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ABSTRACT
The coordination of cooperative agents involved in rescue missions
is an important open research problem. We consider the RoboCup
Rescue Simulation (RCS) challenge, where teams of agents per-
form urban rescue operations. Previous approaches typically cast
such problem as separate single-team allocation problems. How-
ever, different teams have complementary capabilities, and there-
fore some kind of inter-team coordination is desirable for high-
quality solutions. Our contribution considers inter-team coordina-
tion using Max-Sum. We present a methodology that allows teams
in RCS to efficiently assess joint allocations. Furthermore, we show
how to reduce the algorithm’s computational complexity from ex-
ponential to polynomial time by using Tractable High Order Po-
tentials. To the best of our knowledge this is the first time where
it has been shown that MS can be run in polynomial time in the
RCS challenge without relaxing the problem. Experiments with
fire brigades and police agents show that teams employing inter-
team coordination are significantly more effective than uncoordi-
nated teams. Moreover, the evaluation shows that our BMS and
THOPs method achieves up to 2.5 times better results than other
state-of-the-art methods.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
multiagent systems, coherence and coordination

General Terms
Algorithms, Performance

Keywords
multi-agent task allocation, factor graph, max-sum, robocup rescue

1. INTRODUCTION
In many practical applications, such as rescue, surveillance and

environmental monitoring, agents with different capabilities must
cooperate in dynamic and unpredictable environments [23]. Hence,
the coordination problem faced by teams of rescue agents has been
addressed in the literature from various perspectives and with a
wide variety of solution techniques.
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However, most previous work either proposes approaches to en-
able teamwork between heterogeneous agents [25, 13, 10] or fo-
cuses on specific coordination techniques for a single team of agents
(e.g., task assignment [22, 15] or resource allocation [12]).

In particular, a standard model for the task allocation problem
in the context of rescue agent teams is the Extended Generalized
Assignment Problem [22, 3]. However, such model cannot prop-
erly encode synergies and interferences among agents working on
related tasks. For instance, EGAP cannot express that it is possi-
ble for two agents to perform the same task, but less desirable than
letting them perform separate tasks (because otherwise they could
interfere on each other). Since capturing such synergies is essen-
tial for effective cooperation in rescue missions, other works model
such problem as a coalition formation problem [19, 20]. However,
this approach suffers from the exponential growth of possible coali-
tions with the number of agents, hence its application to realistic,
large-scale rescue scenarios is problematic.

Recently, a body of work focuses on ad-hoc teamwork [24, 9],
where a team of agents must coordinate with very little or no prior
information about their team mates (e.g., without having a shared
communication protocol or knowing each other capabilities). Here,
we take a different approach and focus on specific task assignment
techniques for agents that might be part of different teams but have
a relevant amount of prior information on each other capabilities,
which is the typical case for urban rescue scenarios.

Task assignment problems in such settings can be conveniently
formalized as a Distributed Constraint Optimization problem, as
proposed in [8], where agents must compute a joint assignment
that maximizes the team performance. For example, in the rescue
domain, fire brigades must decide which fire to tackle so to miti-
gate damages to the buildings and civilians. While DCOPs offer a
wealth of solution techniques, the dynamic nature of our reference
scenario and the strict time constraints under which agents must
operate favor the use of heuristic solutions [29, 11, 4]

An important advantage of using the DCOP model is that there
exist several readily available heuristic approaches that typically
provide good quality solutions. Moreover, the model is inherently
distributed, providing the necessary robustness for such scenarios.
In this perspective, we observe that the Max-Sum (MS) algorithm
has been applied to a significant variety of application domains
with successful results. Some examples include UAVs task assign-
ment [2], Radar coordination [6], and task assignment in RoboCup
Rescue [19, 8].

However, the use of MS for large scale applications and real-time
constraints, such as the emergency response scenario we consider
here, is significantly limited by the computational bottleneck asso-
ciated with the message update operations. In particular, the MS
algorithm has a computational complexity O(dn), where d is the



number of tasks that each agent may perform (i.e., the size of as-
sociated variable domain) and n is the number of agents that can
perform a given task (i.e., the arity of the associated constraint).
Such issue has been addressed with various approaches that in-
cludes modifications to the algorithm, i.e., the Fast-Max-Sum ap-
proach [19], or simplifications of the DCOP model, i.e., the pruning
approach proposed in [8] or the function meta reasoning method
proposed in [28].

Specifically, the Fast Max-Sum (Fast MS) algorithm proposed
in [19] is equivalent (in terms of solution quality) to the MS ap-
proach, but reduces the computational effort from O(dn) to O(2n)
(and the message size from d to 2). However, the computation
remains exponential and hence it can not be applied to scenarios
where the number of agents that can execute the same task is high,
as it is the case in our fire-fighter coordination problem, where each
fire-fighting unit can potentially work on every possible fire. In
contrast, the approaches that simplify the DCOP model [8, 28], es-
sentially consider, in the message update phase, only a sub-set of
the possible agents that can perform a task while completely ignor-
ing the others. While this has the important benefit of reducing the
arity of the constraint (and hence decouple the computational com-
plexity of the message update phase from the number of agent in
the system), such approaches can not guarantee that the quality of
the returned solution is the same as the one that the MS approach
working on the original model would provide.

