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Abstract: Probabilistic graphical models allow us to encode a large probability distribution as a
composition of smaller ones. It is oftentimes the case that we are interested in incorporating in the
model the idea that some of these smaller distributions are likely to be similar to one another. In this
paper we provide an information geometric approach on how to incorporate this information and
see that it allows us to reinterpret some already existing models. Our proposal relies on providing a
formal definition of what it means to be close. We provide an example on how this definition can be
actioned for multinomial distributions. We use the results on multinomial distributions to reinterpret
two already existing hierarchical models in terms of closeness distributions.

Keywords: probabilistic modeling; distance; KL divergence; closeness; Beta distribution;
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1. Introduction

Bayesian modeling [1] builds on our ability to describe a given process in probabilistic
terms, known as probabilistic modeling. As stated in [2]: “Statistical methods and models
commonly involve multiple parameters that can be regarded as related or connected in
such a way that the problem implies dependence of the joint probability model for these
parameters”. Hierarchical modeling [3] is widely used for that purpose in areas such as
epidemiological modeling [4] or to model oil or gas production [5]. The motivation for this
paper comes from realizing that many hierarchical models can be understood, from a high
level perspective, as defining a distribution over the multiple parameters that establishes that
distributions which are closer to each other, are more likely. Thus, the main motivation
is to start providing the mathematical tools that allow a probabilistic modeler to build
hierarchical (and non-hierarchical) models starting from that geometrical concepts.

We start by introducing a simple example to illustrate the kind of problems we are
interested in solving. Consider the problem of estimating a parameter θ using data from a
small experiment and a prior distribution constructed from similar previous experiments.
The specific problem description is borrowed from [2]:

In the evaluation of drugs for possible clinical application, studies are routinely performed
on rodents. For a particular study drawn from the statistical literature, suppose the
immediate aim is to estimate θ, the probability of a tumor in a population of female
laboratory rats of type ‘F344’ that receive a zero dose of the drug (a control group).
The data show that 4 out of 14 rats developed endometrial stromal polyps (a kind of
tumor). (...) Typically, the mean and standard deviation of underlying tumor risks are not
available. Rather, historical data are available on previous experiments on similar groups
of rats. In the rat tumor example, the historical data were in fact a set of observations of
tumor incidence in 70 groups of rats (Table 1). In the ith historical experiment, let the
number of rats with tumors be yi and the total number of rats be ni. We model the yi’s as
independent binomial data, given sample sizes ni and study-specific means θi.

Example. Estimating the risk of tumor in a group of rats.
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Table 1. Tumor incidence in 70 historical groups of rats and in the current group of rats (from [6]).
The table displays the values of: (number of rats with tumors)/(total number of rats).

Previous experiments:
0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19
0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19 1/19
1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20
2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20
3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20
4/20 10/48 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20
6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/47 15/46 9/24

Current experiment: 4/14

We can depict our graphical model (for more information on the interpretation of
the graphical models in this paper the reader can consult [7,8]) as shown in Figure 1,
where current and historical experiments are a random sample from a common population,
having h as hyperparameters, which follow f as prior distribution. Equationally, our model
can be described as:

h ∼ f (1)

θi ∼ g(h) ∀i ∈ [1 : 71] (2)

yi ∼ Binomial(ni, θi) ∀i ∈ [1 : 71]. (3)

h θi yif

i ∈ [1 : 71]

Figure 1. General probabilistic graphical model for the rodents example.

The model used for this problem in [2] is the Beta-Binomial model, where g is taken
to be the Beta distribution, hence h = (α, β) (see Figure 2). Furthermore, in [2] the prior f
over α, β is taken to be proportional to (α + β)−5/2, giving the model

p(α, β) ∝ (α + β)−5/2 (4)

θi ∼ Beta(α, β) ∀i ∈ [1 : 71] (5)

yi ∼ Binomial(ni, θi) ∀i ∈ [1 : 71]. (6)

θiα

β

yi
(α + β)−5/2

i ∈ [1 : 71]

Figure 2. PGM for the rodents example proposed in [2].

