paper presents iAuctionMaker as a novel tool that serves 
as a decision support for e-sourcing professionals on their pursuing of 
auction optimisation. Given a set of items to auction, iAuctionMaker helps 
an auctioneer determine how to separate items into promising bundles that 
are likely to produce better outcomes than the bundle of items as a whole. 
Promising bundles are those that satisfy certain properties believed to be 
present in competitive sourcing scenarios. These properties are defined by e-
sourcing professionals and capture their experience and knowledge in the 
domain. iAuctionMaker models this knowledge as constraints to be satisfied 
by any bundle, and implements an optimisation algorithm to find the bundles 
that maximize satisfaction. Experimental results are shown to demonstrate 
the applicability of the approach. Case studies are presented to demonstrate 
that iAuctionMaker improves current e-sourcing practices and provides an 
alternative to combinatorial scenarios whose complexity hinders their 
application in actual-world sourcing scenarios. 

1   Introduction 

The negotiation scenario considered in this paper starts out with a buyer requiring to 
acquiring a set of items (be them either products or services). The buyer will 
negotiate the price and conditions1 of each item by means of one or more on-line 
reverse auctions [16]. A set of providers will be invited to bid under certain auction 
rules that include bidding and winning rules. The auction is expected to allocate to 
some (all) of these providers some (all) of the items at auction.    

                                                           
1 Notice that we consider multi-unit, multi-attribute items.  



A common industrial scenario involves multiple goods or services to be purchased 
as a whole with the intention of benefiting from volume-based discounts. One may 
think, for example, of demand aggregation from different companies. The winner 
gets huge business and the losers get nothing, a simple and well-known strategy for 
lowering the price.   

Unfortunately, things are not so simple. Maybe there is just one single provider 
that can provide everything so, if auctioning a single bundle, he will not face 
difficulties in getting the business at the price he quotes. Maybe it is not acceptable 
that (as providers bid for the whole thing), they lower the price for company-A 
product at the expense of increasing the price for company-B product (and 
consequently deal with B complaining about why are they buying more expensive 
than last year). 
Therefore, the question is: should a seller who wants to maximise his revenue 
conduct separate auctions, one for each of several objects, or should he conduct a 
single auction for the entire bundle, or should he group items into bundles and 
conduct several auctions? 

Efforts and tools have been developed to answer this problem. The general 
procedure is to allow flexibility in bidding by allowing providers to bid over 
combinations of items according to their preferences. I.e., give providers a way to 
state that they will offer a better price if there is a guarantee that they will get a 
certain amount of the business. This mechanism is known as combinatorial bidding 
[10] and has been widely studied in literature as an optimum artifact to maximize 
results.  

To achieve coherent and practical results from a reverse combinatorial auction it is 
a must to introduce constraints that sacrifices mathematical optimality of the winning 
set in favour of obtaining realizable and practical outcomes [8][10][17]; (it is 
unnatural to have 40 different winners, for example, so it will be convenient to limit 
the amount of winners and state a lower bound of the amount of business they can 
get). 

Unfortunately, combinatorial bidding capabilities are rarely found on commercial 
systems2 [4] [15], and yet there is a major problem that prevents the practical 
application of combinatorial auctions: complexity. Bidding in a combinatorial auction 
requires accurate knowledge and understanding of the auction’s dynamics in order to 
decide what is the next bid to place [14], [18]. Moreover, the constraints imposed to 
determine winners make winning rules complex.  

The conclusion is that the practical application of the above methods has been 
limited to very controlled and specific environment (e.g. [5]). 

To overcome this situation, e-sourcing professionals usually follow an alternate 
approach: based on market real data and knowledge, the whole bundle is divided into 
separate auctions where the appropriate providers are invited and where certain 
properties are satisfied. These properties model the expertise of e-sourcing specialists 
in the form of rules of thumb, and their applicability they believe can turn into 
interesting benefits [6]. 

                                                           
2 To develop a commercial system that allows fully flexible wining rule configuration to cope 

with real situations is costly. 



Each auction is a simple reverse auction supported by the majority of existing 
commercial on-line auction platforms, and their execution present none of the 
complexities previously discussed. And the outcome of each auction is highly 
promising, as they have been designed to verify some criteria known to maximise 
savings. 