Now, MS originates and is widely used in the graphical mod-
els community, where its exponentiality issue was also considered
simultaneously. There, Tarlow et al. have shown [26] that the
computation associated to MS can be reduced to polynomial time
(between O(n) and O(n logn)) for some specific types of fac-
tors (or constraints), known as Tractable Higher Order Potentials
(THOPs). Crucially, this approach does not simplify the model
on which the MS approach is defined. In contrast, it exploits the
specific structure of THOPs hence providing a faster approach to
update messages that is guaranteed to return the same solution that
the standard MS approach would return. While not all DCOP func-
tions can be represented using THOPs, previous works [16, 17]
shows that THOPS are expressive enough for several application
domains.

One important contribution of this paper is to propose a THOP
only model for the task allocation problem related to the RCS chal-
lenge, hence obtaining a polynomial time approach that provides
the same solution of the standard MS algorithm.

Now, a distinctive feature of THOPs is that they are defined over
binary variables, and hence the approach is typically named Binary
Max-Sum (BMS). While BMS is a promising approach for agent
coordination, modeling large coordination problem using such ap-
proach is not straightforward nor intuitive. For example, usually a
modeler finds much easier to work with a single d-valued variable
that encodes which fire is a firefighter servicing than with d boolean
variables encoding the same information. As the size of the prob-
lem grows, these issues become more evident, hampering the abil-
ity of the modeler to accurately do his work. Hence, it is crucial
to devise effective design methodologies for BMS to become more
widespread.

Against this background, in this paper we take an important step
in that direction, by using BMS to enable effective multi-team coor-
dination in the rescue scenario. Although the idea of coordinating
different teams by means of coordination variables is not new (for
instance in the loosely coupled planning literature [1], or the co-
operative control community [21]), no methodology has been pro-
posed up-to-date for building multi-team coordination models us-
ing BMS. To illustrate the methodology, we consider the realistic

scenario represented by the RCS challenge, where a team of po-
lice officers and a team of firefighters must join forces to mitigate
damages to a city after a natural disaster.

Furthermore our work shows that typical inter-team coordina-
tion interactions can be effectively modeled by means of THOPs
allowing MS messages to be assessed in polynomial time in such
complex scenarios.

The main contributions of this work are the following:

• We develop a THOP-only model for the firefighters task allo-
cation problem associated to the RoboCup Simulation (RCS)
domain. Despite previous work in this area [8, 19], to the
best of our knowledge this is the first time where it has been
shown that MS can be run in polynomial time for such task
without simplifying the associated model (i.e., the DCOP
representation).

• We present a methodology that eases the design of THOP-
only models for large problems with several (interrelated)
functional areas such as rescue teams. Following this method-
ology, we develop a THOP-only multi-team coordination model
for the police and firefighters RCS problem.

• We empirically show that BMS obtains better results than
other state-of-the-art DCOP algorithms (operating on a stan-
dard DCOP model), preventing more than twice as much
damage to the city.

The rest of the paper is organized as follows. Section 2 pro-
vides background on MS and THOPs. Section 3 presents the RCS
problem we tackle. Section 4 describes how the DCOP model to
coordinate firefighters from [8] can be mapped to a THOP-only
model. Section 5 presents our methodology to handle large prob-
lems, and develops a complete model for the police and firefighter
forces. Section 6 reports our empirical findings. Finally, Section 7
concludes the paper.

2. BACKGROUND
MS is an approximate optimization algorithm that has been ap-

plied to different coordination problems with good empirical re-
sults. In this section we review MS and explain how, in some
specific cases, its complexity can be reduced from exponential to
polynomial time.

Let T = 〈t1, . . . , tn〉 be a sequence of variables, with each vari-
able ti taking values in a finite setDi, its domain. The joint domain
DT is the cartesian product of the domain of each variable. We use
ti to refer to a possible assignment of ti, that is ti ∈ Di and T
to refer to a possible joint assignment for variables in T , that is
T ∈ DT . Given a sequence of variables W ⊆ T , a factor c is a
function c : DW → [−∞,∞). We refer to the variables in the
scope of c as Tc. The set of factors of the problem is denoted by
C. A function g : DX → R is said to decompose additively if it
can be broken as a sum of local terms, that is, whenever there is a
set of local terms F (referred to as the additive decomposition F )
such that g(X) =

∑
f∈F f(Xf ),

As an example, say we have three variables, x1 with domain
D1 = {0, 1}, x2 with domain D2 = {0, 1, 2} and x3 with domain
D3 = {1, 2}. The possible states for x1 are x1 ∈ D1 = {0, 1}.
We can define the function g(x1, x2, x3) = x1 · x1 + x1 · x2 −
x2 · x3. It is easy to see that g decomposes additively by taking
F = {f1, f2, f3}, where f1(x1) = x1 · x1, f2(x1, x2) = x1 · x2,
and f3(x2, x3) = −(x2 · x3).

The MS algorithm provides an approximate solution to the prob-
lem of maximizing a function that decomposes additively as a sum
of functions with smaller scope:



maximize g(X) =
∑
c∈C c(Tc)

subject to ti ∈ Di ∀i ∈ {1, . . . , n} ,

where Tc contains the values assigned by T to the variables in the
scope of factor c.