The presentation of the model in [2] simply introduces the assumption that “the
Beta prior distribution with parameters (α, β) is a good description of the population
distribution of the θi’s in the historical experiments” without further justification. In this
paper we would like to show that a large part of this model can be obtained from the
intuitive idea that the probability distributions for rats with tumors in each group are
similar. To do that we develop a framework for encoding as a probability distribution
the assumption that two probability distributions are close to each other, and rely on
information geometric concepts to model the idea of closeness.

We start by introducing the general concept of closeness distribution in Section 2.
Then, we analyze the particular case in which we choose to measure remoteness between
distributions by means of the Kullback Leibler divergence in the family of multinomial
distributions in Section 3. The results from Section 3 are used in Section 4 to reinterpret
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the Beta Binomial model proposed in [2] for the rodents example, and in Section 5 to
reinterpret the Hierarchical Dirichlet Multinomial model proposed by Azzimonti et al.
in [9–11]. We are convinced that closeness distributions could play a relevant role in
probabilistic modeling, allowing for more explicitly geometrically inspired probabilistic
models. This paper is just a first step towards a proper definition and understanding of
closeness distributions.

2. Closeness Distributions

We start by introducing the formal framework required to discuss the probability dis-
tributions. Then, we formalize what we mean by remoteness through a remoteness function,
and we introduce closeness distributions as those that implement a remoteness function.

2.1. Probabilities over Probabilities

Information geometry [12] has shown us that most families of probability distributions
can be understood as a Riemannian manifold. Thus, we can work with probabilities over
probabilities by defining random variables which take values in a Riemannian manifold.
Here, we only introduce some fundamental definitions. For a more detailed overview
of measures and probability see [13], of Riemannian manifolds see [14]. Finally, Pennec
provides a good overview of the probability on Riemannian manifolds in [15].

We start by noting that each manifold M, has an associated σ-algebra, LM, the
Lebesgue σ-algebra ofM (see Section 1 , chapter XII in [16]). Furthermore, the existence of
a metric g induces a measure ηg (see Section 1.3 in [15]). The volume ofM is defined as
Vol(M) =

∫
M 1dηg.

Definition 1. Let (Ω,F , P) be a probability space and (M, g) be a Riemannian manifold. A
random variable (referred to as a random primitive in [15]) x taking values inM is a measurable
function from Ω toM. Furthermore, we say that x has a probability density function (p.d.f.) px
(real, positive, and integrable function) if:

∀X ∈ LM P(x ∈ X ) =
∫
X pxdηg, and P(M) = 1.

We would like to highlight that the density function px is intrinsic to the manifold.
If x′ = π(x) is a chart of the manifold defined almost everywhere, we obtain a random
vector x′ = π(x). The expression of px in this parametrization is

px′(x′) = px(π
−1(x′)).

Let f :M→ R be a real function onM. We define the expectation of f under x as

E[ f (x)] =
∫

f (x)px(x)ηg(dx)

We have to be careful when computing E[ f (x)] so that we do it independently of the
parametrization. We have to use the fact that∫

f (x)px(x)ηg(dx) =
∫

f (π−1(x′))px′(x′)
√
| G(x′) |dx′,

where G(x′) is the Fisher matrix at x′ in the parametrization π. Hence,

E[ f (x)] =
∫

f (π−1(x′))ρx′(x′)dx′.

where ρx′(x′) = px′(x′)
√
| G(x′) | = px(π−1(x′))

√
| G(x′) | is the expression of px in the

parametrization for integration purposes, that is, its expression with respect to the Lebesgue
measure dx′ instead of dηg.

We note that ρx′ depends on the chart used whereas px is intrinsic to the manifold.



Mathematics 2021, 9, 3112 4 of 12

2.2. Formalizing Remoteness and Closeness

Intuitively, the objective of this section is to create a probability distribution over pairs
of probability distributions that assigns higher probability to those pairs of probability
distributions which are “close”.

We assume that we measure how distant two points are inM by means of a remoteness
function r : M×M → R, such that r(x, y) ≥ 0 for each x, y ∈ M. Note that r does not
need to be transitive, symmetric, or reflexive.

