
Computationally-efficient Winner Determination for Mixed
Multi-Unit Combinatorial Auctions

Andrea Giovannucci,
Meritxell Vinyals,

J. A. Rodriguez-Aguilar
IIIA-CSIC. Bellaterra. Spain.

{andrea,meritxell,jar}@iiia.csic.es

Jesus Cerquides
Universitat de Barcelona, Barcelona, Spain.

cerquide@maia.ub.es

ABSTRACT
Mixed Multi-Unit Combinatorial Auctions offer a high po-
tential to be employed for the automated assembly of supply
chains of agents offering goods and services. Their winner
determination problem is an NP-hard problem that can be
mapped into an integer program. Nonetheless, the compu-
tational cost of the current solution hinders the application
of mixed multi-unit combinatorial auctions to realistic sce-
narios. In this paper we propose a new integer program for
mixed multi-unit combinatorial auctions that severely sim-
plifies the problem by taking advantage of the topological
characteristics of the winner determination problem. Fur-
thermore, we provide empirical evidence showing that the
new IP allows to cope with much larger supply chain forma-
tion scenarios.

1. INTRODUCTION
According to [8], “Supply Chain Formation (SCF) is the

process of determining the participants in a supply chain,
who will exchange what with whom, and the terms of the
exchanges”. Combinatorial Auctions (CAs) [3] are a negoti-
ation mechanism well suited to deal with complementarities
among the goods at trade. Since production technologies
often have to deal with strong complementarities, SCF au-
tomation appears as a very promising application area for
CAs. However, whilst in CAs the complementarities can
be simply represented as relationships among goods, in SCF
the complementarities involve not only goods, but also trans-
formations (production relationships) along several levels of
the supply chain.

The first attempt to deal with the SCF problem by means
of Combinatorial Auctions (CA) was done by Walsh et al.
in [8]. In order to automate SCF, they introduce the notion
of task dependency network (TDN) as a way of capturing
complementarities among production processes. Although
very significant, this work does not allow bidders to express
their preferences over bundles of production processes; it
does not define a bidding language; and the structure of
the supply chain has to fulfil strict criteria (e.g. acyclicity,
processes can only produce one output good, etc). In order
to overcome these drawbacks, Cerquides et al. introduce

Cite as: Computationally-efficient Winner Determination for Mixed
Multi-Unit Combinatorial Auctions, A. Giovannucci et. al, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in [1] the so-called mixed multi-unit combinatorial auctions
(MMUCAs), a generalisation of the standard model of CAs.
Rather than negotiating over goods, in MMUCAs the auc-
tioneer and the bidders can negotiate over transformations,
each one characterized by a set of input goods and a set of
output goods. A bidder offering a transformation is willing
to produce its output goods after having received its input
goods along with the payment specified in the bid. While
in standard combinatorial auctions, a solution to the winner
determination problem (WDP) is a set of atomic bids to ac-
cept, in MMUCAs, the order in which the auctioneer “uses”
the accepted transformations matters. Thus, a solution to
the WDP is a sequence of transformations. For instance, if
bidder Joe offers to make dough if provided with butter and
eggs, and bidder Lou offers to bake a cake if provided with
enough dough, the auctioneer can accept both bids whenever
he uses Joe’s transformation before Lou’s to obtain cakes.

Along the lines of [3], the WDP for MMUCAs can be
solved by means of an Integer Program (IP), as shown in
[1]. While this provides a first algorithmic solution to the
WDP, in the IP proposed in [1] the number of variables
grows quadratically with the overall number of transforma-
tions mentioned in the bids. Hence, such an IP hinders the
application of MMUCAs.

Recent contributions on computationally efficient WDP
solvers for different auction types (namely, [3] for CAs, [6]
for MMUCAs, and [4] for multi-attribute double auctions)
agree on and defend that a careful, formal analysis of the
structure of WDPs can provide guidance for developing effi-
cient winner determination solvers. Along the lines of these
works, in this paper we propose an IP for MMUCAs that
dramatically improves the computational efficiency of the IP
reported in [1]. The search space reduction is achieved by
enforcing MMUCA solutions to fulfil a template. The tem-
plate reduces the possible orderings among transformations
without losing solutions.

At this aim, we found our analysis on observing the struc-
ture of the WDP that results after establishing dependence
relationships among transformations. For instance, in the
example above, Lou’s transformation clearly depends on
Joe’s: no dough, no cake! The analysis of the WDP based
on dependency relationships helps design an IP that a priori
establishes when to use each transformation.

Notice that the improvements that we propose in this pa-
per are investigated both at the theoretical level (by show-
ing a drastic reduction in the search space due to a differ-
ent problem representation) and at the empirical level (by
showing a very significant reduction of the solving time).

Therefore, we argue that our main contribution is to make
headway in the applicability of MMUCAs to SCF.

The paper is organised as follows. Section 2 summarises
the work in [1] to provide an introduction to the WDP for
MMUCAs along with a description of an IP solver. Section
3 introduces an improved version of the MMUCA WDP IP
solver in [1], the Connected Component Integer Program
(CCIP). Section 4 discusses the empirical results comparing
the solvers in sections 2.1 and 3. Finally, section 5 draws
some conclusions and outlines paths to future research.