It is interesting to state that theoretically, this methodology is expected to produce 
not as good results as a full combinatorial auction as it is likely that hidden synergies 
or interesting market situations are left out and unexploited. In spite of that, we 
believe that the former assert is true if and only we assume the ideal situation where 
everybody knows and controls the combinatorial auction mechanisms. Such a 
supposition is, for the best of our experience, never satisfied in practice and, 
consequently, not only it cannot lead to the desired result, but even produce 
catastrophic outcomes.  

Nevertheless, in this methodology, the core process that is responsible for the 
success of the e-sourcing event is obviously the process of determining the grouping 
of items into bundles to be auctioned. Expertise and market knowledge are key 
factors, but in many situations the number of lines (100s or more) and the number of 
providers (20s or more) makes the problem intractable. These difficulties make 
desirable to count on a tool to aid e-sourcing professionals at this stage. We have 
called this tool iAuctionMaker. 

iAuctionMaker is a decision support tool that assists an auctioneer in defining the 
ideal bundles by declaring a list of pre-existing constraints that can be tuned and 
prioritised according to his preferences. iAuctionMaker solves the problem of finding 
the bundles that maximizes the satisfaction of these constraints.  

Although the bundling problem has been previously addressed in the literature we 
observed that it has mostly focused on the issue of whether a seller ought to sell 
items separately or as a bundle and to determine the price of the bundle(s) to be sold. 
In general, the bundling literature has evolved from early works considering a single 
seller bundling two goods [1] to works considering the analysis of a monopolist 
bundling multiple goods [3], to more recent works spurred by the advent of the 
Internet that contemplate competition of multiple sellers [2] [12]. As to multi-seller 
markets, in [12] the authors propose and analyse a bundling model to set both price 
and bundle composition in which a seller is not considered in isolation but in a 
market scenario wherein additional sellers compete to offer their bundles.     

iAuctionMaker takes a different stance. We depart from a market scenario in 
which a single buyer aims at acquiring a bundle of multi-attribute goods. Unlike 
traditional approaches, it is not our aim to decide whether the buyer ought to 
purchase the goods separately or as a bundle, along with an appropriate pricing 
strategy. Our goal is to produce a bundle composition for a buyer that leads to 
clusters of providers (bidders) exhibiting high degrees of competitiveness, while at 
the same time satisfying the buyer's preferences (modelled as a collection of 
constraints). Furthermore, we expect that the partitioning of the whole bundle of 
items also benefits bidders since they are expected to address the bid construction 
problem [14] [18] for smaller bundles (less goods and competitors). 



2.  Problem definition 

The formal formulation of the problem is the following:  

• I = {I1, I2, ... In} is a finite set of n items representing the goods or services to be 
purchased.  

• P = {P1, P2, ... Pm} is a finite set of m providers.  
• A = {A1, A2 , … Ao} where each element of A is a function  A:2I 

�
 R  that models 

a property or observation of a subset of I representing a bundle. These properties 
might be various (number of providers, number of lines, lot volume, etc.) and 
come from different sources (previous provider behaviour, a preliminary RFQ3, 
provider and item characterization, etc, etc.)  

• C = {c1, c2, …, cr}. Each ci∈ C is a constraint defined as a tuple <Ai, Si, wi
 >  with 

the following meaning: Ai is the bundle property to be evaluated, Sc: R 
�

[ 0…1]  
is a scoring function (formally defined in section 3) that expresses the 
satisfaction degree for Ai (0 indicates no satisfaction at all; and 1 indicates 
maximum satisfaction); and w ∈ R+ expresses the relative weight of the 
constraint. 

 
The objective is to find L={L1, L2, …Lq} a set partition of I that maximises the 

following expression:  
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c∈ C 

c∈ C 

 

(1) 

subject to: (1) Li ∩  Lj = ∅    ∀ Li , Lj ∈ L; Li ≠ Lj ; and (2) L1 ∪ L2 ∪ …Ll = L. 
 
This problem is a particular instance of the set partition problem [13], which is 
known to be NP complete [7]. 

3. Solution 

To solve the problem formulated in the previous section, we first have to define a 
lot’s utility theory (i.e, define Sc and design an optimisation algorithm. 

3.1 MAUT-based bundle evaluation 

The method used in iAuctionMaker for scoring a lot is based on Multi attribute 
utility theory [11], since lot’s utility or goodness can be evaluated by the degree of 
satisfaction of a list of lot’s attributes for a given user’s preference and importance.  