As can be seen in Appendix A, r induces a total order ≤r inM×M. We say that two
remoteness functions r, s are order-equivalent if ≤r=≤s.

Proposition 1. Let γ, β ∈ R, γ, β > 0. Then, γ · r + β is order-equivalent to r.

Proof. a ≤r b iff r(a) ≤ r(b) iff γ · r(a) ≤ γ · r(b) iff γ · r(a) + β ≤ γ · r(b) + β iff a ≤γ·r+β

b.

We say that a probability density function p :M×M→ R implements a remoteness
function r if ≥p=≤r . This is equivalent to stating that for each x, y, z, t ∈ M we have that
p(x, y) ≥ p(z, t) iff r(x, y) ≤ r(z, t). That is, a density function implements a remoteness
function r if it assigns higher probability density to those pairs of points which are closer
according to r.

Once we have clarified what it means for a probability to implement a remoteness
function, we introduce a specific way of creating probabilities to that.

Definition 2. Let fr : M×M → R be fr(x, y) = exp(−r(x, y)). If Zr =
∫
M

∫
M frdηgdηg

is finite, we define the density function

pr(x, y) =
fr(x, y)

Zr
=

exp(−r(x, y))
Zr

. (7)

We refer to the corresponding probability distribution as a closeness distribution.

Note that pr is defined intrinsically. Following the explanation in the previous section,
let π be a chart ofM defined almost everywhere. The representation of this pdf in the
parametrization x′, y′ = (π(x), π(y)) is simply

pr′(x′, y′) = pr(π
−1(x′), π−1(y′)) (8)

and its representation for integration purposes is

ρr′(x′, y′) = pr(π
−1(x′), π−1(y′))

√
|G(x′)|

√
|G(y′)| (9)

Proposition 2. It it exists, pr implements r.

Proof. The exponential is a monotonous function and the minus sign in the exponent is
used to revert the order.

Proposition 3. If r is measurable and M has finite volume, then Zr is finite, and hence pr
implements r.

Proof. Note that since r(x, y) ≥ 0, we have that fr(x, y) ≤ 1, and hence fr is bounded.
Furthermore, fr is measurable since it is a composition of measurable functions. Now, since
any bounded measurable function in a finite volume space is integrable, Zr is finite.

Obviously, once we have established a closeness distribution pr we can define its
marginal and conditional distributions in the usual way. We note pr(x) (resp. pr(y)) as the
marginal over x (resp. y). We note pr(x|y) (resp. pr(y|x)) as the conditional density of x
given y (resp. y given x).



Mathematics 2021, 9, 3112 5 of 12

3. KL-Closeness Distributions for Multinomials

In this section we study closeness distributions on Mn (the family of multinomial
distributions of dimension n, or the family of finite discrete distributions over n + 1 atoms).
To do that, first we need to establish the remoteness function. It is well known that there
is an isometry between Mn and the positive orthant of the n dimensional sphere (Sn) of
radius 2 (see Section 7.4.2. in [17]). This isometry allows us to compute the volume of the
manifold as the area of the sphere of radius 2 on the positive orthant.

Proposition 4. The volume of Mn is Vol(Mn) =
π

n+1
2

Γ( n+1
2 )

.

Proof. The area of a sphere Sn of radius r is An,r =
2π

n+1
2 rn

Γ( n+1
2 )

. Taking r = 2, An,2 = π
n+1

2 2n+1

Γ( n+1
2 )

.

Now, there are 2n+1 orthants, so the positive orthant amounts for 1
2n+1 of that area, as

stated.

Figure 3 shows that the volume of the space of multinomial distributions over n + 1
atoms reaches its maximum at n = 7. The main takeover of Proposition 4 is that the volume
of Mn is finite, because this allows us to prove the following result:

Proposition 5. For any measurable remoteness function r on Mn there is a closeness distribution
pr implementing it.

Proof. Directly from Proposition 3 and the fact that Mn has finite volume.

Figure 3. Volume of the family of multinomial distributions as dimension increases

A reasonable choice of remoteness function for a statistical manifold is the Kullback-
Leibler (KL) divergence. The next section analyzes the closeness distributions that imple-
ment KL inMn.