MS operates on the so-called factor graph, a bipartite graph be-
tween variables and factors. It provides an approximate solution in
two stages. First, messages are sent from variables to factors and
from factors to variables. This step is repeated until the messages
no longer change or a specified number of iterations is reached.
After that, MS determines the best state for each variable indepen-
dently.

At the first stage, MS assesses the message from variable t to
factor c as

µt→c(t) =
∑

c′∈N (t)\{c}

µc′→t(t) , (1)

where N (t) stands for the factors that have variable x in its scope
and µc′→t stands for the last message received by variable t from
factor c′. MS assesses the message from c to t as

µc→t(t) = max
W

(
c(t,W) +

∑
w∈W

µw→c(w)

)
, (2)

where W is the set of variables in the scope of factor c excluding t,
and W is a joint assignment for the variables in W .

At the second stage, MS assesses the preferred assignment for
each variable as

t∗ = argmax
t

∑
c∈N (t)

µc→t(t).

The standard MS algorithm can be binarized as follows. A stan-
dard variable with d possible values becomes d boolean variables,
all connected by a new factor that assures that only one boolean
variable will be active. A standard factor involving k standard vari-
ables has (in the worst case) dk entries. With boolean variables the
number of entries increases up to 2d×k. It is clear that both, stan-
dard MS and BMS have the same expressive power and can solve
the same kind of problems.

Now, the computational bottleneck for MS is in equation 2, that
takes time exponential in the number of variables in the scope of
the factor. Recently, several works [16, 17, 26] have shown that
for some specific types of factors, called Tractable Higher Order
Potentials (THOPs), this time can be reduced to polynomial pro-
vided that all the variables in the scope are binary. In the following
we consider binary variables and say that a variable is active (resp.
inactive) if it is assigned to value 1 (resp. 0). It is worth noting
that not every factor can be expressed using THOPs. However, it
turns out that the RCS coordination problem we consider here can
be formulated using THOPs only.

In particular, here we will employ two types of THOPs, cardi-
nality potentials and composite potentials. Cardinality Potentials
(CP) are factors whose value for an assignment depends on how
many variables are active in that assignment, but does not depend
on which particular variables are active. In general a CP can be
expressed as c(Tc) = c′(nc(Tc)), where nc(Tc) =

∑
ti∈Tc

ti
stands for the number of active variables in assignment Tc. Tar-
low et al. have shown [26] that for CPs, messages from equation 2
can be assessed in time O(N logN) time, where N is the num-
ber of variables in the scope of the factor. Particular cases of CPs
are strict cardinality constraints such as OneAndOnlyOne, AtMo-
stOne and AllZeros. Tarlow et al. [26] note that for some of these
strict cardinality constraints, even more efficient algorithms to as-
sess the messages are available, and, in particular, Pujol-Gonzalez
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Figure 1: Example scenario.

et al. [17] shows that for OneAndOnlyOne factors the messages
can be assessed in time O(N). Finally, Tarlow et al. [26] also
propose a technique for the composition of THOPs that allows to
efficiently assess messages for any factor that can be constructed by
the context-specific composition of smaller THOPs. These THOPs
are known as composite potentials.

3. PROBLEM DESCRIPTION
The RCS Platform is a benchmarking environment that simulates

an urban search and rescue scenario where rescue forces (police pa-
trols, ambulances and fire brigades) must coordinate their actions.
Specifically, police patrols can unblock roads, fire brigades can ex-
tinguish fires, and ambulance agents can rescue trapped civilians.
RCS creates a realistic simulation environment that presents sig-
nificant aspects of dynamism (e.g., fires spread across a city), un-
certainty (e.g., the behavior of fires is determined by a number of
factors that may not be perfectly sensed or modeled), and issues of
scale (e.g., tens of rescue agents and possibly hundreds of fires in a
large urban area) [7].

In this paper we focus on the coordination problem of fire bri-
gades, police patrols, and their interactions. Regarding fire brigades,
a first element to consider is travel time: the closer a fire brigade
is to a fire, the sooner they will be able to work on it. Moreover,
the more fire brigades acting on one fire, the faster they will con-
tain it. However, beyond a certain number of fire brigades, the
contribution of each additional one is less significant. Now, a key
issue for the fire fighting activity is that fires evolve and spread over
time. A crucial insight on fire spreading is that new fires are more
likely to extend than older ones, and older fires are fierier. Hence,
fire brigades should try to prioritize new fires to prevent them from
spreading as much as possible. Overall, fire brigades must cooper-
ate to ensure that an adequate number of agents is allocated to each
fire considering fire fieriness and travel time. Unlike fires, road
blockades do not evolve over time unless some agent is acting on
them. Moreover, in the version we used (2013), the simulation de-
fines that having more police agents working on the same blockade
is not beneficial. Hence, police patrols should spread out as much
as possible to free roads as fast as they can.

Now, when we consider the whole picture, police patrols and
fire brigades must coordinate their actions so that fire brigades can
tackle important fires, which might be not reachable due to block-
ades, and police patrols should focus on blockades that might be far
away but crucial for the fire fighting activity. For example, consider
the scenario depicted in Figure 1, which will serve as a running ex-
ample throughout our paper. In this scenario we have:

• two police patrols P = {ρ1, ρ2} (blue circles);

• two fire brigades A = {α1, α2} (red circles);



• four blockades B = {β1, β2, β3, β4} (yellow circles) that
prevent agents from transiting the road they are blocking; and

• two ignition points F = {ϕ1, ϕ2}, which are buildings that
are on fire at the beginning of the simulation.