                                                           
3 Request For Quotation 



To model preferences and importance we have previously defined a set of 
constraints. Each constraint ci = <Ai, Si, wi

 >  evaluates some property Ai of a lot by 
means of a scoring function Si. To define Si, we have followed the guidelines 
proposed in [15] where membership functions are studied to intuitively model human 
preferences. With these considerations in mind, Sc: R � [ 0…1]  is defined as follows:  

 
 Sc(p) = α+(b-p)·β        p∈ [a, b] 
 Sc(p) = max { Sc(a)-(a-p)·δ , 0)  p<a 
 Sc(p) = max { Sc(b)-(p-b)·φ, 0)  p>b 

(2) 

 
where: (i) a>b define the preferred range [ a…b]  of values; (ii) sl 
∈{ ANY,LIB,MIB,LIBC,MIBC}  defines the preference slope of Sc; (iii) mh ∈{ YES, 
NO} . if  mh= YES  then values are not   accepted out of the preference interval (they 
will score 0); and (iv) α, β, δ, φ, depend on the value of sl and mh and are calculated 
as shown in table 1. 

Table 1. Values of α, β, δ, φ 

 ANY LIB MIB LIBC MIBC 
No α = 1 

β = 0 
δ = γ··(1-η) 
        (b-a) 

φ =δ 

α = η 
β = (1-η) 
       (b-a) 

δ = 0 
φ = γ··β 

α = 1 
β = - (1-η) 
          (b-a) 

δ = γ··β 
φ = 0 

α = η 
β = (1-η) 
       (b-a) 
δ = -γ··β 
φ = -γ··β 

α = 1 
β = - (1-η) 
         (b-a) 

δ = γ··β 
φ = γ··β 

Yes α = 1 
β = 0 

δ = + ∝ 
φ =+ ∝ 

α = η 
β = (1-η) 
       (b-a) 

δ = 0 
φ = + ∝ 

α = 1 
β = - (1-η) 
         (b-a) 

δ = + ∝ 
φ = 0 

α = η 
β = (1-η) 
       (b-a) 
δ = + ∝ 
φ = + ∝ 

α = 1 
β = - (1-η) 
         (b-a) 

δ = + ∝ 
φ = + ∝ 

Intuitively, when a value falls within the preference limits, is given a value that is 
at least η, which models the limit of satisfaction. Depending on the slope sl the 
scoring progress from η to 1 as we move through [ a...b] . When a value falls outside 
the preference limits, it receives a score that will be progress from η or 1 to 0 
depending on how ‘close enough’ is the value to the preferred side. By ‘close 
enough’ we consider values within a neighbourhood of the interval (computed as a 
percentage 1/γ of the interval length). Figure 1 shows the scoring for a=10, b= 20, 
mh=NO, η = 0.3, γ = 2. 
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Fig. 1. Scoring functions 

 
• ANY is used when we just want that a property p of the lot to fall between 

[a…b]. 
• LIB states that we will consider the constraint satisfied if p≤ b, and that we will 

consider full satisfaction when p≤ a. 
• MIB states that we will consider the constraint satisfied if p ≥ a, and that we will 

consider full satisfaction when p≥ b. 
• LIBC means that a constraint is satisfied if p∈[ a…b] ; full satisfaction will be 

considered when p=a; and minimum satisfaction when p=b.  
 

So far we have explained how to obtain the degree of constraint satisfaction for a 
lot by means of a scoring function. For a set of constraints, scoring functions are then 
weighted to obtain the overall lot scoring as shown: 

 

 
 

 Sc(Ac(Lk)) · wc 

wc 
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�
 

c∈ C 

c∈ C 

 

(3) 

By setting each wc accordingly, the user is allowed to state satisfaction preference 
among constraints. 

3.2 Optimisation algor ithm 

The optimisation algorithm implemented for iAuctionMaker falls in the category 
of random probabilistic methods. Well-known exponents of these are genetics 
algorithms and neighbourhood search [9]. The main idea within these methods is to 
start by a number of initial solutions and implement a try and test procedure to 
discover better solutions. The try and test procedure, or search, is basically an 
iterative random change of these solutions until the best exponent converge to a local 
optima or a maximum number of try-and-test cycles are done. The search is directed 
by favouring changes that follow certain heuristics. 