3.1. Closeness Distributions for KL as Remoteness Function

Let θ ∈ Mn. Thus, θ is a discrete distribution over n+ 1 atoms. We write θi to represent
p(x = i|θ). Note that each θi is independent of the parametrization an thus it is an intrinsic
quantity of the distribution.

Let θ, µ ∈ Mn. The KL divergence between θ and µ is

D(µ, θ) =
n+1

∑
i=1

µi log
µi
θi

.

We want to study the closeness distributions that implement KL inMn. The detailed
derivation of these results can be found in Appendix B. The closeness pdf according to
Equation (7) is
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pD(µ, θ) =
1

ZD

n+1

∏
i=1

θi
µi

n+1

∏
i=1

µi
−µi

The marginal for µ is

pD(µ) =
1

ZD

n+1

∏
i=1

µi
−µi B(µ +

1
2
)

where B(α) = ∏k
i=1 Γ(αi)

Γ(∑k
i=1 αi)

is the multivariate Beta function.

The conditional for θ given µ:

pD(θ | µ) =
∏n+1

i=1 θi
µi

B(µ + 1
2 )

(10)

Equation (10) is very similar to the expression of a Dirichlet distribution. In fact,
the expression of pD(θ | µ) for integration purposes in the expectation parameterization,
namely ρD(θ | µ), is that of a Dirichlet distribution:

ρD(θ | µ) = Dirichlet(θ; µ +
1
2
) (11)

Equation (11) deserves some attention. We have defined the joint density pD(µ, θ) so
that pairs of distributions (µ, θ) that are close in terms of KL divergence are assigned a
higher probability than pairs of distributions (µ∗, θ∗) which are further away in terms of KL.
Hence, the conditional pD(θ | µ) assigns a larger probability to those distributions θ which
are close in terms of KL to µ. This means that whenever we have a probabilistic model
which encodes two multinomial distributions θ and µ, and we are interested in introducing
that θ should be close to µ, we can introduce the assumption that θ ∼ Dirichlet(µ + 1

2 ).
Interesting as it is for modeling purposes, the use of Equation (11) however does not

allow the modeler to convey information regarding the strength of the link. That is, θ’s in
the KL-surrounding of µ will be more probable, but there is no way to establish how much
more probable. We know by Proposition 1 that for any remoteness function r, we can select
γ, β > 0, and γ · r + β is order-equivalent to r. We can take advantage of that fact and use
γ to encode the strength of the probabilistic link between θ and µ. If instead of using the
KL (D) as the remoteness function, we opt for γ · D, following a parallel development to
the one above we will find that

ργ·D(θ | µ) = Dirichlet(θ; γµ +
1
2
). (12)

Now, Equation (12) allows the modeler to fix a large value of γ to encode that it is
extremely unlikely that θ separates from µ, or a value of γ close to 0 to encode that the link
between θ and µ is highly loose. Furthermore it is important to realize that Equation (12)
allows us to interpret any already existing model which incorporates Dirichlet (or Beta)
distributions with the only requirement that each of its concentration parameters is larger
than 1

2 . Say we have a model in which θ ∼ Dirichlet(α). Then, defining µ by coordinates

as µi =
αi− 1

2
− n+1

2 +∑n+1
i=1 αi

, we can interpret the model as imposing θ to be close to µ with

intensity γ =
α1− 1

2
µ1

. Note that, extending this interpretation a bit to the extreme, since the
strength of the link reduces as γ→ 0, a “free” Dirichlet will have all of its weights set to
1
2 . This coincides with the classical prior suggested by Jeffreys [18,19] for this very same
problem. This is reasonable since Jeffreys’ prior was constructed to be independent of the
parametrization, that is, to be intrinsic to the manifold, similarly to what we are doing.
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3.2. Visualizing the Distributions

In the previous section we have seen an expression for pγ·D(θ | µ). Since the KL
divergence is not symmetric, we have that pγ·D(µ | θ) is different from pγ·D(θ | µ).
Unfortunately, we have not been able to provide a closed form expression for pγ·D(µ | θ).
However, it is possible to compute it numerically in order to compare both conditionals.