When considering the police patrol coordination problem without
taking the fire fighting activity into account, a good allocation for
this scenario would be (ρ1 → β4), (ρ2 → β3) because both agents
work on their closest blockade. However, if we consider the overall
goal of the rescue agents (including fire fighters), a better allocation
would be (ρ1 → β2), (ρ2 → β1), enabling fire brigade agents to
choose which fire to attend at their will.

4. THE FIRE BRIGADES TEAM MODEL
In this section we develop a THOP-only model for the coordi-

nation of the firefighters team, disregarding police forces entirely.
With this aim, we first present an improved version of the general
DCOP model in [8]. Thereafter we show how this model can be bi-
narized, thus allowing us to run BMS instead of MS and reducing
the complexity from exponential to linearithmic time.

4.1 DCOP model
Solving the firefighters problem amounts to deciding which fire

each fire brigade should attend. These decisions can be encoded by
a set of decision variables Y = {ya|a ∈ A}, where each variable
ya takes values in F . Note that yα1 = ϕ2 means that brigade α1 is
assigned to fire ϕ2. Thus, our objective is to find an assignment Y
that maximizes the team utility u(Y), that is

maximize u(Y)
subject to ya ∈ F. ∀a ∈ A

In a DCOP model, the team’s utility is expected to be decom-
posed as a sum of factors. In our case, a natural decomposition is
to introduce two kinds of factors:

• fire factors, that specify the gain obtained when firefighters
are allocated to some fire; and

• cost factors, that specify the cost for agents to reach different
fires.

Thus, our team utility is

u(Y) =
∑
f∈F

ef (Y)−
∑
f∈F

∑
a∈A

raf (ya), (3)

where ef (Y) are fire factors and raf (ya) are cost factors.

4.1.1 Fire factors
As explained in Section 3, some fires are more relevant than oth-

ers. Hence, to asses ef (Y), we first compute a value vf for each
fire f , corresponding to the utility obtained by assigning a brigade
to put it out. Next, notice that more than one brigade can be as-
signed to the same fire. A simple model for ef is to multiply vf by
the number of brigades that are assigned to fire f , namely nf (Y).
Nonetheless, depending on the fieriness and size of a fire, there is
a threshold tf in the number of fire brigades that can successfully
cooperate in extinguishing it. Thus, we consider that an assign-
ment of fire brigades to a fire f is penalized when more than tf fire
brigades are assigned to fire f . Moreover, this penalty increases
with the number of additional agents beyond the threshold. Com-
bining all these assessments, ef (Y) is calculated as

ef (Y) = vf · nf (Y)− κ · [max(0, nf (Y)− tf )]γ , (4)

where κ > 0 and γ ≥ 1 are arbitrary coefficients.

4.1.2 Cost factors
All fire brigades are equally capable in RCS. Thus, the cost for

agents to reach each fire depends only on their distance and whether
that fire is reachable or not. As a result, we evaluate the cost of
assigning a brigade to a fire as proportional to the square of the
distance between them.1 Additionally, a blockade may prevent fire
brigade a from reaching fire f . We discourage choosing blocked
fires by introducing an additional cost M when a cannot reach f .
Thus, raf is assessed as

raf (ya) =

{
νd2af + oafM if ya = f

0 otherwise
, (5)

where daf is the normalized distance between brigade a and fire f ,
ν ≥ 0 is an arbitrary coefficient, and oaf is a constant with value 1
when agent a cannot reach fire f or 0 otherwise.

At this point we have a DCOP model. We can now compute al-
locations using MS by instantiating the ef and raf factors and ex-
changing messages between them and the variables in Y . However,
recall that computing a factor’s messages in MS takes exponential
time on the number of variables involved in that factor. Because the
ef factors depend on all of the problem’s variables, running MS on
this model takes an exponential time on the number of fire brigades.
From this follows that for most scenarios MS can not compute a so-
lution within the one second time limit enforced by the RoboCup
simulator.

4.2 THOP-only model
Next we show how to exactly encode the previous model in a

binary form and only using THOPs. As a result, we will be able
to run BMS in polynomial, instead of exponential, time. With this
aim, we first split each decision variable ya into |F | binary vari-
ables zaf . Variable zaf is active (set to 1) in a solution whenever
agent a is assigned to fire f , and it is inactive (set to 0) otherwise.
Unlike our representation above, with this set of binary variables
we can encode that a single brigade is assigned to two or more dif-
ferent fires simultaneously. Hence, we must add a set of constraints
(one per brigade) to prevent this from happening:∑

f∈F

zaf = 1 ∀a ∈ A . (6)

With a slight abuse of notation, we now redefine the factors of the
DCOP model to operate over the binary variables in Z instead of
the n-ary variables in Y . Likewise equation (3), the utility function
u(Z) is split into fire factors ef and cost factors raf . The binarized
versions of the utility functions in equations (4) and (5) are the
following:

ef (Z.f ) = vf · nf (Z.f )− κ · [max(0, nf (Z.f )− tf )]γ (7)

raf (zaf ) = zaf (νd
2
af + oafM) (8)

where Z.f = {zaf |a ∈ A} is the set of variables that relate to
fire f .