We have devised our own probabilistic search procedure which is mainly a 
neighbourhood search directed by heuristics. Whether it is a new procedure, 
extension, optimisation, or rediscovering of existing search algorithms is, at the 
current stage of the work, of no importance to us and is beyond the scope and interest 
of this paper. Literature is full of claimed-as-new algorithms that are actually 
rediscovers of existing algorithms previously applied to different problem domains.  

The reason why we have applied such an algorithm is because random search 
methods are usually fast, perform relatively well and are easy to implement. Also, 
random search methods are usually independent from the objective function, and 
their performance do not heavily rely on exploiting problem characteristics and lower 
bounds identification. This is of special interest to us, as we expect the number and 
type of the constraints to be highly determined by the final user and his application 
domain (e.g. food, transportation, indirect materials, etc.). Even if we are able to 



model the problem as an integer program, the introduction of new constraints will 
force us to study the feasibility of the current model and to change it accordingly. 
Employing a branch-and-bound procedure would require a considerable amount of 
expert knowledge and effort to tune the heuristics function each time new constraints 
are changed or refined, in order to maintain algorithm performance. 

The main criticism to approximate random search is sub-optimality. In our case, 
this is not critical as the solution is just an intermediate phase in our process that will 
terminate with the execution of an auction, the real outcome of which is 
unpredictable; consequently, it is inherently wrong that the best possible lot set will 
result in the best possible of the results. The algorithm can be outlined as follows: 

 
L = ∅ 
f or  each I i  ∈ I  
    cr eat e Li  = { I i }  
sol ut i on = copy_of ( L)  
whi l e ( conver gence i s not  r eached)   
  r andoml y pi ck Li  ∈ L;  wi t h pr obabi l i t y  
  i nver sel y pr opor t i onal  t o S( { Lj } )  
  r andoml y pi ck Lj  ∈ L ∪ { ∅}  ;  Lj  ≠ Li  wi t h uni f or m  
  pr obabi l i t y 
  r andoml y pi ck I k ∈ Li  wi t h pr obabi l i t y  
  i nver sel y pr opor t i onal  t o S( { Li } )  – S( { Li  – I k} )  
  Li  = Li  – I k 
  Lj  = Lj  ∪ I k 
  i f  Li  = ∅ t hen L = L -  Li  
  i f  Lj  ∉ L t hen L = L ∪ Lj  
  i f  S( sol ut i on) <S( L)  t hen 

  sol ut i on = copy_of ( L)  
r et ur n sol ut i on  

   
The previous procedure is explained as follows:  An initial solution is built by 

considering each item to be auctioned in isolation. Then we enter an iterative phase 
where we randomly select a bundle. The bundle is selected implementing a roulette 
wheel [9] where the chances of each lot are inversely proportional to its constraints 
satisfaction value (i.e. bad bundles will be selected more often, in an attempt to 
transform them into good ones) From this bundle, we select the item that is most 
probably causing the low satisfaction value of the bundle. To identify bad items we 
calculate the difference between the constraint satisfaction degree of the bundle with 
and without the item. Once an item has been selected, we remove it from the bundle, 
and next we randomly select a bundle (or a new bundle) where to add the item. The 
heuristic beneath this procedure is to penalise bad combinations of items. The 
random nature of the neighbourhood search prevents excessive falling into local 
optima.  

The basic procedure has been enhanced with typical techniques to allow the 
algorithm to converge faster:  
• Implement a backtracking procedure that allow to backtrack to a previous state if 

the current solution differs more than  certain percentage from the best solution 
known so far. 

• Avoid useless operations (i.e., changes that are known not to lead to better 
solutions). 

Implement an alternate change operator that joins two bundles. A probabilistic factor 
is used to randomly determine which operator to apply at each step of the algorithm. 



3.3 Implementation 

The core of iAuctionMaker is implemented in java and verifies the XML and J2EE 
standards, which simplify the implementation of multiple user interfaces (web-based, 
for example) as well as its integration with existing applications. The object model of 
iAuctionMaker works with interface declarations of constraints and properties 
objects. This allows the easy extension of the system by implementations of client-
custom constraints. As mentioned in the previous section, the random search 
procedure implemented will not need of reformulation if new constraints are added. 
This will optimise product customisation, without incurring in costly AI expertise and 
algorithm-refactoring. 