2. MMUCA
In this section we firstly recall the notions of transfor-

mation and valuation over transformations, and the notion
of a bidding language to transmit an agent’s valuation in a
MMUCA. Secondly, in subsection 2.1 we recall the definition
and solution of the WDP for MMUCA.

Let G be the finite set of all the types of goods. A trans-
formation is a pair of multisets over G: (I,O) ∈ NG × NG.
An agent offering the transformation (I,O) declares that
it can deliver O after having received I. Bidders can offer
any number of such transformations, including several copies
of the same transformation. That is, agents can negotiate
over bundles of transformations modelled as multisets D ∈
N(NG×NG). For example, {(∅, {eggs}), ({dough}, {cake})}
means that the agent in question is able to deliver eggs (no
input required) and that it is able to deliver a cake if pro-
vided with dough.

An atomic bid Bidb = (Db, pb) =
({(I1,O1), . . . , (In,On)}, pb) specifies a finite multiset
of finite transformations Db , a price pb. Intuitively, Bidb

means that the agent is willing to make a payment of pb

in return for being allocated all the transformations in Db

(in case pb is a negative number, this means that the agent
will accept the deal if it receives an amount of |pb|)1. For
instance, ({({butter , eggs}, {dough})},−20) means that the
agent can produce dough for $20 if given butter and eggs.

A suitable bidding language should allow a bidder to en-
code choices between alternative bids and the like [3]. Re-
garding an IP solution to the WDP, the work in [1] shows
that the XOR-language is fully expressive for MMUCA, and
then restricts the bids received to be expressed in this lan-
guage. Relying on their results, we will assume the same
bidding language. However, the results can be easily ex-
tended to other bidding languages, in particular languages
including an OR operator.

2.1 A General IP for the WDP
The input to the WDP consists of a complex bid expres-

sion for each bidder, a multiset Uin of goods the auctioneer
holds to begin with, and a multiset Uout of goods the auc-
tioneer expects to end up with.

In standard combinatorial auctions, a solution to the
WDP is a set of atomic bids to accept. As to MMUCAs,

1To make the semantics of such an atomic bid precise, we
need to decide whether or not we want to make a free dis-
posal assumption. We can distinguish two types of free dis-
posal. As to free disposal at the bidder’s side, a bidder would
always be prepared to accept more goods and give fewer
goods away, without requiring a change in payment. As to
free disposal at the auctioneer’s side, we only have good free
disposal, meaning that the auctioneer may accept more and
give away fewer goods.

however, the order in which the auctioneer “uses” the ac-
cepted transformations matters. For instance, if the auction-
eer holds a to begin with, then checking whether accepting
the two bids Bid1 = ({a}, {b}, 10) and Bid2 = ({b}, {c}, 20)
is feasible involves realising that he has to use Bid1 before
Bid2. Thus, a solution to the WDP will be a sequence of
transformations. A valid solution has to meet two condi-
tions:
Bidder constraints: The multiset of transformations in the
sequence has to respect the bids submitted by the bidders.
This is a standard requirement. For instance, if a bidder
submits an XOR-combination of transformations, at most
one of them may be accepted.
Auctioneer constraints: The sequence of transformations
has to be implementable: (a) check that Uin is a superset
of the input set of the first transformation; (b) then update
the set of goods held by the auctioneer after each transfor-
mation and check that it is a superset of the input set of the
next transformation; (c) finally check that the set of items
held by the auctioneer in the end is a superset (the same set
in the case of no good free disposal) of Uout.

An optimal solution is a valid solution that maximises the
sum of prices associated with the atomic bids selected.

Let B be the set of all atomic bids. An atomic bid
b = (Db, pb) consists of a multiset of transformations and
a price. D is the multi-set of all the submitted transforma-
tions. Then, the maximum length of the solution sequence is
` = |D|. L is the set of bidders. Bl is the set of all bids sub-
mitted by bidder l ∈ L. For each bid b, let Tb be the set of
different transformations in Db and let tbk be a unique label
for each transformation in Tb (for some arbitrary but fixed
ordering of different transformations in Tb). Let (Ibk,Obk)
be the actual transformation labelled by tbk. Finally, let
T =

S
b Tb be the set of all different tbk.

The auctioneer has to decide which transformations to
accept and in which order to implement them. Thus, we
define a decision variable xm

bk ∈ {0, 1}, where b ranges in
{1, . . . , |B|}; for each b, k ranges in {1, . . . , |Tb|}; and m
ranges in {1, . . . , `}. xm

bk takes on value 1 if the transfor-
mation tbk is selected at the mth position of the solution
sequence, and 0 otherwise. We also introduce the follow-
ing auxiliary decision variables: xb is a binary variable that
takes value one if bid b is accepted and xbk is an integer
variable that represents the number of times that transfor-
mation tbk appears in the solution sequence. Let (Im,Om)
be the mth transformation in the solution sequence, i.e. the
tbk such that xm

bk = 1. Say that we represent with the mul-
tiset of goods Mm the quantity of resources available to the
auctioneer after performing m transformations. Since Uin

represents the auctioneer’s stock, we have that M0 = Uin.
For the remaining positions, the following relationship holds:

Mm(g) = Mm−1(g) +Om(g)− Im(g) ∀g ∈ G (1)

because enacting transformation (Im,Om) consumes the
goods in Im and produces the goods in Om. For instance,
say that the auctioneer begins with Uin = {a, a, d, d}. If we
apply the first transformation (I1,O1) = ({a, a}, {c}) (from
two units of a produce one unit of c), the auctioneer ends
up with M1 = {c, d, d}.

