
[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 763 763–789

On the complexity of Bounded
Second-Order Unification
and Stratified Context Unification

Jordi Levya , Manfred Schmidt-Schaußb and Mateu Villaretc

aIIIA, CSIC, Campus de la UAB, Barcelona, Spain, bInstitut für
Informatik, FB Informatik und Mathematik, Goethe-Universität, Postfach
11 19 32, D-60054 Frankfurt, Germany and cIMA, UdG, Campus de
Montilivi, Girona, Spain

Abstract
Bounded Second-Order Unification is a decidable variant of undecidable Second-Order Unification. Stratified Con-
text Unification is a decidable restriction of Context Unification, whose decidability is a long-standing open problem.
This paper is a join of two separate previous, preliminary papers on NP-completeness of Bounded Second-Order
Unification and Stratified Context Unification. It clarifies some omissions in these papers, joins the algorithmic
parts that construct a minimal solution, and gives a clear account of a method of using singleton tree grammars
for compression that may have potential usage for other algorithmic questions in related areas.

Keywords: Lambda-Calculus, Tree Grammars, Context Unification, Bounded Second-Order Unification

1 Introduction

Bounded Second-Order Unification (BSOU) is a decidable variant of the undecidable
Second-Order Unification Problem (Goldfarb, 1981). Stratified Context Unification (SCU)
is a decidable restriction of Context Unification, whose decidability is a long-standing
open problem. This paper is a join of two separate previous, preliminary papers on NP-
completeness of Bounded Second-Order Unification (Levy et al., 2006a) and Stratified Con-
text Unification (Levy et al., 2006b), which adds more explanation and proofs, and also gives
a simplified account of the common structure of the algorithmic and the proof parts. The
main idea of the proof is, given a unification problem, to guess a polynomially-sized (com-
pressed) representation of a minimal unifier, and then test (in polynomial time) whether
this is really a unifier. This is a paradigmatic method to show that a unification problem is
in NP. We will explain the details below.
Second-Order Unification (SOU) is unification in the simply typed lambda calculus
(Dowek, 2001) restricted to terms with variables of order at most two and function symbols
of order at most three. In other words, the problem of, given two λ-terms of the same type
that satisfy the previous conditions, deciding if there exists a substitution of free variables
(unknowns) by equally typed terms, such that when applied to both terms result in the same
term modulo αβη-equality. Second-Order Unification is undecidable (Goldfarb, 1981). It is

levy@iiia.csic.es (Jordi Levy) schauss@ki.informatik.uni-frankfurt.de (Manfred Schmidt-Schauss)
villaret@ima.udg.es (Mateu Villaret)

Vol. 19 No. 6, © The Author 2010. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/jigpal/jzq010 Advance Access published 5 May 2010

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 764 763–789

764 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

undecidable even under severe restrictions like the number of second-order variables (just
one), their number of occurrences (just four) or their arity (Farmer, 1991; Levy and Veanes,
2000). In addition, all these languages require having function symbols with arity at least
two. In (Farmer, 1991) and (Levy and Villaret, 2002) it is proved that one single binary func-
tion symbol is enough to get undecidability. The fragment, where arities of function symbols
is at most one, called Monadic Second-Order Unification (MSOU), is decidable (Farmer,
1988). In (Levy et al., 2004) and (Levy et al., 2008) we prove the NP-completeness of MSOU,
where the method of guessing a compressed representation (as a string) and then checking
unifiability, is similar to the method used in this paper. Apart from these syntactic restric-
tions on the equations of Second-Order Unification, there may be semantic restriction on
the permitted solutions.
Bounded Second-Order Unification (BSOU) is a variant of Second-Order Unification where
instantiation of second-order variables in the unifier can use their arguments only a bounded
number of times. In (Schmidt-Schauß, 2004) the decidability of this problem is proved,
where the algorithm has at least a worst-case exponential execution time. In this paper we
investigate a simplification of it: second-order variables are at most unary and instantiation
can use their argument once or ignore the argument. In (Schmidt-Schauß, 2004) the general
case of Bounded Second-Order Unification is NP-reduced to this restricted case.
Context Unification (CU) is typically defined as an extension of First-Order Unification
where context variables are allowed. These variables have arity one and can only be instanti-
ated by contexts, i.e. terms with a hole, where their argument will be “plugged in’’. Context
Unification can also be defined as a variant of Second-Order Unification with the syntactic
restriction of having at most unary variables, and the semantic restriction is that instances
of second-order variables use their argument exactly once. Despite the similarities between
Context Unification and the simplification of Bounded Second-Order Unification that we are
considering, decidability of Context Unification is an open problem, even under the restric-
tion of having at most one binary function symbol (Levy and Villaret, 2002). Nevertheless,
there are some decidable fragments, like the case where at most two second-order variables
are permitted (Schmidt-Schauß and Schulz, 2002) or the case where at most two occurrences
per variable are permitted (Levy, 1996), and other variants (Levy et al., 2005; Kutsia et al.,
2007).
Stratified Context Unification (SCU) is a fragment of Context Unification where the nest-

ing of second-order variables is restricted to be the same for all occurrences of the same
variable. Stratified Context Unification is decidable (Schmidt-Schauß, 2002). As we can see
from the definitions of the problems, Bounded Second-Order Unification and Stratified Con-
text Unification are quite similar problems. Also the algorithms have lots in common, though
there are also significant differences in semantics and in the algorithm.
Minimal-size solutions for these problems may be exponentially large in the size of the
equations. In this paper, we show that for any bounded second-order, or context equation
s ?= t, and any minimal solution σ, we can represent σ(s) and σ(t) by means of a polyno-
mially sized Singleton Tree Grammar (STG), where the main purpose is a compression of
terms. STGs are a generalization of singleton context free grammars, which can compress
words. This method is a variant of so-called straight-line programs (Plandowski and Rytter,
1999), which are used to describe and analyze compression technique for words. A cen-
tral theorem for these compression techniques is the Theorem of Plandowski, that shows
that the equality test of two compressed words can be done in polynomial time in the
size of the compression (Plandowski, 1994, 1995). For more information and complexity

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 765 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 765

analyses see (Lohrey, 2006; Lifshits, 2007). In (Busatto et al., 2005; Schmidt-Schauß, 2005)
and (Lifshits, 2006, 2007) it is proved that, given a singleton tree grammar, we can
decide in polynomial time (O(n3)) on the size n of the grammar whether two non-
terminals define the same word, by using the corresponding results for words. These results
serve us to show the NP-ness of Bounded Second-Order Unification and Stratified Con-
text Unification, and hence, together with their NP-hardness proved in (Schmidt-Schauß,
2004) and (Schmidt-Schauß, 2002), to obtain their NP-completeness. Similar techniques
to describe efficient algorithms and good complexity bounds for unification algorithms
using SCFGs are in (Levy et al., 2008) for solving monadic second-order unification. Effi-
cient context-matching and first-order matching using STGs is described in (Gascón et al.,
2008), and efficient first-order unification of already compressed terms in (Gascón et al.,
2009).
The ideas behind the proof of the bound on the size of the grammar for representing size-
minimal solutions are the following. Typical proofs of unification decidability/complexity
start by proving that some unifier σ of a problem s ?= t can be decomposed as

σ =[Xn �→un]◦···◦[X1 �→u1] (1)

where n is bounded by some function of the size of the problem, and ui ’s can be constructed
from a bounded number of pieces of the previous partial instances

[Xi−1 �→ui−1]◦···◦[X1 �→u1](s) ?=[Xi−1 �→ui−1]◦···◦[X1 �→u1](t) (2)

From the proof, we can usually derive an algorithm that finds the unifier as follow. For i=
1,...,n, we iteratively find the term ui , and apply the substitution [Xi �→ui] to the problem.
In the case of First-Order Unification, the situation is very simple. Variables X1,...,Xn

are original variables from the problem, where n is bounded by the size of the problem.
Moreover, since ui ’s are subterms of the original problem, we do not need to instantiate the
problem each time we find one of these ui ’s and may reuse them. This results in a polynomial
version of the well-known Robinson-algorithm that works on term-dags.
Decidability proofs of Bounded Second-Order Unification and Stratified Context Unifica-
tion also follow this schema. However, to prove the tight complexity bound of this paper,
we will follow a quite different approach. We will prove that for size minimal solutions we
only need a polynomially bounded number or partial instances like (2), and that the terms
and contexts ui ’s required to obtain these partial instances can be built using a polynomial
number of pieces like prefixes, suffixes, concatenations of contexts and subcontexts from

[Xi−1 �→ui−1]◦···◦[X1 �→u1](s) ?=[Xi−1 �→ui−1]◦···◦[X1 �→u1](t)

In some cases, we will also require to rise the resulting contexts to a power exponentially
bounded by the size of the original problem. The proofs of these properties of minimal-size
solutions rely also on the algorithms described in (Schmidt-Schauß, 2004, 2002).
From these results we can not directly prove the NP-ness of these problems. Although
everything is polynomially bounded, the need of instantiating s ?= t as (2) such that ui can

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 766 763–789

766 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

be computed from it, makes the size of the problem increasing as a composition of a polyno-
mially bounded number of polynomials, and this is not just a polynomial. So we need other
methods to show a polynomial size bound.
In Section 3 we prove that, using Singleton Tree Grammars, we can represent these min-
imal solutions in polynomial space. The basic idea is that given a grammar that represents
(2), we can also represent [Xi �→ui]◦···◦[X1 �→u1](s) ?=[Xi �→ui]◦···◦[X1 �→u1](t) by extend-
ing the grammar. As we have said, ui is built reusing pieces resulting from prefixes, suffixes,
concatenations of contexts, subcontexts and exponentiations. We can extend the grammar
in a controlled manner to construct these pieces, and at the end, these extensions result in a
polynomial size STG. An improvement over earlier techniques is to use the so-called Vdepth
that allows us to show that a polynomial number of instantiations of variables, as done in
constructing unifiers in a unification algorithm, leads to polynomial space increase. This
technique is already used in (Gascón et al., 2009) for first-order unification and extended in
this paper to instantiations of second-order variables.
The structure of the paper follows the main ideas in the proof. In Section 2 we define some

necessary notations and notions. In Section 3, the grammar mechanism of STGs is described.
In particular, the construction methods for new pieces are explained, and detailed method
for estimating the size increase by different constructions is given. In Section 4 there is a
joint construction method for minimal-size solutions of bounded second-order unification
problems as well as for stratified context unification problems. Finally, we can summarize
and present the obtained results in Section 5.