Figure 4 shows a comparison of pγ·D(µ | θ) and pγ·D(θ | µ). According to what is
suggested in [20], for a proper interpretation of the densities we show its density function,
which is intrinsic to the manifold, instead of its expression in the parametrization, as is
commonly done. Note that from Equation (12), the value of pγ·D(θ | µ) is 0 at θ = 0 and
θ = 1. In Figure 4, we can see that this is not the case for pγ·D(µ | θ) neither at µ = 0 nor at
µ = 1. In fact we see that pγ·D(θ | µ) always starts below pγ·D(µ | θ) at θ = 0 (resp. µ = 0).
Then, as θ (resp. µ) grows, it is always the case that pγ·D(θ | µ) goes over pγ·D(µ | θ), to
end decreasing again below it when θ (resp µ) approaches to 1.

0.0 0.2 0.4 0.6 0.8 1.0
 (for dashed lines),  (for continuous lines)
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0.15
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a b
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 (for dashed lines),  (for continuous lines)
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= 0.90, = 0.01
= 0.90, = 0.01
= 0.90, = 0.20
= 0.90, = 0.20
= 0.90, = 0.50
= 0.90, = 0.50

0.0 0.2 0.4 0.6 0.8 1.0
 (for dashed lines),  (for continuous lines)

0.0

0.1
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0.3
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c d
Figure 4. Comparison of pγ·D(θ | µ) and pγ·D(µ | θ). In (a) pγ·D(θ | µ = 0.5) and pγ·D(µ | θ = 0.5).
In (b) pγ·D(θ | µ = 0.7) and pγ·D(µ | θ = 0.7). In (c) pγ·D(θ | µ = 0.9) and pγ·D(µ | θ = 0.9). In (d)
pγ·D(θ | µ = 0.95) and pγ·D(µ | θ = 0.95).

4. Reinterpreting the Beta-Binomial Model

We are now ready to go back to the rodents example provided in the introduction. The
main idea we would like this hierarchical model to capture is that the θi’s are somewhat
similar. We do this by introducing a new random variable µ to which we would like each
θi to be close to (see Figure 5). Furthermore, we introduce another variable γ that controls
how tightly coupled the θi’s are to µ. Now, µ represents a proportion, and priors for propor-
tions have been well studied, including the “Bayes-Laplace rule” [21] which recommends
Beta(1, 1), the Haldane prior [22] which is an improper prior limα→0+ Beta(α, α), and the
Jeffreys’ prior [18,19] Beta( 1

2 , 1
2 ). Following the arguments in the previous section, here we

stick with the Jeffreys’ prior. A more difficult problem is the selection of the prior for γ,
where we still do not have a well founded choice. Note that taking a look at Equation (12),
γ’s role acts similarly (although not exactly equal) to an equivalent sample size. Thus, the
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prior over γ could be thought as a prior over the equivalent sample size with which µ will
be incorporated as prior into the determination of each of the θi’s. In case the size of each
sample (ni) is large, there will not be much difference between a hierarchical model and
modeling of each of the 71 experiments as independent experiments. So, it makes sense for
the prior over γ to concentrate on a relatively small equivalent sample sizes. Following
this line of thought we propose γ to follow a Gamma(α = 1, β = 0.1).

µ

γ
θi yi

Beta( 1
2 , 1

2 )

Gamma(1, 0.1)

i ∈ [1 : 71]

Figure 5. Reinterpreted hierarchical graphical model for the rodents example.