Note that Im and Om can be assessed from our decision

variables as:

Im(g) =
X

b

X
k

xm
bk · Ibk(g) ∀g ∈ G (2)

Om(g) =
X

b

X
k

xm
bk · Obk(g) ∀g ∈ G (3)

Hence, equation (1) can be unfolded into the equation:

Mm(g) = Uin(g) +

mX
i=1

X
b

X
k

xi
bk · (Obk(g)− Ibk(g))

Now, we are ready to express as linear equations all the
constraints that a valid solution sequence must fulfil:

1. The variable xbk contains the number of times that tbk

is selected in the solution sequence.

xbk =
X
m

xm
bk (∀b, k) (4)

2. At most one transformation is selected at each position
of the solution sequence.X

b

X
k

xm
bk ≤ 1 (∀m) (5)

3. Selecting at least one transformation within bid b im-
plies selecting all the transformations within the same
bid, each with its corresponding multiplicity.

xbk = xb · |Db|tbk (∀b, k) (6)

where Db|tbk is the multiplicity of transformation tbk

in Db.

4. The atomic bids submitted by each bidder are mutu-
ally exclusive (XOR).X

b∈Bl

xb ≤ 1 (∀l ∈ L) (7)

5. We must ensure that all transformations have enough
input goods available at each position of the transfor-
mation sequence. This maps to the condition:

Mm−1(g) ≥ Im(g) ∀m, ∀g

This can be expressed by means of our decision vari-
ables as:

Uin(g) +

m−1X
i=1

X
b

X
k

xi
bk · (Obk(g)− Ibk(g)) ≥X

b

X
k

xm
bk · Ibk(g) (∀g, m) (8)

6. After having performed all the selected transforma-
tions, the set of goods held by the auctioneer must be
a superset of the final goods.

M`(g) ≥ Uout(g) (∀g ∈ G). (9)

In case of no free-disposal on the auctioneer’s side sim-
ply substitute ≥ by =.

Therefore, solving the WDP for MMUCAs with XOR-bids
amounts to maximising

P
b∈B xb · pb, while fulfilling con-

straints in equations (4)–(9).

Finally, an optimal solution sequence is obtained from the
solution of the IP by making transformation tbk the mth
element of the solution sequence iff xm

bk = 1. Henceforth, we
shall refer to this solver as Direct IP solver (DIP for short).

The number of decision variables in the above integer pro-
gram is of the order of ` · |T | (corresponding to xm

bk). This
represents a serious computational cost. Thus, in what fol-
lows, we try to significantly reduce the number of variables
(and thus the search space) required to solve the problem
by analysing the topology of the WDP that results when
putting together bids that yield dependency relationships
among transformations.

g2

g3 g4

g5

g6g7

g1

t0

t1

t2t3

t4

t5

t6 t7

t8

t9

t10

t2

t4t5 t9

t3

t6

t7

t8

t0 t1

t10

(a) A bid set (b) TDG

scc234

scc67

scc0 scc1

scc9scc5

scc8

scc10

t2

t4 t9t5

t3

t6

t7

t8

t0 t1

t10

scc0

scc234

scc9 scc5

scc1

scc10 scc67

scc8

(c) SCCs of the TDG (d) The strict order

Figure 1: An MMUCA bid set, the corresponding
TDG, SCC, and Order Relation.

3. IMPROVING THE SOLVER: TRANS-
FORMATION DEPENDENCY ANALY-
SIS

In this section we introduce CCIP, a mapping of the
MMUCA WDP into a new IP that substantially reduces
the number of variables and constraints used by DIP. Next
we outline the intuitions underlying the improvement we
propose, whereas in the remaining subsections we develop a
rigorous description of such intuitions.

The WDP for standard CAs can be mapped into IP us-
ing a linear number of variables. However, as to MMUCA,
we need a quadratic number of variables, following the DIP
mapping. Since decision variable xm

bk means ”use the k-th
transformation of bid b at position m of the sequence” it
is reasonable to think that if we can reduce the number of

Position 1 2 3 4 5 6 7 8 9 10 11
Seqn. 1 t0 t2 t1 t4
Seqn. 2 t0 t1 t2 t4
Seqn. 3 t2 t1 t0 t4

Solution
template t0 t1

t2
t3
t4

t2
t3
t4

t2
t3
t4

t5 t9 t10
t6
t7

t6
t7

t8

Table 1: Partial sequences of transformations.

positions at which each transformation can be used, we will
be able to reduce the number of decision variables. In what
follows we provide the rationale to achieve such reduction
and to found CCIP.

