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Abstract. Recently Kroupa has proposed a generalization of belief func-
tions on MV-algebras, the latter being the chosen algebraic setting for
fuzzy (or many-valued) events. However, Kroupa’s belief functions eval-
uate the degree of belief in the occurrence of fuzzy events by taking into
account (weighted) evidence on classical subsets. In other words, the fo-
cal elements, used in determining the degree of belief, are classical sets.
Within the MV-algebraic setting, the aim of the present work is to in-
troduce a generalization of Kroupa belief functions that allows to deal
with fuzzy events supported by evidence on fuzzy subsets.

1 Introduction

Belief functions are measures of uncertainty that provide a degree of confidence
in the occurrence of some event taking into account weighted bodies of evidence
that support that event [15]. Such evidence plays a pivotal role in determining
our belief, indeed the degree of belief is precisely determined by those weights
assigned to the different bodies of evidence. In Dempster-Shafer theory, the evi-
dence sets are called focal elements, and their weight is given by a mass function
(a probability distribution over the focal elements).

In the classical setting (see [17]), both the events we are concerned with and
the evidence behind them are precisely specified, i.e. we deal with Boolean two-
valued events and focal elements. It is then interesting to define Belief functions
for those cases in which the information at hand is not that precise.

In some early papers [4, 16, 19] several attempts to extend belief functions on
fuzzy events and fuzzy evidence have been proposed. More recently Kroupa in
[11] proposes to define belief functions on MV-algebras, the latter being the cho-
sen algebraic setting for fuzzy (or many-valued) events. MV-algebras [2] general-
ize Boolean algebras and appear as the natural algebraic structures associated to
the infinitely-valued  Lukasiewicz logic. However, Kroupa’s belief functions eval-
uate the degree of belief in the occurrence of fuzzy events by taking into account
(weighted) evidence on classical subsets. In other words, the focal elements used
in determining the degree of belief are still classical sets.



With this work, we want to take a step further and, within the MV-algebraic
setting, introduce a generalization of Kroupa belief functions that allows to deal
with fuzzy events supported by evidence on fuzzy subsets.

This paper is organized as follows. In the next section, we provide basic
background information on belief functions and MV-algebras. In Section 3, we
introduce our generalized notion of a belief function and compare it to Kroupa’s
definition. In Section 4, we give an integral representation of belief functions in
terms of both Choquet and Sugeno integrals, and in Section 5, we briefly deal
with the combination of two belief functions. We end with some final remarks.

2 Preliminary notions

2.1 Belief functions on Boolean algebras

In this section we are going to recall the basic framework of classical Dempster-
Shafer theory and the basic definition and results about belief functions on
Boolean algebras.

Consider a finite set X whose elements can be regarded as mutually exclusive
(and exhaustive) propositions of interest, and whose powerset P(X) represents
all the propositions of interest. The set X is usually called the frame of dis-
cernment, and every element x ∈ X represents the lowest level of discernible
information we can deal with.

Consider a frame of discernment X. A map m : P(X) → [0, 1] is said to be
a basic belief assignment, or a mass assignment provided that m(∅) = 0, and∑

A∈P(X)m(A) = 1. Given a set X and a mass assignment m on P(X), for

every A ∈ P(X), the belief of A is defined as

bm(A) =
∑

B⊆Am(B).

Every mass assignment m on P(X) is in fact a probability distribution on P(X)
naturally induces a probability measure Pm on P(P(X)), and hence the belief
function bm defined from m, can be equivalently described as follows: for every
A ∈ P(X) it holds bm(A) = Pm({B ∈ P(X) : B ⊆ A}). Therefore, identifying
the set {B ∈ P(X) : B ⊆ A} with its characteristic function on P(P(X)) defined
by

βA : B ∈ P(X) 7→
{

1 if B ⊆ A
0 otherwise,

(1)

it is easy to see that, for every A ∈ P(X), and for every mass assignment
m : P(X)→ [0, 1], we have bm(A) = Pm(βA). This easy characterization will be
important when we will discuss the extensions of belief functions on MV-algebras.
A trivial observation about the map βA that can be useful to understand our
generalization is the following: for every A ∈ P(A), βA can be regarded as a map
evaluating the (strict) inclusion of B into A, for every subset B of X.