2 Preliminaries

We use a signature �=⋃
i≥0�i , where constants of �i are i-ary, and a set of variables

X =⋃
i=0,1Xi , where variables of Xi are also i-ary. Variables of X0 are therefore first-order

variables and those of X1 are (unary) second-order variables. We assume that �0 �=∅ and
�2 �=∅. Notice that we do not consider second-order variables with arity greater than one.
We denote variables with capital letters Z , if it may be first-order as well as second-order
variables, and use the convention that X ,Y mean second-order variables, and x,y,z mean
first-order variables. Constants are denoted by lower-case letters a, b, f , g,…respectively,
and the arity of a constant f is denoted as ar(f). First-order terms are built using the
grammar t ::=x | f (t1,...,tar(f)) | X(t), where f ∈�, x ∈X0, and X ∈X1. Second-order terms
or functions are built using the grammar s ::=λz .t, where t is a first-order term, and z a
first-order variable. Notice that, like for variables, we do not consider terms with more than
one parameter. Terms are denoted as r,s,t,u,v,....
The set of variables occurring in terms or other syntactic objects is denoted as Var(·).
A term without occurrences of free variables is said to be ground. The size of a term t is
denoted |t|. It is defined for first-order terms as their number of symbols, and for second-
order terms λz .t as the number of symbols of t but not counting occurrences of z . We
use positions in terms, denoted p,q, as sequences of non-negative integers following Dewey
notation. In f (t1,...,tn) or X(r), respectively, the position of the function symbol and the
second-order variable is the empty word denoted as ε, and the position of the ith argument
is i. The symbol at position ε is also called the head of the term, p≺q denotes the prefix
relation, p·q the concatenation, and t|p the subterm at position p of t.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 767 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 767

Terms that contain a single occurrence of the hole [·], which is syntactically like an extra
0-ary constant, are called contexts. We denote contexts by lower case letters c,d,.... If the
term s or context d, respectively, is plugged into the hole of c, i.e. the hole is replaced by s, or
d, respectively, then we denote the result as the term c[s], or the context c[d], respectively.
The latter is also denoted as c ·d. The position of the hole in a context d is called main
path, denoted mp(d), and the length of the main path is called the main depth of d. If
d1=d2[d3], for contexts di , then d2 is called a prefix of d1, and d3 is called a suffix of d1.
Concatenation c1[...[cn]...] is written c1 · ...·cn . The notation dn , for a context d and n∈N,
means concatenation of n copies of the context d. If t=d[s] for some s, then d is a prefix
context of the term t. A subcontext of a context or term is a prefix of some suffix or a prefix
context of some subterm. A second-order term λz .t where z occurs in t exactly once is called
a linear function, and if z does not occur in t, a constant term function. Contexts and linear
terms are equivalent, and the hole replacement can be seen as a function application. Thus,
we will not distinguish between the linear term λz .f (z) and the context f [·]. Therefore, the
size of a context is its size as a term but not counting the hole, and the size of a constant
function λz .t is the size of t as a term.
Second-order substitutions, denoted by greek letters σ,θ,..., are functions from terms to

terms, defined as usual, where first-order-variables are mapped to first-order terms, and
second-order variables are mapped to second-order terms. When all second-order vari-
ables are mapped to linear functions (i.e. contexts), we call it a context substitution,
and when all second-order variables are mapped to either linear or constant term func-
tions, we call it a bounded substitution. The application of a substitution σ to a term t
is written σ(t), where we always assume that the result is a term, i.e. if σ =[X �→c] or
σ =[X �→λz .c[z]], then σ(X(s))=c[σ(s)], and if σ =[X �→λz .t], where z does not occur in
t, then σ(X(s))= t.

2.1 Second-Order Unification Problems
We consider two kinds of unification problems in this paper: stratified context unification
problems and bounded second-order unification problems. Note that in (Schmidt-Schauß,
2004), a more general condition is used, but it is shown there that the general case can be
NP-reduced to the case considered here, under mild restrictions.
A second-order unification problem is a set of equations E={t1 ?=u1,...,tn ?=un}, where ti
and ui are first-order terms. The size of an equation E is denoted as |E | and is the number
of its symbols. We assume that equations are symmetric. A second-order substitution σ is
said to be a bounded unifier (context unifier, respectively) of E , if σ is a bounded substi-
tution (context substitution, respectively), and for all i=1,...,n, σ(ti)=σ(ui). A (bounded
or context) unifier σ is said to be a (bounded or context) solution of E , if for all i=1,...,n
σ(ti) and σ(ui) are ground. If E has a bounded unifier (context unifier, respectively), then
we say that E is bounded-unifiable (context-unifiable, respectively). Similarly for solutions
and solvability.
It is easy to see that the following holds (the proof relies on the assumption �0 �=∅):

Lemma 2.1
1. For every bounded-solvable set of equations E, there exists a bounded solution σ, such
that every function symbol g with ar(g)≥1 occurring in σ(E), also occurs in E.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 768 763–789

768 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

2. For every set of equations E, we have E is bounded-unifiable if, and only if, E is bounded-
solvable.

The next lemma is specialized to context unifiers and solutions (the proof relies on the
assumptions �0 �=∅ and �2 �=∅):
Lemma 2.2
1. For every context-solvable set of equations E, if E contains a function symbol f with
ar(f)≥2, then there is also a context solution σ, such that every function symbol g with
ar(g)≥1 occurring in σ(E), also occurs in E.

2. For every context-solvable set of equations E, if all function symbols f occurring in E
satisfy ar(f)≤1, then there exists a context solution σ, such that σ(E) only contains
function symbols occurring in E and at most one binary function symbol.

3. For every set of equations E, we have E is context-unifiable if, and only if, E is context-
solvable.

Note that the second case of Lemma 2.2 occurs in the equation X(a) ?=Y (b). It has a
context solution [X �→ f (b,[·]),Y �→ f ([·],a)], but it has no context solution using only the
symbols occurring in the equation. Note, however, that there is a bounded solution [X �→
λz .a,Y �→λz .a] that only uses function symbols of the equation.
Since we assume that the signature contains at least one binary function symbol, w.l.o.g.
we can restrict E to consist of just one equation.
A bounded solution (context solution, respectively) σ of an equation E is said to be size-
minimal if it minimizes

∑
Z∈Var(E) |σ(Z)| among all bounded solutions (context solutions,

respectively) of E . Size-minimal bounded solutions (context solutions) of a second-order
problem satisfy the exponent of periodicity lemma (Makanin, 1977; Kościelski and Pacholski,
1996; Schmidt-Schauß and Schulz, 1998; Schmidt-Schauß, 2002, 2004):

Lemma 2.3 (Schmidt-Schauß (2002, 2004)) There exists a constant α∈R such that, for every
equation E, and every size-minimal bounded solution (context solution, respectively) σ, every
variable Z, every nontrivial context d, and any n∈N, if dn is a subcontext of σ(Z), then
n≤2α|E |.

In the following, we denote by eop(σ) the maximal n such that, for nontrivial d, dn([·])
is a subcontext of σ(Z), for some variable Z .
The next lemma helps us to avoid the use of constant term functions in the construction
of a compressed solution.

Lemma 2.4 For every equation E and every size-minimal bounded solution σ, we can find a
decomposition σ ′ ◦ρ of σ, such that σ(Z)=(σ ′ ◦ρ)(Z) for all variables Z ∈Var(E) and σ ′ is
a size-minimal context solution of ρ(E) and ρ has the form ρ=[X1 �→λz .x ′

1,...,Xn �→λz .x ′
n],

for some second-order variables X1,...,Xn and first-order variables x ′
1,...,x ′

n.

PROOF. Let σ be σ =[X1 �→λz .t1,...,Xn �→λz .tn,Y1 �→c1,...,Ym �→cm,x1 �→u1,...,xr �→ur],
where we have distinguished between variables Xi that are instantiated by constant func-
tions, and variables Yj that are instantiated by contexts. We can decompose σ as ρ=[X1 �→
λz .x ′

1,...,Xn �→λz .x ′
n] and σ ′ =[x ′

1 �→ t1,...,x ′
n �→ tn,Y1 �→c1,...,Ym �→cm,x1 �→u1,...,xr �→ur],

for some fresh first-order variables x ′
1,...,x ′

n . It is easy to see that if σ ′ is not minimal for
ρ(E), then σ is not minimal for E .

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 769 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 769

We say that a set of equations E is stratified if for every variable Z ∈Var(E), for every
pair of occurrences p1,p2 of Z in the terms of E , the sequence of second-order variables on
the path p1 and on the path p2 are the same. Here, we mean that X is on the path p in t, if
for some prefix p′ of p, t|p′ is of the form X(r). For example, X(g(b,Y (b))) ?=X(Y (g(x,b)))
is stratified, whereas f (X(a)) ?=Y (f (X(a))) is not stratified.
Bounded Second-Order Unification is defined as the problem of deciding if a given set
of second-order equations E has a bounded unifier, and Stratified Context Unification is
defined as the problem of deciding if a given set of stratified second-order equations has a
context unifier.

3 Singleton Tree Grammars (STG)

We define Singleton Tree Grammars (STG) as a generalization of Singleton Context
Free Grammars (SCFG) (Levy et al., 2004; Plandowski, 1994), extending the expres-
sivity of SCFGs by terms and contexts. This is consistent with the definitions given
by Schmidt-Schauß (2005) and Busatto et al. (2005), with straight line programs, and
with the context free tree grammars (Rounds, 1969; Engelfriet and Schmidt, 1977, 1978;
Comon et al., 2007). However, it is a special case, where only one parameter is used. In a
recent paper (Lohrey et al., 2009), it was shown that multi-parameter compression can be
linearly encoded as one-parameter compression (as used here) if compression is concerned.