Consider that after receiving a bunch of bids, we draw the
relationships among goods and transformations, as shown in
figure 1 (a). There, we represent goods at trade as circles,
transformations as squares, a transformation input goods as
incoming arrows and its output goods as outgoing arrows.
Thus, for instance, transformation t0 offers one unit of good
g2 and transformation t2 transforms one unit of g2 into one
unit of g4. Say that the auctioneer requires Uout = {g2, g3}.
Row 1 in table 1 stands for a valid solution sequence as ob-
tained by DIP. Indeed, it stands for a valid solution sequence
because at each position, enough input goods are available to
perform the following transformation. Notice too that like-
wise row 1, row 2 also stands for a valid solution sequence
because even though they differ in the ordering among trans-
formations, both use exactly the same transformations, and
both have enough goods available at each position. How-
ever, row 3 in table 1 is not a valid sequence, although it
contains the very same transformations, because t2 lacks of
enough input goods (g2) to be used.

Firstly, when looking for solutions, we wonder whether we
can avoid considering re-orderings of the solution sequence
such as the one in row 3. That would largely reduce our
search space. Secondly, since solutions at rows 1 and 2 are
equivalent to the auctioneer, he would be happy with any of
the two. Therefore, it is reasonable to pose whether we can
constrain our search so that the number of re-orderings of
row 2 (and hence of solutions equivalent to the one at row
2) that we consider is reduced.

Back to the example in figure 1 (a), it is clear that trans-
formations that have no input goods can be used prior to
any other transformation. Thus, transformations t0 and t1
can come first in the solution sequence. Moreover, we can
impose that t0 comes before t1 because swapping the two
would yield an equivalent solution. If we now consider trans-
formations t2, t3, t4, we observe that: (i) they depend on the
output goods of t0 and t1; and (ii) we cannot establish an
order among them because they form a cycle and then they
can feed with input goods one another (they depend on one
another). However, any permutation of the three could be
valid for the solution sequence. Furthermore, whatever their
order, we can always use them before transformations t5 and
t9 (since these depend on g4) without losing solutions.

Assuming that the auctioneer does not care about the or-
dering of a solution sequence as long as enough goods are
available for every transformation in the sequence, we can
impose “a priori” constraints on the ordering of transforma-
tions without losing solutions. The way of imposing such
constraints is via a solution template, a pattern that any so-
lution sequence must fulfil to be considered. For instance,

row 4 in table 1 shows a sample of solution template. A
solution sequence fulfilling that template must have trans-
formations t0 in position 1 and t1 in position 2, whereas it
is free to assign positions 3, 4, or 5, to the transformations
in {t2, t3, t4}. Notice that the constraints in the solution
template derive from our analysis of the dependence rela-
tionships among transformations. Hence, in order to build a
solution template, we must firstly analyse the dependence re-
lationships among transformations to subsequently use them
to constrain the positions at which a transformation can be
used.

Imposing constraints on the ordering of transformations
drastically reduces the number of decisions. Thus, while
DIP must decide for every single transformation whether
it occupies or not every possible position in the solution
sequence , a solution template constraints the positions each
transformation can occupy. For instance, according to row
4 in table 1, transformation t0 can only occupy position 1
and transformation t2 can occupy either positions 3,4, or
5, but no other. DIP would check whether t0 and t2 can
occupy any of the eleven possible positions in a solution
sequence. For the example of figure 1, DIP would require
` · |T | = 11 ∗ 11=121 decision variables, our new strategy
(based on the analysis of the structure of the search space)
would require 19 decision variables. Therefore, the search
space is reduced from 2121 to 219 alternatives.

In what follows, we formally analyse how we can extend
the intuitions above to the general case in order to yield a
new IP, the so called CCIP, by relying on the notion of de-
pendence among transformations, and using it to constrain
the positions at which a transformation can be used.

3.1 Transformation Dependencies and solu-
tion template

In this section, first we formally introduce the concept of
dependency among transformations. Next, we introduce a
function that constrains transformations to hold a limited
number of positions within a solution sequence, that is, the
solution template.

3.1.1 Transformation Dependencies
When solving the WDP, the auctioneer has to decide

which transformations to buy and in which order he should
use them. If he can a priori constrain the positions of trans-
formations, he will reduce the search space. In order to con-
strain the positions of transformations, we have to formalise
the concept of dependency among the transformations sent
by bidders. Our aim is to define a dependency relationship
among transformations such that, given two transformations
t and t′, provides the following possibilities:

• If no dependency holds among t and t′ we can safely
enforce any ordering among t and t′ without losing
solutions

• If t′ depends on t and t does not depend on t′ we can
enforce t to appear before t′ without losing solutions.

• If t′ depends on t and t depends on t′ we cannot enforce
any ordering among them.

In the following, we describe how this can be done analysing
the input and output goods of each transformation. We
first define the transformation dependency graph (TDG), a
graph where two transformations t and t′ are connected by

an edge if they have a good that is both output of t and
input to t′ (direct dependence). After that, we say that a
dependency relationship between two transformations exists
if there is a path that connects them in the TDG. That
is, a transformation t′ depends on another transformation
t if t′ has an input good that is also an output good of t
(direct dependence) or if there is another transformation t′′

such that t′ depends on t′′ and t′′ depends on t (indirect
dependence).