A subsetA ofX such thatm(A) > 0 is said to be a focal elements. Every belief
function is characterized by the value that m takes over its focal elements, and
therefore the focal elements of a belief function bm, contain the pieces of evidence



that characterize bm itself. For every set X and for every mass assignment m,
call Fm the set of focal elements of P(X) with respect to m. It is well known that
several subclasses of belief functions can be characterized just by the structure
of their focal elements. In particular, when Fm = {{x} : x ∈ X}, then it is
clear that bm is a probability measure. Moreover if the focal elements are nested
subsets of X, i.e. Fm is a chain with respect to the order of set inclusionship,
then bm is a necessity measure [4, 15]; this means that bm(X) = 1, bm(∅) = 0,
and bm(A1 ∩ A2) = min{bm(A1),bm(A2)} (we refer the reader to [3, 18] for a
basic introduction to necessity measures and their dual possibility measures on
Boolean algebras).

2.2 MV-algebras and states

An MV-algebra is a system M = (M,⊕,¬, 0) of type (2, 1, 0) where M is a non-
empty set, the reduct (M,⊕, 0) is an abelian monoid, and the further equations
are satisfied: ¬¬x = x, x⊕ ¬0 = ¬0, ¬(¬x⊕ y) = ¬(¬y ⊕ x).

The class of MV-algebras forms a variety that we denote as usual by MV.
In every MV-algebra M , we define as usual the following operations: for all
x, y ∈ M , x � y = ¬(¬x ⊕ ¬y), x ⇒ y = ¬x ⊕ y, x ∨ y = (x ⇒ y) ⇒ y,
x ∧ y = ¬(¬x ∨ ¬y), and 1 = ¬0.

For every x, y ∈ M , we write that x ≤ y provided that x ⇒ y = 1 holds in
M . As a matter of facts ≤ is a partial order on M , and M is said to be linearly
ordered (or an MV-chain) whenever ≤ is a linear order.

Example 1. (1) Every Boolean algebra A is an MV-algebra and in every MV-
algebra M the set B(M) = {x : x ⊕ x = x} of its idempotent elements is the
domain of the largest Boolean subalgebra of M , called the Boolean skeleton of
M .

(2) Endow the real unit interval [0, 1] with operations so defined: x ⊕ y =
min{1, x+y} and ¬x = 1−x. Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an
MV-algebra called the standard MV-algebra. In this algebra x� y = max(0, x+
y − 1), x ⇒ y = min(1, 1 − x + y), x ∧ y = min(x, y) and x ∨ y = max(x, y).
Chang Theorem (cf. [2]) shows that the algebra [0, 1]MV generates MV.

For every finite set X, consider the MV-algebra [0, 1]X of all functions from
X into [0, 1] and whose operations are defined by a pointwise application of
those of [0, 1]MV . These MV-algebras will be the algebraic framework where
we are going to define belief measures over. Adopting the same notation of [7]
we will call them finite domain MV-clans. Notice that finite domain MV-clans
are described, in algebraic terms, as those MV-algebras which are finite direct
product of the standard MV-algebra [0, 1]MV .

If not otherwise specified, it will be henceforth assumed that in any structure
M = [0, 1]X , the set X to be finite.

Normalized and additive maps on MV-algebras have been introduced by
Kôpka and Chovanec in [9], and then by Mundici under the name of MV-
algebraic states (or simply states) in [13]. By a state on an MV-algebra M
we then mean a map s : M → [0, 1] satisfying the following properties:



(i) s(1) = 1,

(ii) whenever x� y = 0, s(x⊕ y) = s(x) + s(y).