At this point, we can represent the entire firefighters coordina-
tion problem as the following optimization problem:

maximize
∑
f∈F ef (Z.f )−

∑
f∈F

∑
a∈A raf (zaf )

subject to
∑
f∈F zaf = 1 ∀a ∈ A

zaf ∈ {0, 1} ∀a ∈ A ∀f ∈ F
1We normalize distances so that the largest distance between any
two points in a scenario is 1.



Notice that a fire factor ef does not depend on the specific fire
brigades attending it, but only on how many. Hence ef factors ful-
fill the condition to be Cardinality Potentials, and their BMS mes-
sages can be computed in O(N log(N)) time using the procedure
described in [26]. Likewise, the consistency constraints in equa-
tion (6) are OneAndOnlyOne THOPs (as described in Section 2),
and the agent factors raf depend only on one variable.

As a result, it is now possible to assess an approximate solu-
tion to our problem by applying BMS to the THOP-only model.
Furthermore, the complexity of each iteration of the algorithm is
reduced from the O(|F ||F ||A|) time of MS over the DCOP model
to O(|F ||A| log |A|) time of BMS with the THOP-only model.

5. INTER-TEAM COORDINATION
In the rescue scenario we consider here, a single-team (i.e., the

fire-fighters) can take better decisions by considering the operations
of other rescue teams (i.e., the police forces). Consider our exam-
ple in Figure 1. Fire brigades alone will try to avoid blocked fires.
However, this completely disregards the fact that police agents will
be removing blockades in the meantime so that fire brigades may be
able to reach blocked fires in the near future. To capture the interde-
pendencies between teams’ decisions, we argue that it is necessary
to perform inter-team coordination.

Here we present a methodology to enact inter-team coordination
to make team decisions considering a shared goal. Our method-
ology is intended to help the designer build a representation of
the complete inter-team coordination problem as a single utility
function. This is not an easy endeavor because, as the number
of "teams" grows, the global utility function becomes more and
more complex, possibly becoming unmanageable. Our methodol-
ogy proposes a modular construction of the global utility function
following the next steps:

1. Define independent coordination models for each team in-
volved in the inter-team coordination.

2. Identify the coordination objects that capture the interdepen-
dencies between teams. Such objects will serve to create co-
ordination variables, which are meant to act as interfaces be-
tween single-team coordination models.

3. Extend single-team coordination models to connect them to
the coordination variables.

At the end of this process, the global utility function is readily
obtained by simply adding up the extended single-team coordina-
tion models into a single function. Since, as we show below, the
resulting global utility function decomposes additively as a sum of
functions, the teams involved will be able to apply MS to assess
their decisions. A distinctive advantage of our methodology is that,
once coordination variables are defined, the designer does not need
to consider the whole inter-team coordination problem anymore.
That is, each team independently connects its intra-team coordina-
tion model with the coordination variables. Therefore, our method-
ology avoids the design complexity explosion.

Next we exemplify the application of our methodology to the
coordination of a team of fire brigades and a team of police forces.
For space reasons, we only present the THOP model in this part.

5.1 Define Independent Coordination Models
The first step in our methodology consists in separately defin-

ing the coordination models for each individual team involved in

inter-team coordination. In Section 4 we already introduced a co-
ordination model for a team of fire brigades. Hence, we just need
to develop a coordination model for a team of police forces.

The Police Team Model
Recall from section 3 that police patrols can remove blockades
from roads, freeing the paths for other types of agents to move
along. Hence, it is critical that policemen coordinate between them
to remove blockades as quickly as possible. Thus, the coordination
problem faced by the policemen team is to decide the assignment
of patrols to blockade removal tasks. As in the case of fire brigades
and fires, we encode an allocation of patrols to blockades using a set
of binary variables X = {xpb|p ∈ P, b ∈ B} where xpb is active
if patrol p is assigned to blockade b and inactive otherwise. Obvi-
ously, a patrol can not remove more than one blockade at a time.
Also, in RCS multiple patrols cannot work on the same blockade
at the same time. Hence, the goal of the police team coordination
problem is to compute the best allocation of patrols to blockades
where each patrol is assigned to at most one blockade and each
blockade is not assigned to more than one policemen. Thus, the
following constraints must be enforced:∑

b∈B

xpb ≤ 1 ∀p ∈ P (9)

∑
p∈P

xpb ≤ 1 ∀b ∈ B (10)

Similar to fire brigades, the utility of an allocation u(X) can be
decomposed in blockade factors eb and cost factors rpb, namely

u(X) =
∑
b∈B

eb(X.b)−
∑
b∈B

∑
p∈P

rpb(xpb). (11)