Definition 3.1. Given a set of bids in the XOR bidding
language, the associated Transformation Dependency Graph
(TDG) is a graph TDG = (V, E) such that:

• Each transformation is a vertex: V = T ,

• A directed arc connects two transformations t and t′

iff there exists a good that is both output of t and input
to t′. More formally,

(t, t′) ∈ E ⇐⇒ Ot ∩ It′ 6= ∅

Figure 1(a) depicts an example of auction representing
goods at trade as circles, transformations as squares, a trans-
formation input goods as incoming arrows and its output
goods as outgoing arrows. Figure 1 (b) depicts the TDG for
the bids represented in figure 1(a).

Depending on the received bids, the TDG may or may
not contain cycles. However, we have to assume that the
graph is cyclic in the general case. In order to constrain
the position of transformations, we will transform the cyclic
TDG in an acyclic graph where the nodes that form a cycle
are collapsed. The main idea is that the transformations
contained in a cycle have to be considered equivalent (∼).
In Fig. 1(b) we can see a TDG with cycles. In Fig. 1(c) we
identify the cycles (formally strongly connected components
or SCCs2) in the graph. In Fig. 1(d) we can see the graph
resulting from transforming (collapsing) each SCC into a
node.

A (cyclic) graph defines a preorder . on T . We denote
this preorder as a pair (T, .). The semantics of the preorder
is that t . t′ iff a path exists between t and t′. Note that
a preorder allows the existence of pairs t, t′ such that t . t′

and t′ . t.Given a set T equipped with a preorder ., we
can define an equivalence relation ∼ on T as follows:

t ∼ t′ ⇐⇒ t . t′ ∧ t′ . t (10)

In our case t ∼ t′ means that t depends on t′ and t′ depends
on t, This means that the TDG has a cycle that contains
t and t′. Hence, we will not be able to constrain the order
among them.

It is possible to define a strict partial order over the quo-
tient set (T/∼,≺) such that:

[t] ≺ [t′] ⇐⇒ t . t′ ∧ t 6. t′ (11)

Then, we say that t ≺ t′ if [t] ≺ [t′]. This means that t′

depends on t but not vice versa. Hence, we can enforce that
t is used before t′.

We are now ready to formally define the concept of depen-
dence. We recall that two transformations t, t′ can be such
that: (1) t depends on t′ or t′ depends on t but not both, or
(2) t and t′ are mutually dependent; or (3) t and t′ do not

2Notice that [2] shows that the SCCs of a graph can be
computed in time Θ(V + E).

depend on one another. More formally, we can differentiate
the following three cases:
t ≺ t′: t depends on t′. A one-way directed path between
t and t′ exists in the TDG. Then, all the transformations
along the path connecting t to t′ can contribute to increase
the goods present in at least one of the inputs of t′. Hence,
t′ depends on their execution. For instance, in figure 1(a)
we have that t5 depends on t2. In this case we must enforce
that t comes before t′ within the solution sequence if we do
not want to lose valid solutions.
t′ ∼ t: t and t′ are mutually dependent. There exist both
a simple path between t and t′ and one between t′ and t.
Therefore, they are part of a simple cycle of the TDG. For
instance, in figure 1(a), we have that t2 ∼ t4. Obviously,
we cannot order them since the circularity of the relation-
ship implies that they depend on each other. In order to
prevent the loss of valid solutions, we cannot reject any of
the two cases, t4 before t2 and t2 before t4 within a solution
sequence.
t 6. t′ and t′ 6. t: no path exists among t and t′. The rela-
tive positions of t and t′ within the solution sequence do not
affect the validity of the solution in any case. Then, it does
not matter how t and t′ are planned in the solution. Thus,
we can randomly select the order between them.

3.1.2 Sequences with order
In what follows we assume that T is a non-empty finite set

equipped with a preorder (T, .). Our aim is to assess the
positions to a-priori assign to transformations in such a way
that the order established by the TDG is not violated. We
explained in section 3.1.1 that we have to make sure that if
a transformation t′ depends on a transformation t (that is
t ≺ t′), they must be assigned positions such that t comes
before t′ in the sequence. Thus, the first step is knowing
the valid solutions that respect the strict order imposed by
(T/∼,≺). First, we illustrate the concept of partial sequence.
A partial sequence is a sequence with “holes”, meaning that
there could be some positions of the sequence that are empty.
A solution to the MMUCA WDP can be encoded as a par-
tial sequence of transformations. After that, we define when
a partial sequence fulfils an order relationship. Then, we
define an order enforcing function as a template that, if ful-
filled, guarantees the fulfilment of the order. Finally, we
show that we can construct an order enforcing function for
every strict order (T/∼,≺). These results pave the way for
the construction of the new IP formulation in section 3.2.

Definition 3.2. A Partial Sequence over a non-empty fi-
nite set T is a partial function K : {1, . . . , n} → T , with
n ∈ N.

Examples of partial sequences are in rows 1, 2, and 3 of table
1.

The fact the function is partial implies that some integers
may not have an image. Such integers are the holes in the
sequence that we previously mentioned. Now, we can define
whether a partial sequence fulfils a strict order relationship.

Definition 3.3. We say that a partial sequence K over
T fulfils the order relation (T/∼,≺) if:

∀i, j ∈ dom(K) [K(i)] ≺ [K(j)] ⇒ i < j (12)

This definition formally states that a partial sequence K ful-
fils the order relationship ≺ only if the relative order among

transformations within K does not violate ≺. For instance,
row 3 of table 1 does not fulfil the order relation defined in
figure 1(d), whereas row 2 does.