Definition 3.1 (Singleton Tree Grammar) A singleton tree grammar (STG) is a 4-tuple G=
(T ,C,�,R), where T are tree symbols, C are context symbols, and � is a signature of terminal
symbols, such that the sets T , C, � are pairwise disjoint.
The rules in R may be of the form:

A1 ::= A2
A1 ::= C [A2]
A ::= f (A1,...,An)
C1 ::= C2
C1 ::= C2 ·C3
C ::= [·]
C ::= f (A1,...,Ai−1,[·],Ai+1,...,An)

where A,Ai ∈T and C ,Ci ∈C are nonterminals, and f ∈�, with arity n≥0, is terminal.
For every nonterminal D∈T ∪C there is at most one rule having D as left hand side.
Given two nonterminals D1,D2∈T ∪C, we say that D1>G D2, if D2 occurs in the right-hand
side of the rule deriving D1. The STG must be non-recursive, i.e. the transitive closure >+

G
must be terminating.
Given a term t with occurrences of nonterminals, the derivation ∗−→G by G is an exhaustive
iterated replacement of the nonterminals by the corresponding right hand sides, using the
convention for second-order terms, until there are no more applicable rules. The result is
denoted as valG(t), and may contain non-terminal symbols, because there can be non-terminal
symbols without deriving rules.
In the case of nonterminals A∈T and C ∈C, we also say that G defines valG(A) or valG(C),
respectively.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 770 763–789

770 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

If the grammar G is clear, we omit the index in our notation. Usually, less rule possibilities
are sufficient for the expressiveness, e.g. the rules C1 ::=C2 and A1 ::=A2 could be eliminated,
however, we keep them, since during generation of instantiations of terms in Section 4, we
have to add such rules.

Definition 3.2 (Size and Depth of a Grammar) The size |G| of a grammar (STG) G is the
number of its rules.
The depth of a nonterminal D w.r.t. a grammar G, denoted depthG(D), is defined as the
maximal number of >G-steps from D.
The depth of a grammar, denoted as depth(G), is the maximum of the depths of all non-

terminals.

As a generalization of a theorem by Plandowski (1994, 1995), (see also (Busatto et al.,
2005), (Schmidt-Schauß, 2005) and (Lifshits, 2006, 2007)) the following theorem holds:

Theorem 3.3 Given an STG G, and two tree nonterminals A,B from G, it is decidable in
polynomial time O(|G|3) whether valG(A)=valG(B).

3.1 Depth of a Grammar Relative to Sets of Non-Terminals
We can generalize the definition of depth of a nonterminal, making it relative to a set of
nonterminals. This technique was introduced by Gascón et al. (2009), and is extended here.
The use of this measure, in addition to the depth and size of the grammar, allows us to
avoid the use of complicated compression techniques in (Levy et al., 2006a).

Definition 3.4 (Vdepth) The Vdepth of a nonterminal symbol D w.r.t. a grammar G and
a subset of nonterminals V of G, denoted VdepthG(D,V), is defined as depthG ′(D), where
G ′ is constructed from G by removing all the rules deriving v, for v∈V, i.e. by treating all
symbols in V as terminals.
The number Vdepth(G,V) is defined as the maximum of all VdepthG(D,V), for all non-
terminals D of G.

In the following, when we say an STG (G,V) we mean a grammar G and a subset V of its
nonterminal symbols.

Lemma 3.5 For any STG G, and set of nonterminal symbols V

depth(G)<(Vdepth(G,V)+1)(|V |+1)
PROOF. Since <G is not cyclic, a maximal <G -chain is as follows

D1,1<G ···<G D1,n1 <G v1<G D2,1<G ···<G D2,n2 <G v2<G ···<G v|V | <G D|V |+1,1<G ···
<G D|V |+1,n|V |+1

where vi ∈V . There are at most |V |+1 subsequences without symbols of V , and the maximal
length of such a sequence is Vdepth(G,V).

3.2 Grammar Extensions
The following lemmas state how the size and the Vdepth of the grammar are increased by
extending the STG with concatenations, exponentiation, prefixes, suffixes and subterms of

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 771 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 771

contexts, and subterms and subcontexts of terms. When using log, we mean the binary
logarithm.
The Vdepth/depth/size bounds for these operations are related to balancing conditions
for trees. In other words, the main idea is to use balanced concatenations of a list of contexts,
whenever possible. For instance, if we want to represent d16 where d= f (g([·])), then this
can be done by concatenating a sequence of 16 d’s: d ·····d. First we add the rules D ::=
D′ ·D′′,D′ ::= f ([·]) and D′′ ::=g([·]). The unbalanced possibility is to do it sequentially like
D1 ::=D ·D,D2 ::=D1 ·D, …, D15 ::=D14 ·D, which produces an STG of depth 15. Construct-
ing d16 by a divide-and-conquer method produces a balanced grammar: {D1 ::=D ·D,D2 ::=
D1 ·D1,D3 ::=D2 ·D2,D4 ::=D3 ·D3} of depth 4, which is logarithmic in the number of contexts
that have to be concatenated.

Definition 3.6 (Grammar Extension) We say that a STG G ′ =(T ′,C ′,�,R′) is a grammar
extension of another STG G=(T ,C,�,R), denoted G ′ ⊇G, if T ′ ⊇T , C ′ ⊇C and R′ ⊇R.

Lemma 3.7 (Combining) Let G be an STG with an n-ary function symbol f in its signature
and defining n−1 terms t1,...tn−1. Then, there exists a grammar extension G ′ ⊇G that, for
a given position of the hole, defines the context f (t1,...,[·],...,tn−1) and satisfies, for every
set V ,

|G ′|≤|G|+1
Vdepth(G ′,V)≤Vdepth(G,V)+1

PROOF. Let A1,...An−1 be the non-terminals of G defining the terms t1,...tn−1 respectively.
We simply need to add the rule A ::= f (A1,...,[·],...An−1).
Lemma 3.8 (Concatenation) Let G be an STG defining the contexts c1,...,cn, for n≥1. Then
there exists a grammar extension G ′ ⊇G that defines the context c1 ·····cn and satisfies, for
every set V ,

|G ′|≤|G|+n−1
Vdepth(G ′,V)≤Vdepth(G,V)+logn+1

PROOF. The construction is by divide and conquer and adding fresh nonterminals. First, add
rules to construct the concatenation of the first n/2 contexts such that the nonterminal C1
defines this concatenation.Similarly, let C2 be the context defining the second half. Then
construct the whole concatenation adding the rule C3 ::=C1 ·C2. The Vdepth bound is then
obvious.

Lemma 3.9 (Exponentiation) Let G be an STG defining the context c. For any n≥1, there
exists a grammar extension G ′ ⊇G that defines the context cn and satisfies, for every set V ,

|G ′|≤|G|+2logn
Vdepth(G ′,V)≤Vdepth(G,V)+logn+1

PROOF. The proof uses the same ideas as the previous lemma.

Lemma 3.10 (Prefix and Suffix) Let G be an STG defining the context c. For any nontrivial
prefix or suffix c′ of the context c, there exists a grammar extension G ′ ⊇G that defines c′,

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 772 763–789

772 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

and satisfies, for every set V ,

|G ′|≤|G|+depth(G)−1
Vdepth(G ′,V)≤Vdepth(G,V)+log(depth(G))+1

PROOF. For suffixes, let C be the nonterminal that derives into the context c. We recursively
compute a list of contexts list(C) as follows (written as a sequence): if the rule that derives
C is C ::=C ′, then list(C)= list(C ′); if the rule is C ::=[·], then list(C)=[·]; and if the rule
is C ::= f (A1,...,Ai−1,[·],Ai+1,...,An), then list(C)= f (A1,...,Ai−1,[·],Ai+1,...,An). Finally,
if the rule is C ::=C1 ·C2, then depending on where the hole of c′ should be, either list(C)=
list(C2) or list(C)= list(C1);C2. This will produce a list of at most depth(G) nonterminals
of G. The concatenation will represent the desired suffix c′ of c. Then, Lemma 3.8 gives the
stated bounds.
For prefixes, we first compute a list of contexts top-down and then construct the con-
catenation. This may produce a list of depth(G) contexts. Thus, Vdepth(G ′)≤Vdepth(G)+
log(depth(G))+1
Lemma 3.11 (Subterm) Let G be an STG defining the context c or term t. For any nontrivial
subterm t ′ of the context c or of the term t, there exists a grammar extension G ′ ⊇G that
defines t ′ and satisfies, for every set V ,

|G ′|≤|G|+depth(G)
Vdepth(G ′,V)≤Vdepth(G,V)+log(depth(G))+2

PROOF. There are two possibilities: either there is already a tree nonterminal defining u,
then we are finished, or, by recursively descending, there is a rule A1 ::=C [A2], and t ′ has to
be constructed as C2[A2], where C2 defines a suffix of C . So, we have the same estimations
as for the suffix given by Lemma 3.10, but there is one additional symbol and rule and a
possible further increase of |G| and Vdepth(G ′,V) by 1.

Lemma 3.12 (Subcontext) Let G be an STG defining the term t. For any nontrivial prefix
context c of the term t, there exists a grammar extension G ′ ⊇G that defines c and satisfies,
for every set V ,

|G ′| ≤ |G|+depth(G)(depth(G)+3/2)
Vdepth(G ′) ≤ Vdepth(G)+2log(depth(G))+4

PROOF. Let A be the nonterminal symbol defining the term t=valG(A) and let p be the
main path of c.
First we show by induction that we can extend the grammar and generate a list of context
nonterminals that can be concatenated to construct c. The induction is on depthG(A).
The base case is that depthG(A)=0, that implies c=[·] and |p|=0. In this case the list is

empty.
For the induction step we consider the (nontrivial) different possibilities for rules deriv-
ing A:

1. The rule is A ::= f (A1,...,An) and p=kp′. Then, we extend the grammar with the rule
C1 ::= f (A1,...,[·]k ,...,An), where C1 is a fresh context (nonterminal) symbol. The list
of context nonterminals is then C1 concatenated with the list generated inductively for
Ak and p′, where depthG(Ak)≤depthG(A)−1.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 773 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 773

2. The rule is A ::=C [A′]. There are some subcases:
(a) If p is a prefix of mp(valG(C)), then we construct the list of context nonterminals, as
in the proof of Lemma 3.10, for the prefix of valG(C) until position p. This list has
length at most depthG(C). The grammar has to be extended with at most depthG(C)
new rules.