4. Results 

This section will present two experimental outcomes of iAuctionMaker. The first 
results aims to demonstrate that the search procedure developed for the tool performs 
satisfactorily. The second results present the commercial application of 
iAuctionMaker to two real sourcing scenarios. 

In order to validate the optimisation algorithm proposed we performed two 
experimental tests. The first one aims at measuring the optimality of the algorithm 
when compared to a complete search procedure. The second experiment aims at 
measuring the correctness and applicability of the algorithm for large instances of the 
problem. 

For the first experiment we generated 1000 random instances of a problem 
consisting of 11 lines and 11 providers4. The problem instance considers that all 
providers are capable of providing all lines. The price provider j offers for line j is 
randomly determined with uniform probability between [0..10]. We considered four 
constraints: volume aggregation, best bidder presence, bids’  variability and number 
of providers. 

Each problem is solved optimally by a brute force search procedure5, i.e., all 
possible solutions are generated. Then, each problem is solved with our algorithm 
and results are compared. 7 rounds are executed, each varying the algorithm 
termination condition, which controls the number of iterations (different solutions) 
explored by our algorithm, for each round. Table 2 shows the results obtained. 

Results suggest that iAuctionMaker seems to perform accordingly with the 
objectives, i.e., optimal solutions are found with considerable less search effort and, 
maybe more important, the relative difference between the optimal and the sub-
optimal solution found is more than acceptable.  

                                                           
4 An affordable size to be solved by a brute force search algorithm. 
5 The total number of different solutions for this problem size is 678570 (see Bell Numbers for 

further information).  



Table 2. Results obtained for experiment 1 

% of search effort % of problems solved 
optimally 

% variation between optimal and 
best solution found 

0.2 23 4.11 
1.05 56 2.87 
1.93 69 2.3 
8.36 85 1.63 
16.22 89 1.4 

77 93 1.53 
150 96 1.36 

 

The second experiment consisted in solving problems for which we know the best 
solution in advance. Problems are generated by randomly separating items into 2, 4, 
5, 10, or 20 bundles. Each bundle is only provided by a certain group of providers. 
Two constraints were considered, number of providers, and bundle volume. Hence, 
the best possible solution is to find such bundles. The problem size was fixed to 100 
lines and 20 providers, which is a problem size larger than the ones to be solved in 
our case studies. Table 3 shows the optimality evolution as we increase the search 
effort. 

Table 3. Results obtained for experiment 1 

% of problems 
solved optimally 

Average 
mean solution 
time (seconds) 

17% 0.16 
54% 0.49 
70% 0.9 
87% 3.7 
89% 6.8 
98% 26.8 
99% 65.9 

 

Results suggest that the performance indicators observed for experiment 1 can also 
be obtained for large instances of problems and at affordable cost. 

In conclusion, these experiments suggest that we can be fairy confident on the 
goodness of iAuctionMaker random optimisation procedure to be applied in real 
scenarios. 

4.1 Case study: Electr icity purchase 

The first scenario studied the initials offers received from 5 South-Europe 
electricity companies to power a total of 20 manufacturing facilities in Spain that 
belong to the same company. The plants are all of similar power consumption and are 
geographically distributed across the country. For each location, bidders decide 



whether to bid or not. The bid presented stands for the average price of the Kilowatt, 
according to last year consumption records. The scenario is therefore translated into 
a problem consisting of 20 lines and 5 providers. Table 4 presents the initial offer 
given by each provider for each location6. 

Table 4. Electricity market data 

Locations/Providers P1 P2 P3 P4 P5 
BAD 5,545 5,836 5,415 5,493 5,329 
BEZ 5,313 5,528 5,384 5,269 5,028 
CAR 5,599 5,896 5,339 5,604 5,311 
COD 5,495 5,91 5,247 5,489 5,195 
COR 4,417 4,831 4,484 4,444  
DULC 5,883 6,296 5,761 5,978  
ESP 5,496 5,881 5,431 5,483 5,361 
GEN 5,129 5,402 4,886 5,211 4,903 
GRA 5,317 5,739 5,24 5,264 5,13 
GUA 5,366 5,119  5,347 5,141 
PER 5,219 5,583 5,112 5,265 5,151 
PLANT 5,494 5,988 5,606 5,381 5,261 
RAI 5,724 6,353 5,727 5,743 5,561 
RIB 5,795 6,021 5,575 6,033 5,423 
RON 5,803 6,204 5,774 5,869 5,498 
SES 5,31 5,831 5,422 5,289 5,134 
SEV 5,182  5,083 5,238 5,101 
VOÑÑ 5,345 5,745 5,452 5,212 5,146 
ZAM 5,312 5,634 5,067 5,439 5,093 
FRI 5,258 5,428 5,005 5,209 5,035 