We mentioned at the beginning of this section that our
aim is to build a template that allows us to a-priori limit the
set of positions that each transformation can hold within
a solution sequence in such a way that no solution is lost.
This is formally captured by the concept of T -bounded Order
Enforcing Function

Definition 3.4. Given a strict order (T/∼,≺) and a a
multi-set T ∈ NT , a T -bounded Order Enforcing Function
S : {1, . . . , |T |} → T/∼ is a sequence of equivalence classes
satisfying the following constraints:

S(i) ≺ S(j) ⇒ i < j (13)

|S|[t] =
X

t′∈[t]

|T |t′ ∀[t] ∈ T/∼ (14)

where |S|[t] is the number of times the equivalence class [t]
appears in the sequence S. Henceforth, S will denote a T -
bounded order enforcing function for (T/∼,≺).

A T -bounded order enforcing function S limits the possible
positions that the elements of each equivalence class can
hold. Those positions are such that the strict order (T/∼,≺)
is fulfilled. Analogously, S assigns to each equivalence class
a set of allowed positions within a solution sequence. For
instance, row 3 of table 1 does not fulfil the template in row
4, whereas row 2 does.

Equation 13 guarantees that any partial sequence that
fulfils S fulfils the order relationship (T/∼,≺). Equation
14 ensures that enough positions are available to an equiva-
lence class [t] (for instance, if three units of transformation
t0 are offered, three positions must be allowed to t0). Notice
that there is no overlapping among the positions assigned to
different equivalence classes in virtue of equation 13.

We employ S−1 to indicate the inverse of an enforcing
function S. S−1([t]) indicates the set of integers that map
to the equivalence class [t] via S. More formally:

S−1([t]) = {m ∈ {1, . . . , |T |} | S(m) = [t]}

The following lemma guarantees that, for any order relation-
ship arising from a set of bids, we can construct an order
enforcing function.

Lemma 3.1. Given a strict order (T/∼,≺) and a multi-
set T ∈ NT such that ∀t |T |t ≥ 1, at least a T -bounded order
enforcing function S exists.

Its proof can be found in [5]. This lemma means that if we
have a strict order among transformations, we can always
construct an order enforcing function that restricts the posi-
tions that can be assigned to those transformations in a way
that, if the order enforcing function is fulfilled, so will be the
strict order. In the next section we will use it to construct
a function that constrains the positions where transforma-
tions can be used, imposing the strict ordering ≺ that was
defined in the section 3.1.1.

3.2 Connected component IP solver
The aim of this section is to introduce a new IP that im-

proves solver DIP. We call the improved solver, described in
the remaining of this section, solver CCIP. We simplify DIP

in two ways: (1) we get rid of a set of IP constraints, fol-
lowing a method similar to the one proposed in [6]; and (2)
we reduce the number of decision variables (the associated
search space) and simplify the constraints by considering
as possible solutions only partial sequences fulfilling a D-
bounded order enforcing function S and exclude all other
solutions. With this aim, we employ the order enforcing
function resulting from applying lemma 3.1 to the order gen-
erated by the TDG. In section 3.2.1 we detail how to remove
or simplify some constraints, and finally, in section 3.2.2, we
introduce the IP formulation of solver CCIP.

3.2.1 Reducing the number of constraints
In DIP equation 8 is applied at each position m of the so-

lution sequence to check that enough input goods are present
to perform the transformation assigned to position m. Anal-
ogously, recall that equation 9 states that at the end of the
sequence at least Uout goods are available to the auctioneer.

The combination of those two constraints plus restrict-
ing the positions transformations can hold makes some of
those constraints redundant. In particular, we can get rid of
constraint 8 at each position m where none of the transfor-
mations assigned to position m belong to any cycle of the
graph. This can be seen as a refinement of the technique
employed in [6].

Intuitively, equation 9 is a global condition enforcing that
at the end of the sequence the global input-output balance
at each good of the net in figure 1(a) is positive. On the
other hand, equation 8 is local to each position, and enforces
that enough input goods are present at each position. If the
transformation assigned to position m does not belong to a
cycle, the local condition is implied by the global one.

Notice that, by definition, each time an equivalence class
contains n > 1 transformations, each transformation in the
equivalence class belongs to a simple cycle of length n. How-
ever, when the equivalence class contains a single transfor-
mation, the constraint in equation 9 will only be included if
the transformation depends on itself (self-loop).

3.2.2 Detailed IP formulation
In this section we employ the same notation as in section

2.1.We represent each solution with a partial sequence J :
{1, . . . , |D|} → T . We employ decision variables similar to
the ones employed for solver DIP : xm

bk will take on value
1 only if transformation tbk is selected at the m-th position
within the solution sequence (i.e. J(m) = tbk). Let S be the
order enforcing function resulting from applying lemma 3.1
to the order generated by the TDG. In CCIP solver, we only
allow as solutions partial sequences fulfilling S, imposing
that no transformation can hold positions out of the one
specified by S, i.e. xm

bk = 0 ∀m 6∈ S−1([tbk]). By means of
this operation we manage to drastically reduce the number
of decision variables and the complexity of the constraints.