(b) If mp(valG(C)) is a prefix of p, then p=mp(valG(C))p′, for some p′, and we construct
the list of contexts nonterminals as C concatenated with the list generated inductively
for A′ and p′, where depthG(A′)≤depthG(A)−1.

(c) Otherwise, the position p is within valG(C) but it is not a prefix of mp(valG(C)).
Then, p=p′kp′′ and mp(valG(C))=p′k ′p′′′, for some k �=k ′, and for some p′, p′′ and
p′′′. Hence, p′ is the longest common prefix of p and mp(valG(C)). Since contexts are
unary, we have a n-ary function symbol f with n≥2 in the splitting point of the two
paths. Therefore, there must be a rule C ′ ::= f (B1,...,[·]k ′ ,...Bn), where k �=k ′. Assume
w.l.o.g. k<k ′. We extend the grammar with the rules

C1 ::=C2 ·C3
C3 ::= f (B1,...,Bk−1,[·],Bk+1,...,Bk ′−1,A1,Bk ′+1,...,Bn)
A1 ::=C4[A′]

where C1,...,C4 and A1 are fresh nonterminal symbols.
We also add, as in the proof of Lemma 3.10, at most depthG(C) rules to derive from C2
the prefix of valG(C) with main path p′. Therefore, VdepthG ′(C2,V)≤Vdepth(G,V)+
log(depth(G))+1.
We also add at most depthG(C) rules to derive from C4 the suffix of valG(C), start-
ing at p′k ′ and with main path p′′′. Therefore, VdepthG ′(C4,V)≤Vdepth(G,V)+
log(depth(G))+1.
In total, we introduce at most 2depthG(C)+4≤2depthG(A)+2 new rules, and get

Vdepth(C1,V) = max{ VdepthG ′(C2,V)+1,
VdepthG(Bi,V)+2, for i �=k,k ′

VdepthG ′(C4,V)+3,
VdepthG(A′,V)+3 }

≤ Vdepth(G,V)+log(depth(G))+4

Finally, we construct the list of context nonterminals as C1 concatenated with the list
generated inductively for Bk and p′′, where depthG(Bk)≤depthG(A)−2.

The worst bound is obtained for case 2 (c). In this case, the list of context nonterminals
obtained for A and p has length bounded by depthG(A)/2. We can construct c as the concate-
nation of all the symbols of the list. By Lemma 3.8, this concatenation can be done adding at
most depthG(A)/2−1 new rules, and increasing the Vdepth in at most log(depthG(A)/2)+1.
Therefore, for the total grammar size we have

|G ′|≤|G|+depthG(A)/2−1+depthG(A)/2·
(
2depthG(A)+2

)≤|G|+depth(G)
(depth(G)+3/2)

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 774 763–789

774 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

The Vdepth increase is bounded by log(depthG(A)/2)+1 plus the maximal Vdepth of all
the symbols of the list, i.e. by

Vdepth(G ′,V)≤ log(depthG(A)/2)+1+Vdepth(G,V)+log(depth(G))+4≤Vdepth(G,V)
+2log(depth(G))+4

3.3 Representing Terms and Contexts with Grammars
In this subsection we describe how grammars can be used to define terms and instances
of terms. There must be a connection between their respective signatures. Thus, constants
and function symbols are exactly the terminal symbols of the grammar, and variables are a
subset of the nonterminal symbols.

Definition 3.13 (Grammars Defining Terms and Contexts) Given a term t∈T (�,X) and an
STG G=〈T ,C,�,R〉, where X0⊆T and X1⊆C, we say that the tree nonterminal A∈T defines
t, if t=valG(A).
Similarly for a context c and a context nonterminal symbol C .
Accordingly, if A defines t (or C defines c, respectively) for some nonterminals of G, then
we say that G defines t (or c, respectively).

Notice that in the previous definition first-order variables are a subset of the tree non-
terminal symbols of G, and second-order variables are a subset of the context nontermi-
nal symbols. Moreover, nonterminal symbols representing variables may have no deriving
rules in G.
Context substitutions are naturally modelled as grammar extensions, where some rules
deriving nonterminal symbols representing variables are added. For instance, the gram-
mar G={A ::=X [y]} defines from A the term t=X(y). Given σ =[X �→ f ([·]),y �→a], we
can define σ(t) from A using G⊆G ′ ={A ::=X [y],X ::= f ([·]),y ::=a}. Hence, the context
substitution σ is modelled by the grammar extension {X ::= f ([·]),y ::=a}. Lemma 3.14 gen-
eralizes this idea. Vice versa, any grammar extension corresponds to a context substitution,
as Lemma 3.15 states.
For bounded substitutions the situation is more complicated. For instance, G={A ::=
X [y]} defines from A the term t=X(y). Given σ =[X �→λz .a], the grammar G ′ ={A ::=
x ′,x ′ ::=a} defines from A the term σ(t), where x ′ is a first-order variable, hence a tree
nonterminal symbol. Notice that, in this case, G �⊆G ′. This construction can be generalized
as follows: given a STG G defining t and u, we can construct a smaller STG G ′ defining
[X �→λz .u](t). However, in this case, G ′ is not a grammar extension of G. We have not
found a natural way to model bounded substitutions as grammar extensions.

Lemma 3.14 If the STG G defines the term t and the term u (context c, respectively), then
there exists a grammar extension G ′ ⊇G that defines [Z �→u](t) (that defines [Z �→c](t),
respectively) and satisfies, for every set V ,

|G ′|≤|G|+1
Vdepth(G ′,V ∪{Z })=Vdepth(G,V)

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 775 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 775

PROOF. Let A (or C) be the term (or context) nonterminal defining u (or c). Take G ′ =
G∪{Z ::=A} (or G ′ =G∪{Z ::=C }). The Vdepth of the new grammar does not change, since
the new nonterminals are inserted into the variable set V .

Lemma 3.15 For any STG G and any grammar extension G ′ ⊇G, there exists a context
substitution σ such that, for any term t=valG(A) defined by G, we have σ(t)=valG ′(A).

PROOF. Let X be the set of non-terminals of G without any deriving rules in G, but with
deriving rules in G ′. Non-terminals of X define variables of t. Then, define σ as the sub-
stitution that instantiates X ∈X by valG ′(X). The substitution σ is a context substitution
because the grammar extension replaces tree symbols by terms and context symbols by con-
texts, but not context symbols by terms.

3.4 Size Bounds for Iterated Grammar Constructions
In previous subsections we have described several grammar extensions G ′ ⊇G that allow us
to define terms and contexts constructed from pieces already defined by G. We have also
seen that, if the grammar G already defines two terms t and u, we can construct a grammar
extension G ′ ⊇G that defines the instantiation of x by u in t. In this case, we have to
measure the Vdepth relative to a bigger set V ′ =V ∪{x} that also includes the instantiated
variable, if we do not want to get a blow up in the value of the depth, that might result in
non-polynomial blow up in the size of the grammar.
In Section 4, we will see how, given an equation E defined by a STG G, and a size-minimal
solution σ, we can get a grammar extension G ′ ⊇G defining σ(E). This will be done using
the constructions described in this section a polynomial number of times. We call these
constructions grammar extension steps.
In this subsection we also measure the grammar size and grammar Vdepth increase after
applying a polynomial number of grammar extension steps. In some of the constructions
there are additional parameters (the number of contexts that we concatenate, the value of
the exponent) that also have to be bound.

Definition 3.16 (Grammar Extension Step) We say that the pair 〈G ′,V ′〉 is constructed from
the pair 〈G,V 〉 using an α-bounded grammar extension step if it can be constructed using
Lemmas 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, or 3.14, where the exponent used in Lemma 3.9 is
bounded by 2α, and the number of concatenated contexts in Lemma 3.8 is bounded by α.

Theorem 3.17 If the grammar G has size |G|=O(n), and 〈G ′,V ′〉 is constructed from 〈G,∅〉
using O(nk) many O(n)-bounded grammar extension steps, then

|G ′|=O(n5k+2)
depth(G ′)=O(n2k+1)
Vdepth(G ′,V ′)=O(nk+1)
|V ′|=O(nk)

PROOF. Let the sequence of grammar extension steps be 〈G,∅〉=〈G0,V0〉,...,〈Gm,Vm〉=
〈G ′,V ′〉, where m=O(nk).

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 776 763–789

776 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

Taking the worst case of Lemmas 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.14, we can construct
the recurrences:

|Gi+1|=|Gi |+depth2(Gi)+3depth(Gi)+O(n)
Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2logdepth(Gi)+O(n)
|Vi+1|≤|Vi |+1

These worst cases are calculated as follows. In Lemmas 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12, we
have Vi+1=Vi , and the worst case is given by instantiation Lemma 3.14, which increases the
size of Vi by at most one. For the Vdepth, the biggest increase is 2 logdepth(Gi)+5, given in
Lemma 3.12 or the α increment given by Lemma 3.9, where α is the bound of the extension
step (in our case O(n)). For the size, the worst increment is the depth(Gi)(depth(Gi)+3)
given by Lemma 3.12 or the 2α increment given by Lemma 3.9, where again α=O(n).
Since m=O(nk) and |Vi |≤ i, we have |Vi |=O(nk), for every i=0,...,m.
From this bound and Lemma 3.5, we have depth(Gi)=O(nk)Vdepth(Gi,Vi). Therefore,

the recurrence for Vdepth(Gi,Vi) may be replaced by

Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2logVdepth(Gi,Vi)+O(n). (3)

A first bound for these recurrence can be computed relaxing the inequality
as Vdepth(Gi+1,Vi+1)≤3Vdepth(Gi,Vi)+O(n) that has as solution Vdepth(Gi,Vi)=
3i

(
Vdepth(G0,V0)+O(n)

)=3iO(n). Replacing this approximated solution in (3) results in

Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2log
(
3iO(n)

)+O(n)=Vdepth(Gi,Vi)+2i log3+O(n)

Using the bound i<m=O(nk), we get the approximated solution Vdepth(Gi,Vi)=O(n2k).
Replacing again this approximated solution in (3) results on

Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2log
(
O(n2k)

)+O(n)=Vdepth(Gi,Vi)+O(n)

Using again the bound i<m=O(nk), we get the solution Vdepth(Gi,Vi)=O(nk+1).
Therefore, depth(Gi)=O(nk)Vdepth(Gi,Vi)=O(n2k+1). Replacing this in the recursion

for |Gi | we get |Gi+1|=|Gi |+O(n4k+2). Hence, |Gi |=O(n5k+2).