Since all patrols are assumed equally capable in RCS and block-
ades do not have distinguishing characteristics, we assign a utility
vB > 0 to attending any blockade. This utility is obtained when-
ever some patrol is assigned to remove that blockade. Thus:

eb(X.b) =

{
vB if nb(X.b) ≥ 1

0 otherwise.
(12)

where nb(X.b) is the number of patrols assigned to blockade b.
The cost of assigning a patrol p to service blockade b is anal-

ogous to what we did for the fire brigades. First, we introduce a
constant opb that is 0 if the blockade is directly accessible to the
patrol (no other blockade appears in the path between p and b), or 1
if the path from p to b is obstructed by some other blockade. Then
the cost is proportional to the square of the distance dpb between
the patrol and the target blockade, with an additional penalty Q if
the path is obstructed:

rpb(xpb) = xpb(d
2
pb + opbQ) . (13)

With these definitions, we can represent the full police forces coor-
dination model as the following optimization problem:

maximize
∑
b∈B eb(X.b)−

∑
b∈B

∑
p∈P rpb(xpb)

subject to
∑
b∈B xpb ≤ 1 ∀p ∈ P∑
p∈P xpb ≤ 1 ∀b ∈ B

xpb ∈ {0, 1} ∀p ∈ P ∀f ∈ F.

This problem can also be entirely encoded with THOPs. The
reasoning for the eb and rpb factors is analogous to the ef and raf



factors in the previous section. Then, the constraint in equation (9)
can be mapped to a factor of the form

AtMostOnep(X.p) =

{
0 if

∑
b∈B xpb ≤ 1

−∞ otherwise,
(14)

and the same holds for the constraint in equation (10).
Although no reference to the AtMostOne factor as being a THOP

appears in the literature, the expressions for the messages going
out from it are simple and can be derived similarly to those of the
OneAndOnlyOne factor in [17]. The assessment of the messages
for an AtMostOne factor in a BMS iteration can then be done in
time O(|B|).

5.2 Identify the Coordination Objects
In our RoboCup example the coordination objects between fire

brigades and policemen are blockades. On the one hand, police
forces should prioritize blockades that are actually preventing fire
brigades from performing their duties. On the other hand, fire
brigades would like to know which blockades will be removed in
the near future to make better decisions. Thus, we create a binary
coordination variable cb for each blockade b as a means of rep-
resenting the coordination objects relating police patrols and fire
brigades. The coordination variable for a blockade b must become
active whenever the blockade is to be removed in the near future,
or inactive otherwise.

In our particular example, these variables represent everything
our police forces and fire brigades need to know to coordinate with
each other. In other words, the coordination variables can be under-
stood as representing the common language between our individual
teams. Such language is intended to enable the fire brigades team
and the policemen team to exchange information about their inter-
dependencies regarding blockades.

5.3 Extending Single-Team Models
The third step in our methodology is to extend the independent

team models by connecting them to the coordination variables. Here-
after we extend both the fire brigades team model and the police
patrols team model to take coordination variables into account.

5.3.1 Extending the Fire Brigades Team Model
Fire brigades can modify their utility function provided that they

know which blockades will be removed by police patrols. In par-
ticular, the penalty associated to a blocked fire should be removed
whenever police patrols are planning to remove the blockade that
prevents the fire brigade from accessing it. The interface between
the fire brigades model and the coordination variables can be done
by simply adding an additional factor safb whenever fire brigade a
is being prevented from reaching fire f by blockade b.

safb(zaf , cb) =

{
M if cb is active and zaf is active
0 otherwise

. (15)

The role of this factor is essentially to cancel out the penalty in
equation 5 when the blockade b that is preventing fire fighter a to
reach fire f is being attended by some police agent.

5.3.2 Extending the Police Team Model
The internal variables of the police team should be consistent

with the semantics of the coordination variables cb above. Specif-
ically, cb must only be active if some police agent is attending b.
That is, variable cb is an indicator of whether any of the variables
in X.b are active. We can enforce this by adding a new Indicator

factor Ib(cb,X.b) for each blockade, defined as

Ib(cb,X.b) =


0 if cb = 1 and

∑
p∈P xpb ≥ 1

0 if cb = 0 and
∑
p∈P xpb = 0

−∞ otherwise
(16)

Ib is not known to be a THOP, but we can derive expressions for its
messages by noticing that it is a composite factor2 where cb defines
two partitions depending on whether it is active or not. When cb is
active, the factor is a Cardinality Potential that yields a utility of 0
when exactly one of the X.b variables is active, or −∞ otherwise.
When cb is inactive, the factor is an AllInactive3 factor between
the variables in X.b. Since the Indicator potential is a composite
factor, and in each of the partitions defined by cb we have a THOP,
we can efficiently assess the messages out of this factor in time
O(|B| log |B|).

At this point, we can construct the global utility function for
inter-team coordination. This results from adding the objective
function that results from extending the fire brigades team coordi-
nation model with the objective function that results from extending
the policemen team coordination model. Notice that such global
utility function represents the whole problem. Since this function
has been built as an additive composition of functions, we can read-
ily apply BMS to solve the inter-team coordination problem. The
execution of BMS yields an exchange of information from team
to team regarding coordination variables. Messages from brigades
to patrols will represent how much interested brigades are in po-
lice forces removing a blockade, whereas messages from patrols to
brigades convey the police team’s cost of removing a blockade.