As it is shown in [13], every state s also satisfies s(x∨y) = s(x)+s(y)−s(x∧y).

It is worth noticing that the restriction of every state s on M , to its Boolean
skeleton B(M), is a finitely additive probability. Moreover there exists a one-
to-one correspondence between the states on an MV-algebra M and the class
of regular Borel probability measures on B(Max(M)): the σ-algebra of Borel
subsets of the class of the maximal filters of M . As a matter of fact, by Kroupa-
Panti’s Theorem (cf. [10, 14]), for every state s on M there exists a unique Borel
probability measure µ on B(Max(M)) such that s coincides with the Lebesgue
integral with respect to µ. The following result is a particular case of Kroupa-
Panti’s Theorem.

Theorem 1. Let be X be a non-empty (possibly infinite) set. For every state
s on the MV-algebra of functions M = [0, 1]X there exists a finitely additive
probability measure µ on P(X) such that for each a ∈M ,

s(a) =

ˆ
X

a dµ.

3 Belief functions on finite domain MV-clans

In [11], Kroupa provides a generalization of belief functions to be defined on
finite domain MV-clans as follows. Let M = [0, 1]X be a finite domain MV-clan,
denote by P(X) the powerset of X, and consider, for every a : X → [0, 1] the
map ρ̂a : P(X)→ [0, 1] defined as follows: for every B ⊆ A,

ρ̂a(B) = min{a(x) : x ∈ B}. (2)

Remark 1. Notice that ρ̂a generalizes βA in the following sense: whenever A ∈
B(M) = P(X), then ρ̂A = βA. Namely, for every A ∈ B(M), ρ̂A(B) = 1 if
B ⊆ A, and ρ̂A(B) = 0 otherwise.

Definition 1. We call a map b̂ : M → [0, 1] to be a Kroupa belief function
provided that there is a state ŝ : [0, 1]P(X) → [0, 1] such that for every a ∈ M ,

b̂(a) = ŝ(ρ̂a).

The state ŝ needed in the definition of b̂ is called the state assignment in
[11]. Although b̂ has been directly introduced as a combination of ρ̂ with the
state assignment ŝ, one can introduce a notion of mass assignment even for this
generalized case. Indeed, since X is finite, it turns out that one can equivalently
write

b̂(a) =
∑

B⊆X ρ̂a(B) · ŝ(B).



In particular, since 1 = b̂(X) =
∑

B⊆X ŝ(B), the restriction of the state ŝ to
P(X), call it m̂, is a classical mass asignment, and hence we can claim without
loss of generality that every (classical) mass assignment on P(X) is a mass
assignment even for this general case. Now we are allowed to speak about focal
elements of b̂ as those elements in P(X) that the mass assignment m̂ maps into
a non-zero value.

Notice that, although the arguments of Kroupa’s definition of belief function
are fuzzy sets, the mass assignments that characterize each of these belief func-
tions are defined on crisp (i.e. Boolean) sets, and therefore the focal elements
associated to every Kroupa belief function, are crisp sets. In other words every
b̂ is defined over a crisp, and not fuzzy, pieces of evidence.

Now we are going to introduce a further generalization of belief functions on
a finite domain MV-clan that allows the focal elements to be fuzzy sets.

Although the necessary modification in using a state instead of a probabil-
ity measure as additive map to define b̂, Kroupa’s definition of belief function
makes use, for every a ∈ M , of the map ρ̂a which evaluates the degree of in-
clusion ρ̂a(B) of a classical (i.e. crisp, Boolean) subset B of X, into the fuzzy
set a. The definition that we introduce below generalizes Kroupa’s definition by
introducing, for every a ∈ M , a map ρa sending every fuzzy set b ∈ M , into a
degree of inclusion of the fuzzy set b into a. To be more precise, let M = [0, 1]X

be a finite domain MV-clan, and consider, for every a ∈M a map ρa : M → [0, 1]
defined as follows: for every b ∈M ,

ρa(b) = min{b(x)⇒ a(x) : x ∈ X}. (3)

where ⇒ denotes the  Lukasiewicz implication function (x⇒ y = min(1, 1− x+
y))1.