 
The company’s sourcing professionals know that in order to achieve savings, it 

will be of interest to group facilities rather than auction each facility in isolation. 
However, some of the bidders are new, small companies (the Spanish electricity 
market was liberalized short ago) which are geographically specialized and are likely 
to bid aggressively for facilities in their area, whereas unable to compete for others.   

To model this knowledge into iAuctionMaker three constraints were given: 
1. The bigger the bundle (in price terms7), the better. 
2. The best possible offer for the whole lot by a single provider must be at 

most 1% worse than the offer obtained by selecting the best offer per 
location. 

3. Ideally there should be 3 providers whose offers for the whole lot differ less 
than 3%. 

Constraint 1 tried to make bigger lots, where there exists place for competitiveness 
(constraint 3). To prevent missing very competitive offers for certain locations, 
constraint 2 is given.  

                                                           
6 Bidders are first invited to an RFQ where to place their first offer. (They do not know yet that 

an auction may later take place). 
7 All prices are in EURO. 



Table 5. Modelling constraints 

Constraint A (Observable variable) Sc
8 wc 

c1 Total lot price, calculated as the sum of the mean 
offer for each line. 

a = 20 
b = 100 

1 

c2 Number of providers that are %1 from the optimal. A = 1 
b = 1 

1 

C3 Number of providers capable of offer the whole lot. a = 2 
b = 3 

1 

 
With these constraints, iAuctionMaker finds the 3-bundle distribution shown in 

Figure 29.  
All three lots are quite similar and satisfy the desired properties: 

• There are 3 providers close enough to compete. 
• The amount of business is interesting. 

In case of no auction activity, the risk is to purchase %0.47 more expensive than 
the current situation. 

4.2 Case study: Transpor tation purchase 

The second scenario studied the initials offers received from 16 transportation 
companies to deliver a company range of products to 81 destinations across Europe. 
A first round of RFQs where conducted to obtain initial price-matrix (destination by 
kg). Based on historical data, the price matrix was reduced to a single column 
representing the total cost to each destination for each bidder.  

The application of iAuctionMaker to this scenario produced an interested 
outcome: it was not possible to find any promising lot to undergo an auction. 

To obtain an explanation for this, iAuctionMaker was given the following two 
constraints: 

• The bigger the lot, the better. 
• The best bidder for the lot must be also the best bidder for each single 

destination in the lot. 
In other words, with these two constrains iAuctionMaker was configure to identify 

the current winning set of providers and group destinations accordingly.  
 

                                                           
8 The rest of parameters are set as follows sl=MIB, mh=NO, η = 0.3, γ = 2. Refer to table 1. 
9 This solution depicted is just one among others that scored identically.  The company 
purchasing department evaluated them all and the final auction configuration (not shown here) 
was selected considering geographical distribution.  
 



 
Fig. 2. iAuctionMaker results for the electricity problem 

 
As seen in figure3, the solution obtained has 3 lots, each corresponding to 3 

winners: P9, P13 and P4. Notice the difference in price between the winner and the 
immediate competitor (a minimum of 43% for Lot 3). This explains why there is no 
room for an auction. Obviously, the lots obtained correspond to a particular 
geographical distribution for which each winner is clearly specialised (Lot 1 only 
contains locations in Italy, for example). 

After obtaining these results, the company purchasing department verified that 
there was no mistake in the offers received and the negotiation ended after a second 
round of offers. 

Conclusively, iAuctionMaker proved to be useful in assisting the user to identify 
scenarios where the application of an on-line auction will not produce clear benefits. 

 



 

Fig. 3. iAuctionMaker results for the transportation problem 

5. Conclusions 

This paper has presented iAuctionMaker as a novel decision support tool for e-
sourcing professionals. The motivation was to improve current e-sourcing procedures 
and provide an alternative to combinatorial or constraint bidding scenarios whose 
complexity prevent their application in real sourcing scenarios. The methods and 
algorithms developed were highly directed by software industry needs of efficiency 
and easy of extension and customisation. Experimental results showed promising 
results, which were later verified by successful application to real industry problems. 
Customers highly evaluated the tool and were satisfied with the results obtained.  