6. EMPIRICAL EVALUATION
In this section we empirically evaluate the performance of our

task allocation mechanism for the fire and police teams. With this
aim, we compare BMS with the methods implemented in the RMAS-
Bench [8] platform, namely DSA and Greedy. DSA is a local
search algorithm executed in parallel by the participant agents. It
employs a stochastic parameter, DSAp, to control the amount of
parallelism allowed while running. This simple algorithm provides
surprisingly good results in many different problems, and its main
advantage is that it requires very low computation and communi-
cation efforts. In contrast, Greedy represents a simple greedy allo-
cation where each agent chooses the target that maximizes its indi-
vidual utility, without coordinating at all. These algorithms operate
over a standard (n-ary) DCOP model that suits them better and is
equivalent to the binary one presented here. We omit the details for
space reasons, but the entire source code used in this evaluation is
available for the interested reader [18].

We do not compare against standard MS because as explained
in [8] and in section 4.1.2, it incurs in exponential costs and fails
to assess a solution within the one second time limit enforced by
the simulator4. Although Fast MS [20] reduces this exponentiality
from O(dn) to (2n), unfortunately it is still unable to fulfill this
time limit. Furthermore, note that BMS will assess the same solu-
tion as both MS and Fast MS only at a lower cost.

6.1 Experimental setup
We run experiments on the standard scenarios used in the 2013

RoboCup competition, namely Paris and Kobe. However, we dis-
2A composite potential in [26],
3The messages for the AllInactive factor are trivial to derive. The
messages to all its variables are simply −∞.
4As explained in section 1, they tame MS costs by relaxing version
of the problem. In contrast, we work on the unrelaxed problem.



Figure 2: RCS viewer showing a running simulation. Red dots
are fire brigades, blue dots are police patrols, blacked out areas are
blocked roads and colored buildings are buildings on fire.

card the scenarios’ elements that are irrelevant for our evaluation,
i.e., everything but ignition points, police forces and fire brigades.
The algorithms have one second to compute an allocation at each
simulation step, and the simulation finishes either when all fires are
extinguished or after 300 steps. Additionally, we randomly block
5% of the roads at the beginning of the simulation. Hence, the order
in which police forces remove these blockades may have a notice-
able impact on the results, depending on how well the coordination
mechanism works.

After an extensive empirical evaluation, we fixed the utility func-
tion’s parameters to κ=2, γ=1.4, and ν=10, because these provided
the best results for all algorithms. Moreover, the utility of each fire
is vf = 4 − If , where If ∈ {1, 2, 3} is the fieriness of fire f
as reported by the simulator, and tf is the area of fire f divided
by 100. Intuitively, the fierier a fire is, the longer a building has
been burning, and the less valuable it is to contain. Additionally,
we scale all the utilities of the police forces model by 10−3 to give
more relevance to the fire brigades team than to the police agents
team. With the same objective, we set M = 100, and Q = 50,
so that blockades preventing fire brigades from reaching fires are
more important than blockades in the path of police agents.

Regarding algorithms’ parameters we set the number of maxi-
mum iterations for DSA and BMS to 100. Lowering the number
of iterations to 50 slightly decreased the quality of both algorithms,
whereas increasing them to 1000 did not improve the results, wast-
ing resources in both cases. We also employ the Anytime frame-
work from [30] to keep track of the best global solution (assign-
ment) each algorithm has found during all the iterations, and use
that as the final result. After testing with DSAp values ranging
from 0.1 to 0.9 (in 0.1 increments), we chose 0.1 because it yielded
the best results overall. In our DSA implementation agents always
prefer to switch tasks whenever they are in conflict. In fact, agents
tend to switch too much if a large p is used, explaining the rather
low DSAp value. It is well known that MS has problems to reach
convergence on factor graphs containing many loops. To overcome
these issues, we use a damping factor [5] of 0.9 in BMS. 5

5 The use of a damping factor δ in max-sum is a well-known tech-
nique that helps stabilize the algorithm. When using damping,

Table 1: Statistics for Greedy, DSA and BMS averaged over 30
runs in the Paris scenario (agents start acting after 25 iterations).

Algorithm Greedy DSA BMS
Score 5.29±0.79 % 2.94±0.43% 1.13±0.18 %
NCCCs 0.00±0.00 k 7.51±0.11 k 79.62±0.81 k
Num. Msgs 0.00±0.00 k 91.08±0.92 k 536.31±8.84 k
Total bytes 0.00±0.00 Kb 711.60±7.16 Kb 4189.92±69.03 Kb
CPU time 16.14±0.45 ms 220.91±7.02 ms 726.37±15.09 ms

Figure 2 shows a snapshot of a running simulation in the Paris
map. The white areas represent buildings and roads. A blacked out
road is currently blocked, and cannot be transited until some police
patrol (blue dot) clears it. In contrast, colored buildings represent
fires that the firefighters (red dots) must extinguish.

Against this background, we use the following metrics to evalu-
ate the performance of the different algorithms:

• Score: is the main performance metric used by the RoboCup
simulator. It evaluates the percentage of damage suffered by
the city, with 100% meaning that it has been completely de-
stroyed;

• NCCCs [14]: captures the per-iteration average amount of
non-parallelizable computation performed by the agents;

• Num msgs: tracks the average number of messages sent be-
tween all agents in a single iteration;

• Total bytes: is the average number of bytes per iteration sent
between all agents.

In the following section we summarize the main results of our ex-
perimental evaluation.