To summarize, the hierarchical model we obtain based on closeness probability
distributions is:

µ ∼ Beta(
1
2

,
1
2
) (13)

γ ∼ Gamma(1, 0.1) (14)

θi ∼ Beta(γµ +
1
2

, γ(1− µ) +
1
2
) ∀i ∈ [1 : 71] (15)

yi ∼ Binomial(ni, θi) ∀i ∈ [1 : 71]. (16)

Figure 6 shows that the posteriors generated by both models are similar, and put
the parameter µ (the pooled average) between 0.08 and 0.15, and the parameter γ (the
intensity of the link between µ and each of the θi’s) between 5 and 25. Furthermore, the
model is relatively insensitive to the parameters of the prior for γ as long as they do create
a sparse prior. Thus, we see that selecting the prior as Γ(1, 0.5) creates a prior that is too
concentrated on the low values of γ (that is, it imposes a relatively mild closeness link
between µ and each of the θi’s). This changes the estimation a lot. However, Γ(1, 0.01)
creates a posterior similar to that of Γ(1, 0.1), despite being more spread.
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Gelman et al. model
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5
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0
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Closeness distributions model (1,0.001)
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0.30
0.450.60

0.75

0.90

             Posterior distribution over  and 

Figure 6. Comparison of posteriors between a closeness distribution model and that proposed by
Gelman et al. in [2].

5. Hierarchical Dirichlet Multinomial Model

Recently [9–11], Azzimonti et al. have proposed a hierarchical Dirichlet multinomial
model to estimate conditional probability tables (CPTs) in Bayesian networks. Given two
discrete finite random variables X (over domain X ) and Y over domain (Y) which are part
of a Bayesian network, and such that Y is the only parent of X in the network, the CPT
for X is responsible of storing p(X|Y). The usual CPT model (the so called Multinomial-
Dirichlet) adheres to parameter independence and stores |Y| different independent Dirichlet
distributions over each of the θX|y. Instead, Azzimonti et al. propose the hierarchical
Multinomial-Dirichlet model, where “the parameters of different conditional distributions
belonging to the same CPT are drawn from a common higher-level distribution”. Their
model can be summarized equationally as
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α ∼ s · Dirichlet(α0)

θX|y ∼ Dirichlet(α) ∀y ∈ Y
Xy ∼ Categorical(θX|y) ∀y ∈ Y

and graphically as shown in Figure 7.
The fact that the Dirichlet distribution is the conditional of a closeness distribution

allows us to think about this model as a generalization of the model presented for the
rat example. Thus, the Hierarchical Dirichlet Multinomial model can be understood as
introducing the assumption that there is a probability distribution with parameter µ, that
is close in terms of its KL divergence to each of the y ∈ Y different distributions, each of
them parameterized by θX|y. Thus, in equational terms, we have that the model can be
rewritten as

µ ∼ Dirichlet(
1
2

, . . . ,
1
2
) (17)

γ ∼ Gamma(1, 0.1) (18)

θX|y ∼ Dirichlet(γµ +
1
2
) ∀y ∈ Y (19)

Xy ∼ Categorical(θX|y) ∀y ∈ Y (20)

and depicted as shown in Figure 8. Note that γ in our reinterpreted model plays a role
quite similar to the one that s played on Azzimonti’s model. To maintain the parallel with
the model developed for the rodents example, here we have also assumed a Gamma(1, 0.1)
as prior over γ, instead of the punctual distribution assumed in [10], but we could easily
mimic their approach and specify a single value for γ.

θX|yα Xy
s · Dirichlet(α0)

y ∈ Y

Figure 7. PGM for the hierarchical Dirichlet Multinomial model proposed in [10].

θX|yµ

γ

Xy

Dirichlet( 1
2 , . . . , 1

2 )

Gamma(1, 0.1) y ∈ Y

Figure 8. Reinterpreted PGM for the hierarchical Dirichlet Multinomial model.

Note that we are not claiming that we are improving the Hierarchical Dirichlet Multino-
mial model, we are just reinterpreting it in a way that is easier to understand conceptually.

6. Conclusions and Future Work

We have introduced the idea and the formalization remoteness functions and closeness
distributions in Section 2. We have proven that any remoteness function induces a closeness
distribution, provided that the volume of the space of distributions is finite. We have
particularized closeness distributions for multinomials in Section 3, taking the remoteness
function as the KL-divergence. By analyzing two examples, we have shown that closeness
distributions can be a useful tool to the probabilistic model builder. We have seen that
they can provide additional rationale and geometric intuitions for some commonly used
hierarchical models.
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In the Crowd4SDG and Humane-AI-net projects, these mathematical tools could prove
useful in the understanding and development of consensus models for citizen science,
improving the ones presented in [23]. Our plan is to study this in future work.