For generalized SCU-equations, i.e. if an initial equation already has compressed subterms
and subcontexts, we need a slightly modified upper bound computation: In this case the set
of variables that may be instantiated is at most |G|, and hence polynomial, however, the
exponent of periodicity may be linear exponential, since it may depend on the expanded size
of the equations.

Lemma 3.18 If the grammar G has size |G|=O(n), and 〈G ′,V ′〉 is constructed from 〈G,∅〉
using O(nk) many O(an)-bounded grammar extension steps for some a>1, then for all â>a:

|G ′|=O(â2n)
depth(G ′)=O(â2n)
Vdepth(G ′,V ′)=O(ân)
|V ′|=O(nk)

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 777 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 777

PROOF. Let the sequence of grammar extension steps be 〈G,∅〉=〈G0,V0〉,...,〈Gm,Vm〉=
〈G ′,V ′〉, where m=O(nk).
Taking the worst case of Lemmas 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.14, we can construct
the recurrences:

|Gi+1|=|Gi |+depth2(Gi)+3depth(Gi)+O(an)
Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2logdepth(Gi)+O(an)
|Vi+1|≤|Vi |+1

These worst cases are calculated as follows. In Lemmas 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12,
we have Vi+1=Vi , and the worst case is given by instantiation Lemma 3.14, that increases
the size of Vi by one. For the Vdepth, the biggest increase is 2 logdepth(Gi)+5, given in
Lemma 3.12 or the α increment given by Lemma 3.9, where α is the bound of the extension
step (in our case O(an)). For the size, the worst increment is the depth(Gi)(depth(Gi)+3)
given by Lemma 3.12 or the 2α increment given by Lemma 3.9, where again α=O(an).
Since m=O(nk) and |Vi |≤ i, we have |Vi |=O(nk), for every i=0,...,m.
From this bound and Lemma 3.5, we have depth(Gi)=O(nk)Vdepth(Gi,Vi). Therefore,

the recurrence for Vdepth(Gi,Vi) may be replaced by

Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2logVdepth(Gi,Vi)+O(an).

A first bound for these recurrence can be computed relaxing the inequality as fol-
lows Vdepth(Gi+1,Vi+1)≤3Vdepth(Gi,Vi)+O(an) that has as solution Vdepth(Gi+1,Vi+1)=
3i

(
Vdepth(G0,V0)+O(an)

)=3iO(an). Replacing this approximated solution in the original
inequality results on

Vdepth(Gi+1,Vi+1)≤Vdepth(Gi,Vi)+2log
(
3iO(an)

)+O(an)=Vdepth(Gi,Vi)
+2i(log3)O(n)+O(an)

Using the bound i<m=O(nk) and the domination of the exponential function,
we get the solution Vdepth(Gi,Vi)=O(an1), for any a1>a. Therefore, depth(Gi)=
O(nk)Vdepth(Gi,Vi)=O(an2), for any a2>a1.
Replacing this in the recursion for |Gi | we get |Gi+1|=|Gi |+O(a2n2). Hence, |Gi |=O(a2n3)
for any a3>a2.

4 Constructing the Compressed Instantiation

In this section we prove that the instantiation of the the initial equation by a size-minimal
solution for bounded second-order unification problems and for stratified context unification
problems can be represented in a polynomially-sized STG. This representation is described
constructively. The algorithm used for this construction is reminiscent of the ones used by
Schmidt-Schauß (2002, 2004) to prove the decidability of SCU and BSOU. Nevertheless,
in this case, we do not compute the solution σ. Given an equation E and a minimal-size
solution σ, we construct a compact representation of σ(E). Therefore, the complexity of this
algorithm is irrelevant, only the final size of the compressed representation is of importance.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 778 763–789

778 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

4.1 Generalized Equations and Properties
In this section we operate on a generalized equation (G,A ?=B), which consists of an STG
G and two tree nonterminals A,B of G. From this generalized equation we can obtain the
expanded equation E={s ?= t}, where valG(A)=s and valG(B)= t.
The construction algorithm follows the schema:

Input: an equation E0={s ?= t} and a minimal-size solution σ0
Output: an STG G that derives σ0(s) and σ0(t)
G := a STG with tree nonterminals A and B such that s=valG(A) and t=valG(B)
E :=E0
σ :=σ0
while valG(A) �=valG(B) do

Analyzing E , find an appropriate decomposition σ ′ ◦ρ of σ with
σ(Z)=σ ′ ◦ρ(Z) for all variables Z ∈Var(E)

G :=G∪{rules necessary to define ρ(E)}
E :=ρ(E)
σ :=σ ′

endwhile

Example 4.1 Consider for instance the equation E= f (X(a),b) ?=X(f (a,y)) and a given (in
this example not-minimal) solution σ0=[X �→ f ([·],b)8,y �→b]. We can follow the construction
algorithm. First we construct a generalized equation for E with STG G:

A ::= f (A1,A2) B ::= X [B1]
A1 ::= X [A3] B1 ::= f (A3,y)
A2 ::= b
A3 ::= a

Then E=valG(A) ?=valG(B) and we can see that valG(A) �=valG(B). We can decompose the
solution σ according to the fact that we have a cycle as follows: σ as σ ′ ◦ρ restricted to
variables in E, where σ ′ =[y �→b] and ρ=[X �→ f ([·],b)8] hence, we extend G to represent
ρ(E) with the following rules:

C ::= C1·C1 C1 ::= C2·C2
C2 ::= C3·C3 C3 ::= f ([·],b)
X ::= C

Now we can see again that the new E, ρ(E) is not yet solved because now valG(A)=
f (f ([·],b)8[a],b) �= f ([·],b)8[f (a,y)]=valG(B). Now ρ=[y �→b] and we extend G to represent
the new ρ(E) with the rule:

y ::= b

and now we are done because valG(A)= f (f ([·],b)8[a],b)= f ([·],b)8[f (a,b)]=valG(B).
Keep in mind that E0 is the initial equation that is assumed to be uncompressed. In the

following we only speak of an equation E , but always mean a generalized equation w.r.t.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 779 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 779

the current STG G and solution σ. We also assume, due to Lemma 2.4, that in the case of
BSOU the minimal solutions that we consider are context solutions.
To bound the number of executions of the loop of the algorithm, we define an ordering on
the equations, and prove that ρ(E) is strictly smaller than E w.r.t. it. This ordering is also
reminiscent of the ones proposed by Schmidt-Schauß (2002, 2004) to prove the termination
of the decision algorithms for BSOU and for SCU. The algorithms in these paper have an
at least exponential worst-case execution time. Here we prove that the length of any strictly
decreasing sequence of equations in the construction process is polynomially bounded on the
size of E0. The rules used to enlarge G are grammar extension steps (see Definition 3.16).
The decomposition of σ into two parts ρ and σ ′ is described in the rest of this section, after
some introductory definitions.

Definition 4.2 (Surface and relations on variables) We say that p is a surface position of t,
if for every proper prefix p′ of p, the term t|p′ is not of the form X(t ′).
Given an equation E={s ?= t}, we define the set SurfEq(E) of surface equations as the set

of equations s|p ?= t|p, where p is a surface position of s and of t.
The relation≈E ⊆ Var(E)×Var(E) is defined as the reflexive-symmetric-transitive closure

of the relation given by: if there is an equation X(...) ?=Y (...)∈SurfEq(E), then X≈E Y , and
if there is an equation X(...) ?=y∈SurfEq(E), then X≈E y.
The relation �E ⊆ Var(E)×Var(E) is the relation defined by: if there is an equation

X(...) ?=s∈SurfEq(E), and Z (first-order or second-order variable) occurs at some proper sur-
face position in s, then X�E Z. Also: if there is an equation x ?=s∈SurfEq(E), and Z occurs
at some proper surface position in s, then x�E Z. We extend this relation to ≈E-equivalence
classes: if Z1�E Z2 then Z1�E Z2.
We say that Z1�E Z2 if Z1�E Z2 or Z1≈E Z2.
If �+

E is irreflexive, then E is said to be cycle-free, otherwise E is called cyclic.

In first-order unification all variable occurrences are at surface positions. Moreover, if �+
E

is not irreflexive then there is an occurs-check situation and the equation is unsolvable. In
second-order unification this is not the case, �+

E may be not irreflexive (i.e. E cyclic) and E
solvable.

Definition 4.3 (Cycle) A cycle in an equation E={s ?= t} is a sequence of variables Z1,...,Zn
such that Zi�E Zi+1, and Zn�E Z1, and the case �E occurs at least once. The length of the
cycle is n.

Definition 4.4 (Equation Cycle) An equation cycle K of E is a sequence

X1(s1) ?=d1(X2(t1)) ,..., Xh−1(sh−1) ?=dh−1(Xh(th−1)) , Xh(sh) ?=dh(X1(th))

of surface equations, where some of the contexts di are not trivial, i.e. di �= [·].
The length of the cycle is h, and its reduced-length is h−k, where w.l.o.g. d1= ...=dk=[·]
is a maximal-length sequence of trivial contexts.

The following lemma is easily derived from the definition of surface equations and the
ordering ≈E and �E .
Lemma 4.5 If there is an equation cycle, then E is cyclic. If E is cyclic, and every surface
equation x ?=s for first-order variables x is of the form x ?=x, then there is an equation cycle.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 780 763–789

780 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

When the length h of the cycle is clear from the context, all indexes i greater than h
are replaced by ((i−1) modh)+1. Notice that every cycle defines a sequence of classes of
variables Z1�E Z2�E ···�E Zh�E Z1, where for some i∈{1,...,h}, Zi�E Zi+1.
Definition 4.6 (Depth of a variable) If there are no cycles in E, then for a variable Z, we
define depthE(Z) as the maximal length d of a chain Z=Z1�E Z2�E Z2�E ...�E Zd.
Lemma 4.7 In a solvable equation E there is no cycle where all variables are first-order.
The shortest equation cycle in an equation E is not longer than |Var(E)|.
Definition 4.8 (Ordering on equations) Given an equation E, the measure µ(E) is a lexico-
graphic combination 〈µ1(E),µ2(E)〉 of the following components:
1. µ1(E)=|Var(E)| is the number of variables occurring in E.
2. µ2(E)=(0,χ(E)) if E is cyclic, and (1,ν(E)) if E is acyclic.
where χ(E) for cyclic equations has the lexicographically ordered components:

1. χ1(E) is the shortest length of the cycles of E,
2. χ2(E) is the shortest reduced-length of the length-minimal cycles of E.

and where ν(E) for non-cyclic E has the lexicographically ordered components:

1. ν1 is the sum of all depthE(X) for all second-order variables X that occur on the surface
of E.