6.2 Results
Table 1 shows the results we obtained on the Paris map with a

start time of 25 simulation steps6 averaged over 30 simulations.
BMS clearly achieves the best score, with only 1.13% of the city
damaged. In contrast, more than twice as many buildings burn
down when using DSA, and more than four times with the Greedy
algorithm. This gain in quality comes at a cost though. Greedy
agents obtain the worst results in quality but require no coordina-
tion resources. DSA requires few computational resources and rel-
atively low communications, whereas BMS computes an order of
magnitude more than DSA, and requires substantially more band-
width. Nonetheless, taking into account that an iteration of the
RCS represents one minute of real time, all these costs are within
an acceptable range. We also experimented with a closest alloca-
tion method, where an agent is assigned to the closest task. Such
method has been frequently used in the RCS as a benchmarking
approach for task allocation (e.g., see [15]). With that method fire
agents spend too much time watering down old fires (which are un-
likely to spread), and an average of 49% of the city gets damaged.
This result indicates that our utility function is properly capturing
the characteristics of the problem.

Next we assess the behavior of the different algorithms when the
amount of fire and police agents decreases. Overall, Figure 3(a)

each sent message µ̂ic→t is a weighted average between the latest
computed message and the message sent in the previous iteration,
namely µ̂ic→t = δµic→t + (1− δ)µ̂i−1

c→t.
6This prevents agents from executing any action for 25 time steps,
so that fires have time to spread.
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(b) Coordinated vs uncoordinated teams (noteam)

Figure 3: Performance comparison when decreasing the agent re-
sources. Results are averaged over 30 runs and error bars represent
the standard error of the mean.

shows that BMS coordinated agents achieve significantly better re-
sults than DSA and Greedy in all but the worst conditions. Namely,
BMS prevents around 2.5 times more damages than DSA, and around
4 times more damages than Greedy. This trend continues when
the amount of available police and fire brigades decreases. For in-
stance, BMS saves 85.4% of the city when there are only 21 fire
brigades and 10 police patrols, whereas DSA saves only 62.9% of
the buildings and Greedy an even lower 54%. However, there is
a point where there are so few agents that the situation is helpless
and most of the city gets damaged. In this scenario, we observe
this effect when we reduce the resources to 15 fire brigades and 5
police agents. At this point all algorithms obtain fairly similar re-
sults, and DSA becomes the best strategy thanks to its greedy but
still coordinated nature.

While Figure 3(a) shows that both DSA and BMS outperform
the Greedy strategy given a sensible number of rescue agents, we
cannot be sure whether this is purely because of the algorithm or
thanks to the inter-team coordination. Therefore, we repeated the
above experiments using BMS and DSA, but now without the inter-
team coordination constraints. Figure 3(b) shows the results we ob-
tained, where “DSA (noteam)” and “BMS (noteam)” represent the
corresponding algorithms but without the inter-team constraints.
The results are particularly revealing. On the one hand, the al-
gorithms without inter-team coordination perform similarly. BMS
provides slightly better results when there are more agents, but the
differences become insignificant (according to a Wilcoxon signed-
rank [27] test with p = 0.01) when the number of agents decreases
past 27 fire brigades and 15 police patrols. On the other hand, both
algorithms perform notably better when employing our inter-team
coordination constraints, thus validating our inter-team methodol-
ogy and the resulting model.

Furthermore, the gains from inter-team coordination are clearly
larger for BMS than for DSA. This difference has a simple expla-
nation. Notice that the inter-team constraints require an agent (es-

pecially police patrols) to temporarily worsen its own individual
outcome (by attending a farther blockade) to realize the inter-team
gains (to allow a firefighter to reach a more important fire). Now
recall that DSA is essentially a greedy algorithm. In contrast, Max-
Sum is the only known local-state DCOP algorithm that does not
operate in a greedy manner. Therefore, the Max-Sum algorithm
(and BMS by extension) is intrinsically better equipped to exploit
these coordination situations where some temporary individual sac-
rifice must be made to achieve a greater outcome.

Finally, we conducted similar experiments in the 2013’s Kobe
scenario. The observed trends are the same, but the differences
between algorithms are smaller because the problem is easier: in
Kobe there is only one fire focus and the map is small and much
easier to navigate.

7. CONCLUSIONS
We presented a methodology that allows multiple teams to make

joint allocations by enabling them to coordinate during the task al-
location process. Using this methodology, we developed a model
for inter-team coordination of firefighters and police forces. We
have shown that some typical inter-team coordination interactions
can be effectively modeled by means of THOPs allowing MS mes-
sages to be assessed in polynomial time in such complex scenarios.
To the best of our knowledge this is the first time where it has been
shown that MS can be run in polynomial time without simplifying
the associated model. Experiments with fire brigades and police
agents show that teams employing inter-team coordination are sig-
nificantly more effective than uncoordinated teams. Moreover, the
evaluation shows that our BMS and THOPs method achieves up
to 2.5 times better results than other state-of-the-art methods. Fur-
thermore, the gains from inter-team coordination are clearly larger
for BMS than for alternative algorithms with a greedy inspiration.
Therefore, we have seen that the Max-Sum algorithm (and BMS
by extension) is intrinsically better equipped to exploit these coor-
dination situations.
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