Next, analogously to section 2.1, we employ the following
auxiliary decision variables. First, xb is a binary variable
that takes value one if bid Bidb is accepted. Furthermore,
xbk is an integer variable that represents the number of posi-
tions that transformation tbk holds in the solution sequence.

In what follows we explicitly state the constraints that a
valid solution has to fulfil in solver CCIP. Those constraints
correspond to equations (4) to (9).

1. xbk is obtained by summing up xm
bk over the positions

m assigned to [tbk] (S−1([tbk])):

xbk =
X

m∈S−1([tbk])

xm
bk ∀b ∀k (15)

because we can remove from equation (4) decision vari-
ables xm

bk for all m 6∈ S−1([tbk]).

2. We are interested in that at most one transformation
can hold each position:X

tbk∈S(m)

xm
bk ≤ 1 ∀m (16)

Notice that the sum is only over the transformations
of a single equivalence class3.

3. We impose the cardinality semantics of a combinatorial
bid b:

xbk = xb · |Db|tbk ∀b ∈ B ∀k ∈ {1, . . . , |Db|} (17)

4. We impose that the XOR semantics of a bid:X
b∈Bl

xb ≤ 1 ∀l ∈ L (18)

5. We enforce that enough goods are available to use the
corresponding transformations at each position of the
solution sequence. As argued in section 3.2.1, equation
19 must be added only if the transformations assigned
to positions m belong to a simple cycle. We define
the set LF of positions m where the equation must
be added as m ∈ LF iff the transformations in the
equivalence class S(m) belong to a simple cycle. Now
we can impose:

U0(g) +

m−1X
l=0

X
tbk∈S(l)

xl
bk · [Obk(g)− Ibk(g)] ≥

X
tbk∈S(m)

xm
bk · Ibk(g) ∀g, ∀m ∈ LF (19)

6. We enforce that the goods available to the auctioneer
at the end of the solution sequence is at least Uout:

U0(g)+
X
m

X
tbk∈S(m)

xm
bk ·[Obk(g)−Ibk(g)] ≥ Uout(g) ∀g

(20)

Hence, solving the MMUCA WDP is equivalent to opti-
mise the objective function:

max
X

b

xb · pb (21)

subject to constraints 15 to 20.
The number of decision variables in the above integer pro-

gram is V CCIP =
P

q∈T/∼
|q||D|q where |q| is the number

of different transformations in the equivalence class q and
|D|q is the number of different copies in D of transforma-
tions that belong to q. Hence, whereas in DIP the number
of variables is given by the number of transformations (be-
ing equal to `|T |) in CCIP they depend on the topology
of transformations in the specific problem we try to solve.
However, it is easy to see that ` ≤ V CCIP ≤ `|T |.
3The constraints in equation 16 enforce that the solution is
a partial sequence, that is no more than one transformation
can be assigned to the same position of the sequence.

3.3 The Proof of Equivalence
We argued at the beginning of section 3 that if we assume

ordering not to be relevant as long as the sequence is en-
abled, we can say that DIP generates redundant equivalent
solutions. Next, in section 3.2 we introduced a solver that
finds a subset of those solutions: the solutions fulfilling the
order enforcing function provided by the TDG. Thus, in or-
der to prove that no solution is missed by CCIP we have
to show that any solution that solver DIP can find can be
reordered into a solution of solver CCIP.

Furthermore, we have to check that the other way around
is also true. That is, we have to make sure that solver CCIP
does not introduce new solutions that are not solution to
solver DIP. More formally, we have to prove that:

1. Corollary 3.1. Any solution found by solver DIP
can be reordered into a solution to solver CCIP.

2. Corollary 3.2. Any solution found by solver
CCIP is a solution to solver DIP.

The proof of these two corollaries is very simple if we have
previously demonstrated that:

1. Theorem 3.1. Given a partial sequence H, solu-
tion to solver DIP, any S-fulfilling reordering J of H
fulfils all the constraints of solver CCIP.

2. Theorem 3.2. Given a partial sequence J , solution
to solver CCIP, it fulfils all the constraints of DIP.

The proof of theorems 3.1 and 3.2 and corollaries 3.1 and
3.2 can be found in [5].

4. EMPIRICAL COMPARISON
As shown in section 3.2.2, CCIP provides a more concise

IP formulation than DIP in terms of both number of vari-
ables and constraints. In this section, we empirically analyse
whether the achieved reduction also translates into a reduc-
tion in computational cost.

Firstly, since the number of decision variables of both DIP
and CCIP depends on the number of transformations within
the submitted bids. Therefore, to compare their computa-
tional performance and to analyse their scalability, we have
chosen to observe their solving times as the number of trans-
formations increases. As detailed in [7], the generator cre-
ates three types of transformations: I-transformations (no
output goods), O-transformations (no input goods) and IO-
transformations (input and output goods).

In order to run an empirical comparison we have employed
randomly generated MMUCA WDPs using the (publicly
available) artificial data set generator to evaluate MMUCA
WD algorithms proposed in [7]. We have set the artificial
data set generator’s parameters for this experiment as listed
in Table 2.