Remark 2. In a sense, for every a ∈M , ρa can be identified as the membership
function of the fuzzy set of elements of M (and hence the fuzzy subsets of
X) that are included in a. In particular one has ρa(b) = 1 whenever b ≤ a
(pointwisely). Also notice that the Boolean skeleton B(M) of any finite domain
MV-clan M = [0, 1]X coincides with P(X) and hence, as also the following result
shows in further details, for every a ∈M the map ρa extends ρ̂a in the domain.

Proposition 1. (i) For all a, a′ ∈ M , ρa∧a′ = min{ρa, ρa′}, and ρa∨a′ ≥
max{ρa, ρa′}.

(ii) For every a ∈ M , the restriction of ρa to B(M) coincides with the
transformation ρ̂a of equation (2).

(iii) For every A ∈ B(M), the restriction of ρA to B(M) coincides with the
transformation βA of equation (1)

Proof. (i) In every MV-chain, and in particular in the standard chain [0, 1]MV

it holds the equation ¬γ ⊕ (α ∧ β) = (¬γ ⊕ α) ∧ (¬γ ⊕ β), that is to say (γ ⇒
1 The choice here of ⇒ is due to the MV-algebraic setting, but other choices could be

made in other settings.



(α ∧ β)) = (γ ⇒ α) ∧ (γ ⇒ β) holds. Therefore, for every a, a′, b ∈M ,

ρa∧a′(b) = min{b(x)⇒ (a ∧ a′)(x) : x ∈ X}
= min{b(x)⇒ (a(x) ∧ a′(x)) : x ∈ X}
= min{(b(x)⇒ a(x)) ∧ (b(x)⇒ a′(x)) : x ∈ X}
= min{ρa(b), ρa′(b)}.

An easy computation shows that ρa∨a′ ≥ max{ρa, ρa′}.

(ii) For every B ∈ B(M), ρa(B) = min{B(x) ⇒ a(x) : x ∈ X}. Whenever
x 6∈ B, B(x) = 0, and hence B(x)⇒ a(x) = 1 for all those x 6∈ B. On the other
hand for all x ∈ B, B(x) = 1, and hence B(x)⇒ a(x) = 1⇒ a(x) = a(x) for all
x ∈ B. Therefore ρa(B) = min{a(x) : x ∈ B} and our claim is settled.

(iii) Trivially follows from (ii) and Remark 1. �

Definition 2. Let X be a finite set and let M = [0, 1]X . A map b : M → [0, 1]
will be called a belief function on the finite domain MV-clan M provided there
exists a state s : [0, 1]M → [0, 1] such that for every a ∈M ,

b(a) = s(ρa). (4)

We will denote by Bel(M) the class of all the belief functions over a finite domain
MV-clan M .

It is clear from the definition that Bel(M) is a convex set, since states are
closed by convex combinations. Moreover, due to Theorem 1, it holds that for
any belief function b : M → [0, 1] there exists a finitely additive probability
measure µ on P(M) such that

b(a) =

ˆ
M

ρa dµ.

Proposition 2. For every finite domain MV-clan M , and for every b ∈ Bel(M),
b is totally monotone, i.e. b is monotone, and it satisfies: for all a1, . . . , an ∈M ,

b

(
n∨

i=1

ai

)
≥

n∑
j=1

(−1)j+1 · b

(
j∧

k=1

ai

)
.