2. ν2 :=
∣∣{Z | Z is a �E-maximal variable}

∣∣−∣∣{Z | Z is a �E-maximal equivalence class}
∣∣,

i.e. the number of maximal variables minus the number of maximal equivalence classes.

Lemma 4.9 Any strictly µ-decreasing sequence of equations starting with E terminates in at
most O(|Var(E)|4) steps.
PROOF. The upper bound is obvious from the components, since µ1 has only |E | possibilities,
ν permits |E |3 possibilities, which dominates χ which permits only |E |2 possibilities.

4.2 Construction of the Grammar
We want to join the algorithms for BSOU and for SCU as much as possible, since the
algorithms are very similar. There is an obvious difference for the case where all surface
equations are of the form X(...) ?=Y (...), since then in BSOU there is an obvious unifier,
whereas for SCU the algorithm has to look further for partial instances and is far from being
finished. We assume σ(X) to be a context for all second-order variables X , since for BSOU
we assume by Lemma 2.4 that the minimal solution σ is also a context substitution.
The following construction methods (see Section 3) are already described and the corre-

sponding estimations for the grammar-size increases are already given. These constructions
correspond to the grammar extension steps of Definition 3.16. If G defines the terms t,u
(the contexts c,d), then the following can be constructed: a subterm of t, a prefix context
of t, a suffix of c, a prefix of c, and exponentiation of the context c, and a concatenation
c ·d of contexts c,d. Also the following instantiations are constructible: [x �→u]t, [x �→u]c,
[X �→c]t, and [X �→c]s.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 781 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 781

The plan is to present the following cases in order:

• First, we give some basic rules for instantiations in trivial cases and instantiations of
first-order variables.
• Then, the case where there are cycles for BSOU as well as for SCU.
• Finally, the case when there are no cycles. Here a large part of the construction is com-
mon for BSOU and SCU. Only the case that all surface variables are in ≈E -equivalence
classes that are maximal as well as minimal w.r.t. �E requires a different treatment.
We will count different types of STG-extensions according to Theorem 3.17. For this
estimations we assume that the signature � is fixed and hence the maximal arity of a
function symbol is O(1). In the following σ is a minimal context solution of the current
equation E={s ?= t}. We also assume that every instantiation step partially instantiates the
given problem by ρ, where ρ is built accordingly to a decomposition of σ as σ ′ ◦ρ with
σ(Z)=σ ′ ◦ρ(Z) for all Z ∈Var(E), depending on the substitution σ and the possible cases
of the construction. The substitution σ ′ will have the components needed for the freshly
introduced variables by ρ. When we argue that the measure strictly decreases, we only
provide arguments for the extreme case and omit the trivial arguments.

Case 1 Trivial Cases
There are some trivial cases that we solve by means of the following rule which we refer
to as TRIVIAL-INSTANTIATION:
Case 1.1 There is a second-order variable X ∈Var(E) with σ(X)=[·]. Take ρ=[X �→

[·]], and enlarge the grammar with the rule X ::=[·] according to Lemma 3.14. The
new grammar defines ρ(E) and is obtained by a grammar extension step of the old
grammar. The new equation ρ(E) is strictly smaller than the old one E , because it
contains less variables, i.e. µ1(ρ(E))<µ1(E).

Case 1.2 From now on assume that the Case 1.1 is not applicable, i.e. σ(X) �= [·] for any
second-order variable X ∈Var(E).
Let p be a surface position in s and t such that p is a position of a first-order variable
in s or t, w.l.o.g. let s|p be the first-order variable, say x ∈Var(E). Let also s|p �= t|p.
Notice that, since s ?= t has σ as solution, the variable x does not occurs in t|p. Take
ρ=[x �→ t|p]. According to the subterm construction of Lemma 3.11, extend G with the
rules necessary to define t|p by a new non-terminal T and, according to Lemma 3.14,
with the rule x ::=T . Therefore the new grammar defines ρ(E) and it is obtained with
two grammar extension steps. Like in the previous case, ρ(E) is strictly smaller than
E because contains less variables.

Case 2 There Are Cycles
There is an equation cycle K of the form

X1(s1) ?=d1(X2(t1)),...,Xh−1(sh−1) ?=dh−1(Xh(th−1)),Xh(sh) ?=dh(X1(th))

where dh �= [·] is not trivial. We can assume that there are no TRIVIAL INSTANTIATIONS
possible, hence there are no first-order variables in the cycle. We also assume that this is
a minimal equation cycle: it is of minimal length, and of minimal reduced-length among
length-minimal equational cycles, i.e. its length is χ1(E) and its reduced-length is χ2(E).

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 782 763–789

782 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

We define a single construction step, which we refer to as CONSTRUCT-FOR-CYCLIC. There
are two cases:
Case 2.1 There are two or more nontrivial contexts dk+1 �= [·] and dh �= [·], where
k+1 �=h. We focus on a maximal-length sequence of trivial contexts: X1(s1) ?=
X2(t1),...,Xk(sk) ?=Xk+1(tk),Xk+1(sk+1) ?=dk+1[Xk+2(tk+1)]. Let q be the maximal posi-
tion satisfying the following conditions:
(1) q is a prefix of mp(dk+1), and
(2) q is a prefix of mp(σ(Xi)), for all i=1,...,k+1.
Let c be the prefix subcontext of dk+1 with hole at position q. There are several
subcases:
Case 2.1.1 If q=mp(dk+1), then take ρ=[X1 �→c[X ′

1],...,Xk+1 �→c[X ′
k+1]], where

X ′
1,...,X

′
k are fresh second-order variables. The new equation ρ(E) will contain a

cycle of the same length as the one we analyze, but the list of trivial contexts will
be longer. Therefore, ρ(E) will be strictly smaller than E because χ2(ρ(E))<χ2(E).
Case 2.1.2 If q is a position of the hole in some context σ(Xj), for some 1≤ j≤k+1,
then take

ρ=[
X1 �→c[X ′

1],...,Xj �→c,...,Xk+1 �→c[X ′
k+1]

]

Since we remove k+1 variables Xi ’s, and we only add k variables X ′
i ’s, µ1(ρ(E))

will be strictly smaller that µ1(E), hence ρ(E) smaller that E w.r.t. µ.
Case 2.1.3 [The derailing case] Otherwise, for i=1,...,k+1, let qi be the sequence
satisfying |qi |=1 and q ·qi is a prefix of mp(σ(Xi)). Note that the contexts σ(Xi)|q
have the same function symbol f as head, which is also the head of the suffix context
dk+1|q .
Take the substitution

ρ′ =[
X1 �→c[f (y1,1,...,X ′

1[·],...y1,m)],...,Xk+1 �→c[f (yk+1,1,...,X ′
k+1[·],...yk+1,m)]

]

where yi,j are fresh first-order variables, and X ′
i are fresh second-order variables.

Applying the substitution ρ′ to the original equations we obtain, among others, the
following surface equations:

f (y1,1,...,X ′
1(s1),...y1,m)

?= f (y2,1,...,X ′
2(t1),...y2,m)

···
f (yk,1,...,X ′

k(sk),...yk,m)
?= f (yk+1,1,...,X ′

k+1(tk),...yk+1,m)
f (yk+1,1,...,X ′

k+1(sk+1),...yk+1,m)
?=dk+1|q [Xk+2(tk+1)]

Notice that we may introduce more variables than we remove, therefore ρ′(E) can
be bigger than E w.r.t. the ordering µ. Fortunately, for i∈{1...k}, we can con-
struct a substitution ρ′′

i that, for j ∈{1...m}, instantiates the first-order variable yi,j
by either yi+1,j , when qi+1 �= j , or by X ′

i+1(ti), when qi+1= j . We can also construct
a substitution ρk+1 that, for j ∈{1...m}, instantiates the first-order variable yk+1,j
by dk+1|q·j [Xk+2(tk+1)]. The substitution ρ=ρ′′

k+1◦···ρ′′
1 ◦ρ′ restricted to the domain

{X1,...,Xk+1} does not introduce fresh first-order variables.
Notice that ρ(Xi)=c[f (ui,1,...,X ′

1[·],...ui,m)], where terms ui,j are of the form
X ′
l+1(tl), for some l> i, or dk+1|q·j [Xk+2(tk+1)]. The c, u’s, t’s and dk+1|q·j [Xk+2(tk+1)]

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 783 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 783

are subterms or subcontexts of E . Therefore, the grammar can be extended to define
ρ(E) with O(k) grammar extension steps.
We can see also that, since not all qi ’s are equal, ρ applied to the original cycle gives
a smaller cycle. Hence, χ1(ρ(E))<χ1(E).

Case 2.2 The Case 2.1 does not apply, i.e. the equation cycle is as follows: X1(s1) ?=
X2(t1),...,Xh−1(sh−1) ?=Xh(th−1),Xh(sh) ?=dh[X1(th)]. Let q be the maximal position
satisfying the following:
(1) q is a prefix of mp(deop(σ)+1h), and
(2) q is a prefix of mp(σ(Xi)), for all i=1,...,h.
Let c be the subcontext of deop(σ)+1k with hole at position q. There are several subcases:
Case 2.2.1 The position q is the main path of some σ(Xj), for some j ∈{1,...,h}. Take

ρ=[
X1 �→c[X ′

1],...,Xj �→c,...,Xh �→c[X ′
h]

]

The new equation ρ(E) contains a variable less than E , the one corresponding to Xj .
Case 2.2.2 [The derailing case] This case is equal to Case 2.1.3, since we do not assume
that k<h. The only difference is that now c is not a subcontext of E , but dh raised
to some exponent bounded by eop(σ), and composed with some prefix of dh .
Like in the other derailing case, the new equation contain a shorter cycle.