We ran our experiments as follows. We generated
MMUCA WDP instances with transformations within the
range [0, 300]. In fact, we sampled the interval to generate
50 WDP instances every 20 transformations. Both solvers,
DIP and CCIP were fed with the very same WDP instances.
We solved each WDP instance using IP implementations of
both solvers on CPLEX 10.1, recording both the solutions
and solving times. Moreover, we set a maximum time limit
to 4800 seconds for each solver to find a solution for each
WDP instance. Whenever any of the solvers exceeded the
time limit, we stopped it to subsequently mark the WDP as

ngoods 20
nIO market transformations n Transformations/3
max price 100
σprices 0.05
pgood requested 0.3
µadd new transformation 1.0
σadd new transformation 0
µadd new XOR clause 1.0
σadd new XOR clause 0
pgood in input 0.2
pgood in output 0.1
α 0.1
p ITransformations 0.6
p OTransformations 0.1
allow cycles 1

Table 2: Artificial generator parameter values.

Figure 2: Comparison between DIP and CCIP.

time exceeded. After that, we set its solving time to the time
limit to subsequently record it. Notice that we only consid-
ered feasible WDP instances to calculate solving times since
the time required by CPLEX to prove unfeasibility is (usu-
ally) significantly lower than the time required to find an
optimal solution. Finally, we ran all tests on a Dell Precision
490 with double processor Dual-Core Xeon 5060 running at
3.2 GHz with 2Gb RAM on Linux 2.6.

Figure 2 shows the results of our experiments. It de-
picts the median of the solving times obtained when varying
the number of transformations. Observe that the MMUCA
WDP computational cost increases exponentially as the
number of transformations grows for both solvers. Nonethe-
less, given a time limit, CCIP was able to solve problems
with more than twice the number of transformations that
DIP did solve. Indeed, whereas 120 represents the empiri-
cal limit on the number of transformations for DIP, CCIP
starts reaching the time limit when solving WDP instances
containing more than 250 transformations. Furthermore, for
WDPs with close to 100 transformations, DIP is in median
about 70 times slower than CCIP. This ratio rapidly in-
creases as the number of transformations gets close to 120,
namely to the limit on the number of transformations.

5. CONCLUSIONS AND FUTURE WORK
MMUCAs offer a high potential to be employed for the

automated assembly of supply chains of agents. However,
in order for MMUCAs to be effectively applied to SCF,
we must ensure computational tractability while preserv-
ing optimality. In the IP proposed in [1] the number of

variables grows quadratically with the number of transfor-
mations mentioned in the bids, thus limiting the applica-
tion of MMUCAs to SCF. In this paper we have proposed
an IP, CCIP, for MMUCAs that dramatically improves the
computational efficiency of the IP reported in [1] by tak-
ing advantage of the topological characteristics of the WDP.
At this aim, we have founded our analysis on observing the
structure of the WDP that results after establishing depen-
dence relationships among transformations. At the theoret-
ical level, we have proved that CCIP brings a drastic reduc-
tion of the search space to be explored (decision variables)
to solve the WDP. At the empirical level, we have observed
that CCIP: (i) can deal with WDPs with more than twice
as many transformations as DIP; and (ii) can significantly
reduce the computation time (by a factor larger than 70).
Therefore, we argue that our main contribution has been to
make headway in the applicability of MMUCAs to SCF.

As to future work, in order to outperform CCIP we plan to
explore the design of a local algorithm. Although solutions
may be sub-optimal with a local approach, the number of
transformations that can be dealt with is expected to be
larger, and hence the size of the supply chain scenarios we
could tackle.

This work has been partially supported by the Spanish Ministry of

Education and Science (grants 2006-5-0I-099, TIN-2006-15662-C02-

01, CONSOLIDER CSD2007-0022, INGENIO 2010), and by the Gen-

eralitat de Catalunya (grant 2005-SGR-00093).

6. REFERENCES
[1] J. Cerquides, U. Endriss, A. Giovannucci, and J. A.

Rodriguez-Aguilar. Bidding languages and winner
determination for mixed multi-unit combinatorial
auctions. In Proc. of the 20th Intl. Joint Conferences
on Artif. Intelligence (IJCAI), pages 1221–1226, 2007.

[2] T. Cormen. Introduction to Algorithms. MIT Press,
2001.

[3] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2006.

[4] Y. Engel, M. P. Wellman, and K. M. Lochner. Bid
expressiveness and clearing algorithms in multiattribute
double auctions. In Proceedings of the 7th ACM
conference on Electronic commerce, pages 110–119,
Ann Harbor, USA, 2006.

[5] A. Giovannucci, J. Cerquides, and J. A.
Rodriguez-Aguilar. Proving the correctness of the CCIP
solver for MMUCA. Technical report, IIIA-CSIC, 2007.

[6] A. Giovannucci, J. Rodŕıguez-Aguilar, J. Cerquides,
and U. Endriss. Winner determination for mixed
multi-unit combinatorial auctions via petri nets. In 20th
Intl. Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2007), Hawaai, USA, May
2007.

[7] M. Vinyals, A. Giovannucci, J. Cerquides, P. Meseguer,
and J. A. Rodriguez-Aguilar. Towards a realistic bid
generator for mixed multi-unit combinatorial auctions.
14th Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial
Explosion RCRA, 2007.

[8] W. Walsh and M. Wellman. Decentralized supply chain
formation: A market protocol and competitive
equilibrium analysis. Journal of Artificial Intelligence
Research, 19:513–567, 2003.