In this paper we have concentrated on discrete closeness distributions. The study of
continuous closeness distributions remains for future work.
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Appendix A. Total Order Induced by a Function

Definition A1. Let Z be a set and f : Z → R a function. The binary relation ≤ f (a subset of
Z× Z) is defined as

a ≤ f b iff f (a) ≤ f (b) (A1)

Proposition A1. ≤ f is a total (or lineal) order in Z.

Proof. Reflexivity, transitivity, antisimmetry, and totality are inherited from the fact that ≤
is a total order in Z.

Appendix B. Detailed Derivation of the KL Based Closeness Distributions
for Multinomials

Closeness Distributions for KL as Remoteness Function

Let θ ∈ Mn. Thus, θ is a discrete distribution over n+ 1 atoms. We write θi to represent
p(x = i|θ). Note that each θi is independent of the parametrization an thus it is an intrinsic
quantity of the distribution.

Let θ, µ ∈ Mn. The KL divergence between θ and µ is

D(µ, θ) =
n+1

∑
i=1

µi log
µi
θi

.

The closeness pdf according to Equation (7) is

pD(µ, θ) =
1

ZD
exp(−D(µ, θ))

=
1

ZD
exp(−

n+1

∑
i=1

µi log
µi
θi
)

=
1

ZD

n+1

∏
i=1

θi
µi

n+1

∏
i=1

µi
−µi .
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Now, it is possible to assess the marginal for µ

pD(µ) =
∫

θ
pD(µ, θ)ηg(dθ)

=
∫

θ

1
ZD

n+1

∏
i=1

θi
µi

n+1

∏
i=1

µi
−µi ηg(dθ)

=
1

ZD

n+1

∏
i=1

µi
−µi

∫
θ

n+1

∏
i=1

θi
µi ηg(dθ)

(A2)

where we recall that ηg is the measure induced by the Fisher metric and it is not con-
nected to µ. To continue, we need to compute

∫
θ ∏n+1

i=1 θi
µi ηg(dθ) as an intrinsic quantity

of the manifold, that is, invariant to changes in parametrization. We are integrating
f (θ) = ∏n+1

i=1 θi
µi . We can parameterize the manifold using θ itself (the expectation param-

eters). In this parameterization, the integral can be written as

∫
θ

n+1

∏
i=1

θi
µi ηg(dθ) =

∫
θ

n+1

∏
i=1

θi
µi

√
| G(θ) |dθ

=
∫

θ

n+1

∏
i=1

θi
µi

n+1

∏
i=1

θi
− 1

2 dθ

=
∫

θ

n+1

∏
i=1

θi
µi− 1

2 dθ

= B(µ +
1
2
),

(A3)

where the last equality comes from identifying it as a Dirichlet integral of type 1 (see 15-08

in [24]), and B(α) = ∏k
i=1 Γ(αi)

Γ(∑k
i=1 αi)

is the multivariate Beta function. Combining Equation (A2)

with Equation (A3) we get

pD(µ) =
1

ZD

n+1

∏
i=1

µi
−µi B(µ +

1
2
). (A4)

From here, we can compute the conditional for θ given µ:

pD(θ | µ) =
pD(µ, θ)

pD(µ)

=
1

ZD
∏n+1

i=1 θi
µi ∏n+1

i=1 µi
−µi

1
ZD

∏n+1
i=1 µi

−µi B(µ + 1
2 )

=
∏n+1

i=1 θi
µi

B(µ + 1
2 )

.

(A5)

Equation (A5) is very similar to the expression of a Dirichlet distribution. In fact, the ex-
pression of ρD(θ | µ) in the expectation parameterization is that of a Dirichlet distribution:

ρD(θ | µ) = pD(θ | µ)
√
| G(θ) |

=
∏n+1

i=1 θi
µi

B(µ + 1
2 )

n+1

∏
i=1

θi
− 1

2

=
∏n+1

i=1 θi
µi− 1

2

B(µ + 1
2 )

= Dirichlet(θ; µ +
1
2
).

(A6)
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