Case 3 There Are No Cycles
For the construction, we assume that the trivial construction steps are already done. We
define a single construction step, which we refer to as CONSTRUCTION-FOR-NONCYCLIC.
Case 3.1 Let W be some �E -maximal ≈E -equivalence class in VarG(E), which is in
addition not �E -minimal. Note that W consists only of second-order variables, since
no trivial steps are applicable, and there is some surface equation of the form X(...) ?=
r , where r has a function symbol as head.
Let q be the maximal position such that the following holds:
(1) q is a prefix of all main paths of σ(X), for all X ∈W , and
(2) q is a surface position in r .
There are some subcases:
Case 3.1.1 Position q is the main path of some context, say σ(X1), where X1∈W . Let
c be the prefix of r with main path q. Take

ρ=[
X1 �→c,X2 �→c[X ′

2],...,Xn �→c[X ′
n]

]

where W ={X1,...,Xn} and X ′
2,...,X ′

n are fresh second-order variables.
The new equation ρ(E) has a variable less, therefore it is smaller than E .
Case 3.1.2 Assume Case 3.1.1 does not apply. If r|q is of the form x or X(u), let c be
the context prefix of r with main path q. Take

ρ=[
X1 �→c[X ′

1],...,Xn �→c[X ′
n]

]

where W ={X1,...,Xn} and X ′
1,...,X ′

n are fresh second-order variables.
In this case the number of variables does not decrease, but ρ(E) contains a maximal
class {X ′

1,...,X ′
n,X } or {X ′

1,...,X ′
n,x} bigger than the maximal class W of E , which

has a smaller sum of all the numbers depthE(X ′
i). Therefore, ν1(ρ(E))<ν1(E) and

ρ(E) is smaller than E w.r.t. µ.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 784 763–789

784 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

Case 3.1.3 [The derailing case] Cases 3.1.1 and 3.1.2 do not apply. This is the situation
where the contexts σ(X) go into different directions. Let W ={X1,...,Xn}, for all
i=1,...,n, let qi be a position of length 1, such that q ·qi is a prefix of the main
path of σ(Xi), let c be the prefix context of r with main path q, and let f the
function symbol (of non-zero arity k) at position q of r . For simplicity, assume that
one of the surface equations is Xn(sn) ?=r . Like in the other derailing cases, take

ρ′ =[
X1 �→c[f (y1,1,...,X ′

1[·],...y1,m)],...,Xn �→c[f (yn,1,...,X ′
n[·],...yn,m)]

]

where yi,j are fresh first-order variables, the variables X ′
i [·] occur at argument index

qi , and X ′
i are fresh second-order variables. Applying the substitution ρ′ to the

original equations we obtain, among others, the following surface equation:

f (yn,1,...,X ′
n(sn),...,yn,m)

?=r |q

Now we can construct the instantiation ρ′′
n , such that yn,j is replaced by r |q·j for

j �=qn . For i∈{1...n−1}, we can inductively construct (perhaps by rearranging the
indices if necessary), substitutions ρ′′

i that, for j ∈{1...m}, instantiates the first-order
variable yi,j by either yi+1,j , when qi+1 �= j , or by X ′

j ′(ti) for some j ′, when qi+1= j .
Finally, take ρ=ρ′′

n ◦···ρ′′
1 ◦ρ′ restricted to the domain {X1,...,Xn}.

After instantiating E with ρ, the maximal classW is split into at least two nonempty
new maximal classes. This produces a decrement in the value of ν2.

Case 3.2 Assume that the case 3.1 is not applicable. The remaining case is that all
second-order variables {X1,...,Xn} that occur at surface positions are in �E -maximal
≈E -equivalence classes of E , that in addition are �E -minimal. Now we have to describe
the construction for BSOU and SCU separately.
Case for BSOU As we prove below in Lemma 4.11, this case is very special, due to
minimality of the solution σ. Only the following can occur: for i=1,...,n, σ(Xi)=
f ([·]), where f is some unary function symbol of the signature. Take ρ=σ, and the
algorithm finishes.
Case for SCU Let W ={X1,...,Xn} be one of the ≈E -equivalence classes of E , that
are �E -maximal as well as �E -minimal. Note that W consists only of second-order
variables. For i=1,...,n, let qi be a position of length 1 that is a prefix of the
main path of σ(Xi). Stratifiedness implies that all occurrences of variables of W
are on surface positions. Minimality of σ0 implies that |{qi | i=1,...,n}|≥2. Since
σ(Xi) �= [·], there is a function symbol f ∈�, which is the head of all σ(Xi). Take

ρ′ =[
X1 �→ f (y1,1,...,X ′

1[·],...,y1,m),...,Xn �→ f (yn,1,...,X ′
n[·],...,yn,m)

]

where the Xi ’s and yi,j ’s are fresh second and first-order variables, respectively.
Applying the same argument as for the derailing cases, construct a substitution ρ′′

that instantiates all yi,j ’s by subterms of E . Finally, take ρ=ρ′′ ◦ρ′, restricted to the
variables Xi ’s. Since |{qi | i=1,...,n}|≥2, the equivalence classW of E will be split
into at least two nonempty equivalence classes in ρ(E). Therefore ρ(E) is strictly
smaller than E .

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 785 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 785

4.3 Properties of the Construction and Bounds for G
The following lemma has been proved in the previous analysis by cases and establishes the
correctness of the grammar construction.

Lemma 4.10 Let E={s ?= t} be an equation, G be an STG defining s and t, and σ be a minimal
solution of the SCU E [a minimal and context solution of the BSOU E]. The substitution ρ

obtained by the rules TRIVIAL-INSTANTIATION, CONSTRUCTION-FOR-CYCLIC, CONSTRUCTION-FOR-
NONCYCLIC satisfies the following properties:

(1) There exists a substitution σ ′ such that
(a) σ(Z)=σ ′ ◦ρ(Z), for all variables Z ∈Var(E),
(b) σ ′ with domain restricted to Var(ρ(E)) is a SCU minimal solution [a BSOU minimal
and context solution] of ρ(E), and

(c) we have eop(σ ′)≤eop(σ).
(2) ρ(E) is strictly smaller than E, w.r.t. the ordering µ,
(3) if E is stratified, then ρ(E) is also stratified, and
(4) an STG grammar G ′ can be constructed defining ρ(E)={ρ(s) ?=ρ(t)}, from G with

O(Var(E)) grammar extension steps.

Lemma 4.11 In the construction of the STG for a solution in the non-cyclic case, for BSOU-
problems, in Case 3.2 only σ(Xi)= f ([·]) for a unary f ∈� is possible.

PROOF. This is the case where all second-order variables {X1,...,Xn} that occur at sur-
face positions are in a �E -maximal ≈E -equivalence class in VarG(E), that is in addi-
tion �E -minimal. Since we are in the case of BSOU, it is possible in this case to con-
struct a small solution as follows: For a signature constant a, define the substitution
ρ :={Xi �→λ_.a | i=1,...,n}. Then, together with the already computed instantiation σ,
the solution ρ◦σ, restricted to the variable in Var(E0) is a unifier of the initial equation
E0 that is in addition size-minimal, which follows from the soundness part of Lemma 4.10.
Since we have assumed that our size-minimal solution is a context solution, and σ(Xi)=[·] is
excluded because the trivial cases are not possible, the size of σ(Xi)) must be 1, and hence,
for every i, we have σ(Xi)= f ([·]), for some f ∈�1.

We obtain the following upper bound on the size of an STG that represents a minimal
solution of a BSOU or SCU-problem E .

Theorem 4.12 Given a BSOU-problem (SCU-problem, respectively) E={s ?= t}, and a mini-
mal solution σ of E, the terms σ(s) and σ(t) can be represented with an STG G, such that
|G| is of size O(|E |27). Moreover, the STG G is a grammar extension of the STG defining E.
PROOF. Lemma 2.4 shows that w.l.o.g. we can assume that a minimal solution is a context
solution, hence we can use our construction steps. Lemma 4.9 shows that the number of
construction steps is of order O(|E |4). Lemma 4.10 implies now that the number of required
instantiations is of order O(|E |5), the number of construction steps between two instan-
tiations is of order O(1), and the maximal exponent of periodicity obtained during the
construction is bounded by O(2|E |). Now Theorem 3.17 shows that the size of G is of order
O(|E |5∗5+2)=O(|E |27).

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 786 763–789

786 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

5 Results

Main Theorem 5.1 Stratified Context Unification and Bounded Second-Order Unification are
NP-complete.

PROOF. Lemma 2.4 allows us to assume w.l.o.g. that a BSOU minimal solution is a context
solution. We can implement a non-deterministic algorithm that decides solvability of the
SCU (BSOU, respectively) problem E={s ?= t}, in polynomial time, as follows: Given s ?= t,
construct an STG G that from A and B generates s=valG(A) and t=valG(B). We guess a
new STG G ′ as an extension of G of size bounded by O((|s|+|t|)k), with k=27 according
to Theorem 4.12. If valG ′(A)=valG ′(B) holds, then the algorithms stops with success and
says “unifiable’’.
By Lemma 3.3, the most expensive step of the algorithm, the test valG ′(A)=valG ′(B),
can be done in time O(|G ′|3) therefore, the algorithm has time complexity O(n3∗27) on the
size of the input.
By Lemma 3.15, for any extension G ′ constructed from the original G, there exists a

substitution σ such that valG ′(A)=σ(valG(A))=σ(s), and valG ′(B)=σ(valG(B))=σ(t). If
valG ′(A)=valG ′(B), then σ is a unifier of s ?= t. Therefore, the algorithm is sound.
By Theorem 4.12 (where we again use Lemma 2.4) for any minimal solution σ of a SCU
(BSOU, respectively) problem s ?= t, the terms σ(s) and σ(t) can be represented with a
polynomially-sized STG G ′, that in addition is a grammar extension of the original STG G.
When the algorithm guesses this grammar, it accepts. Therefore, the algorithm is complete.
NP-hardness for both decision problems is already known (Schmidt-Schauß and Schulz,

1998; Schmidt-Schauß, 2004).

One-step rewrite constraints were introduced by Caron et al. (1993). In (Niehren et al.,
2000) it is proved that SCU and one-step rewrite constraints are equivalent problems. From
this result and Theorem 5.1 we can conclude the following result.

Corollary 5.2 Solvability of one-step rewrite constraints is NP-complete.