Future work basically lays in the application of the tool to more real sourcing 
scenarios from various industries. This will provide us with useful feedback from e-
sourcing professionals as well as to test new constraints obtained from their domains. 
Our goal is to provide an extensive library of rules of thumb that contains the expert 
knowledge of sourcing professionals. 

References 

 
[1] Adams, W. and Yellen, J. (1976). Commodity bundling and the burden of monopoly. 

Quartely Journal of Economics, 90:475-498, 1976. 



[2] Bakos, Y. and Brynjolfsson. (1999). Bundling and competition on the internet: 
Aggregation strategies for information goods. Working paper series, MIT Sloan 
School of Management. 

[3] Bakos, Y. and Brynjolfsson, E. (1998). Bundling information goods: Pricing, profits 
and efficiency. In D. Hurley, B. Kahin, and H. Varian, editors, The Economics of 
Digital Information Goods. MIT Press, Cambridge, Massachussetts. 

[4] Combinenet. http://www.combinenet.com, 2004. 
[5] Elmaghraby, W. and Keskinocak, P. (2002). Technology for Transportation Bidding 

at the Home Depot. To appear in C. Billington, T. Harrison, H. Lee, J. Neale, editors, 
The Practice of Supply Chain Management., Kluwer. 

[6] Eppen, G. D., Hanson, W. A. (1991). Bundling- New Products, New Markets, Low 
Risk. Sloan Management Review 32(4): pp. 7-14. 

[7] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guideto the 
Theory of NP-Completeness. W. H. Freeman and Company, New York. 

[8] Giovannucci, A. Rodríguez, J.A.  Reyes, A. Noria, F.X. and Cerquides, J. (2004).  
Towards automated procurement via agent-aware negotiation support. In 
Proceedings of the Third International Joint Conference on Autonomous Agents and 
Multi-agent Systems (to appear), New York City, July 19-24, 2004. 

[9] GoldBerg, D.E. Genetics Algorithms in Search, Optimisation & Machine Learning. 
(1989) Addison-Wesley. 

[10] Kalagnanam, J., Parkes D. (2003) Auctions, Bidding and Exchange Design. Chapter 
10, in Supply Chain Analysis in the eBusiness Era, Edited by David Simchi-Levi, S. 
David Wu and Z. Max Shen,. (forthcoming) 

[11] Keeny, R. L. and H. Raiffa. (1993). Decision Making with Multiple Objectives: 
Preferences and Value Tradeoffs. Cambridge, UK: Cambridge University Press. 

[12] Kephart, J. O. and Fay, S. A. (2000). Competitive Bundling of Categorized 
Information Goods. EC’00, October 17-20, Minneapolis, Minnesota. 

[13] Kreher, D.L. Stinson, D. R. (1998) Combinatorial Algorithms: Generation, 
Enumeration, and Search, CRC Press. 

[14] Parkes, D. (2000) Optimal Auction Design for Agents with Hard Valuation Problems, 
In Agent Mediated Electronic Commerce II: Towards Next-Generation Agent-Based 
Electronic Commerce Systems (LNAI 1788), Moukas et al. (eds), Springer-Verlag.  

[15] Reyes, A. Rodríguez J.A., López M., Cerquides J. and Gutierrez. D. (2003) 
Embedding Decision Support in e-Sourcing Tools: Quotes, A Case Study.  Group 
Decision and Negotiation Journal, Vol. 12, pp 347-355.  

[16] Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2002). Winner Determination in 
Combinatorial Auction Generalizations. In Proceedings of the First International Joint 
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Bologna, 
Italy, July, pp. 69-76. . 

[17] Sandholm, T. and Suri, S. (2001). Side Constraints and Non-Price Attributes in 
Markets. International Joint Conference on Artificial Intelligence (IJCAI), In 
Proceedings of the Workshop on Distributed Constraint Reasoning, Seattle, WA, 
August 4th. 

[18] Song, J. and Regan, A. (2004). Approximation algorithms for the Bid Construction 
Problem in Combinatorial Auctions for the Procurement of Freight Transportation 
Contracts.  In Proceedings of the 2004 TRB meeting. 

 