It is not clear whether unifiability of generalized stratified context-unification problems
(G,E) is in NP, since the usual encoding does not produce a stratified unification problem.
However, the following is easy:

Corollary 5.3 Unifiability of generalized bounded second-order unification problems is NP-
complete.

PROOF. The STGs G and the generalized input equation E can be encoded into usual ones in
linear time as follows: Every nonterminal is turned into a variable, where term nonterminals
are turned into first-order variables and context non-terminals into second-order variables.
The grammar has to be translated into equations in the usual way, where the rules for
context nonterminals have to be translated as two equations. E.g. C1 ::=C2 ·C3 is translated
as the two equations CX1 (s1)

?=CX2 (CX3 (s1)) , CX1 (s2) ?=CX2 (CX3 (s2)), where s1,s2 are two small
different ground terms and CXi are fresh second-order variables. This translation is sound
and complete and can be done in linear time. Then, we apply Theorem 5.1.

For stratified context-unification problems the complexity bound is a bit higher:

Corollary 5.4 Unifiability of generalized stratified context unification problems is in
NEXPTIME.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 787 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 787

PROOF. Let E be the generalized SCU-problem compressed using the STG G. The exponent
of periodicity is of order O(2(a|G|)), for some a>1, since it must be determined using the
size of the SCU-problem after expanding it using the rules from G. Then, we use the same
construction as for plain SCU-problems. Note that the number of variables is O(|G|), and
hence the number of construction steps is the same as for plain SCU-problems. Applying
Lemma 3.18 and using the same arguments as in Main Theorem 5.1, we obtain the upper
complexity bound NEXPTIME.

6 Conclusion

We prove that bounded second-order unification and stratified context unification are in NP,
exploiting compression of instantiations using singleton tree grammars and finally making
a non-deterministic guess of a polynomial-sized grammar. We also compute upper bounds
for the grammar that has to be guessed as O(n27). Presumably, the bound can be improved
by a finer analysis of the grammar extensions and instantiations.

Acknowledgments

This research has been partially supported by the research projects Mulog-2 (TIN2007-
68005-C04-01) and SuRoS (TIN2008-04547) funded by the CICyT.

References

Busatto, G., Lohrey, M., Maneth, S., 2005. Efficient memory representation of XML docu-
ments. In: Proc. of the 10th Int. Symp. on Database Programming Languages, DBPL’05.
Vol. 3774 of Lecture Notes in Computer Science. pp. 199–216.
Caron, A.-C., Coquidé, J.-L., Dauchet, M., 1993. Encompassment properties and automata
with constraints. In: Proc. of the 5th Int. Conf. on Rewriting Techniques and Applications,
RTA’93. Vol. 690 of Lecture Notes in Computer Science. pp. 328–342.
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.,
2007. Tree automata techniques and applications.
URL http://tata.gforge.inria.fr
Dowek, G., 2001. Higher-order unification and matching. In: Robinson, A., Voronkov,
A. (Eds.), Handbook of Automated Reasoning. Vol. II. Elsevier Science, Ch. 16,
pp. 1009–1062.
Engelfriet, J., Schmidt, E. M., 1977. IO and OI. I. Journal of Computer and System Sciences
15 (3), 328–353.
Engelfriet, J., Schmidt, E. M., 1978. IO and OI. II. Journal of Computer and System Sciences
16 (1), 67–99.
Farmer, W. M., 1988. A unification algorithm for second-order monadic terms. Annals of
Pure and Applied Logic 39, 131–174.
Farmer, W. M., 1991. Simple second-order languages for which unification is undecidable.
Theoretical Computer Science 87, 173–214.
Gascón, A., Godoy, G., Schmidt-Schauß, M., 2008. Context matching for compressed terms.
In: Proc. of the 23rd Annual IEEE Symp. on Logic in Computer Science, LICS’08.
pp. 93–102.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://tata.gforge.inria.fr
http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 788 763–789

788 On the complexity of Bounded Second-Order Unification and Stratified Context Unification

Gascón A., Godoy, G., Schmidt-Schauß, M., 2009. Unification with singleton tree gram-
mars. In: Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications, RTA’09.
Vol. 5595 of Lecture Notes in Computer Science. Springer, pp. 365–379.
Goldfarb, W. D., 1981. The undecidability of the second-order unification problem. Theo-
retical Computer Science 13, 225–230.
Kościelski, A., Pacholski, L., 1996. Complexity of Makanin’s algorithm. Journal of the ACM
43 (4), 670–684.
Kutsia, T., Levy, J., Villaret, M., 2007. Sequence unification through currying. In: Proc.
of the 18th Int. Conf. on Rewriting Techniques and Applications, RTA’07. Vol. 4533 of
Lecture Notes in Computer Science. Springer, pp. 288–302.
Levy, J., 1996. Linear second order unification. In: Proc. of the 7th Int. Conf. on Rewriting
Techniques and Applications, RTA’96. Vol. 1103 of Lecture Notes in Computer Science.
pp. 332–346.
Levy, J., Niehren, J., Villaret, M., 2005. Well-nested context unification. In: Proc. of the 20th
Int. Conf. on Automated Deduction, CADE-20. Vol. 3632 of Lecture Notes in Computer
Science. pp. 149–163.
Levy, J., Schmidt-Schauß, M., Villaret, M., 2004. Monadic second-order unification is NP-
complete. In: Proc. of the 15th Int. Conf. on Rewriting Techniques and Applications,
RTA’04. Vol. 3091 of Lecture Notes in Computer Science. pp. 55–69.
Levy, J., Schmidt-Schauß, M., Villaret, M., 2006a. Bounded second-order unification is NP-
complete. In: Proc. of the 17th Int. Conf. on Rewriting Techniques and Applications,
RTA’06. Vol. 4098 of Lecture Notes in Computer Science. pp. 400–414.
Levy, J., Schmidt-Schauß, M., Villaret, M., 2006b. Stratified context unification is NP-
complete. In: Proc. of the 3rd Int. Joint Conf. on Automated Reasoning, IJCAR’06.
Vol. 4130 of Lecture Notes in Computer Science. pp. 82–96.
Levy, J., Schmidt-Schauß, M., Villaret, M., 2008. The complexity of monadic second-order
unification. SIAM Journal on Computing 38 (3), 1113–1140.
Levy, J., Veanes, M., 2000. On the undecidability of second-order unification. Information
and Computation 159, 125–150.
Levy, J., Villaret, M., 2002. Currying second-order unification problems. In: Proc. of the
13th Int. Conf. on Rewriting Techniques and Applications, RTA’02. Vol. 2378 of Lecture
Notes in Computer Science. pp. 326–339.
Lifshits, Y., 2006. Solving classical string problems on compressed texts. CoRR
abs/cs/0604058.
Lifshits, Y., 2007. Processing compressed texts: A tractability border. In: Proc. of the 18th
Annual Symp. on Combinatorial Pattern Matching, CPM’07. pp. 228–240.
Lohrey, M., 2006. Word problems and membership problems on compressed words. SIAM
Journal on Computing 35 (5), 1210–1240.
Lohrey, M., Maneth, S., Schmidt-Schauß, M., 2009. Parameter reduction in grammar-
compressed trees. In: Proc. of the 12th Int. Conf. on Foundations of Software Science
and Computational Structures, FoSSaCS’09. Vol. 5504 of Lecture Notes in Computer Sci-
ence. pp. 212–226.
Makanin, G. S., 1977. The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik 32 (2), 129–198.
Niehren, J., Tison, S., Treinen, R., 2000. On rewrite constraints and context unification.
Information Processing Letters 74, 35–40.

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

[10:29 8/10/2011 jzq010.tex] Paper Size: a4 paper Job: JIGPAL Page: 789 763–789

On the complexity of Bounded Second-Order Unification and Stratified Context Unification 789

Plandowski, W., 1994. Testing equivalence of morphisms in context-free languages. In: Proc.
of the 2nd Annual European Symp. on Algorithms, ESA’94. Vol. 855 of Lecture Notes in
Computer Science. pp. 460–470.
Plandowski, W., 1995. The complexity of the morphism equivalence problem for context-
free languages. Ph.D. thesis, Dept. of Mathematics, Informatics and Mechanics, Warszaw
University.
Plandowski, W., Rytter, W., 1999. Complexity of language recognition problems for com-
pressed words. In: Jewels are Forever. Springer, pp. 262–272.
Rounds, W. C., 1969. Context-free grammars on trees. In: Proc. of the 1st ACM Symposium
on Theory of Computing, STOC’69. pp. 143–148.
Schmidt-Schauß, M., 2002. A decision algorithm for stratified context unification. Journal
of Logic and Computation 12 (6), 929–953.
Schmidt-Schauß, M., 2004. Decidability of bounded second order unification. Information
and Computation 188 (2), 143–178.
Schmidt-Schauß, M., 2005. Polynomial equality testing for terms with shared substructures.
Frank report 21, Institut für Informatik. FB Informatik und Mathematik. J. W. Goethe-
Universität Frankfurt am Main.
Schmidt-Schauß, M., Schulz, K. U., 1998. On the exponent of periodicity of minimal solu-
tions of context equations. In: Proc. of the 9th Int. Conf. on Rewriting Techniques and
Applications, RTA’98. Vol. 1379 of Lecture Notes in Computer Science. pp. 61–75.
Schmidt-Schauß, M., Schulz, K. U., 2002. Solvability of context equations with two context
variables is decidable. Journal of Symbolic Computation 33 (1), 77–122.

Received September 17, 2009

 at C
SIC

 on February 14, 2013
http://jigpal.oxfordjournals.org/

D
ow

nloaded from

http://jigpal.oxfordjournals.org/

	On the complexity of Bounded Second-Order Unification and Stratified Context Unification
	1 Introduction
	2 Preliminaries
	2.1 Second-Order Unification Problems

	3 Singleton Tree Grammars (STG)
	3.1 Depth of a Grammar Relative to Sets of Non-Terminals
	3.2 Grammar Extensions
	3.3 Representing Terms and Contexts with Grammars
	3.4 Size Bounds for Iterated Grammar Constructions

	4 Constructing the Compressed Instantiation
	4.1 Generalized Equations and Properties
	4.2 Construction of the Grammar
	4.3 Properties of the Construction and Bounds for G

	5 Results
	6 Conclusion