Proof. Since for every a ∈ M , ρa is monotone, and every state s is monotone,
also b is monotone. Moreover, for every n and for every a1, . . . , an ∈ M , from
(4) and Proposition 1 (i), one has:

b (
∨n

i=1 ai) = s(ρa1∨...∨an
)

≥ s(ρa1 ∨ . . . ∨ ρan)

=
∑n

j=1(−1)j+1 · s
(∧j

k=1 ρai

)
=
∑n

j=1(−1)j+1 · s
(
ρa1∧...∧aj

)
=
∑n

j=1(−1)j+1 · b
(∧j

k=1 ai

)
.

Therefore our claim is settled. �



In contrast with the case where total monotonicity is a property that character-
izes belief functions on Boolean algebras, in the case of MV-algebras the problem
of showing that total monotonicity characterizes belief functions is open.

For every belief function b : M → [0, 1] given by a state s on [0, 1]M , whenever
Supp(s) = {a ∈M : s({a}) > 0} is countable, we can introduce a notion of mass
assignment that fully characterizes b. Indeed define m : M → [0, 1] such that, for
every a ∈M , m(a) = s({a}). Notice that

∑
a∈M m(a) = 1. Then it is well known

that m defined as above characterizes s as follows: for every f ∈ [0, 1]M , s(f) =∑
a∈Supp(s) f(a) ·m(a). Let us call countably supported those belief functions b

given by a state s satisfying that Supp(s) = {a ∈M : s({a}) > 0} is countable.
Notice that, whenever X is finite (as it is in our case), every Kroupa belief
function is countably supported.

The focal elements arising from our definition of a countably supported belief
function, are elements of the MV-algebra M = [0, 1]X , and hence are not crisp
sets, in general. This supports the interpretation that the belief functions defined
as in (4) differ from Kroupa definition by providing a more general account of
evidence theory. Indeed the evidence that in our approach can be represented
is not just limited to be over crisp subsets, but rather we can now deal with
evidence on fuzzy information within this framework.

Example 2. Let us revisit Smets’ well-known story of the murder of Mrs. Jones
[17]. There are 3 suspects of being her murderer: Peter, Paul andMary. Consider
the information provided the janitor of the building where Mrs. Jones lives.
He heard the victim yelling and saw a small man running. It turns out that
Paul and Mary are not tall while Peter is taller ((Paul is 1.65 m. tall, Mary is
1.60 m tall and Peter is 1.85 m.). So, actually the subset of small suspects of
X = {Peter, Paul,Mary} can be considered as a fuzzy set, with membership
function, say,

µsmall(Peter) = 0, µsmall(Paul) = 0.7, µsmall(Mary) = 0.9.

On the other hand, Mary has short hair, so she may be mistaken as a man at
first sight, and hence, the subset of suspects looking like a man can be considered
fuzzy as well, with membership function:

µman-like(Peter) = 1, µman-like(Paul) = 1, µman-like(Mary) = 0.5.

The evidence supplied by the janitor may be represented by a mass assignment
m : [0, 1]X → [0, 1] such that m(small ∧man-like) = α > 0, m(X) = 1− α and
m(f) = 0 for any other f ∈ [0, 1]X . Here we interpret ∧ by the min operator, so
we have

µsmall∧man-like(Peter) = 0, µsmall∧man-like(Paul) = 0.7, µsmall∧man-like(Mary) = 0.5

Assume we interested in computing the belief that the suspect be Paul. We need
then to compute

ρ{Paul}(small ∧man-like) = min
x∈X

µsmall∧man-like(x)⇒ µPaul(x)



= min{0⇒ 0, 1⇒ 0.7, 0.5⇒ 0}
= min{0.7, 0.5} = 0.5

and ρ{Paul}(X) = 0. Then we finally have

b({Paul}) =
∑

f∈[0,1]X
ρ{Paul}(f) ·m({f})

= ρ{Paul}(small ∧man-like) ·m(small ∧man-like)

= 0.5 · α > 0

Hence we get a positive belief degree on Paul being the murderer. This is in
contrast with the results we would obtain with both the classical and Kroupa’s
models, where focal elements are only allowed to be classical subsets of X, in
case we assume Mary can be mistaken as a man. Indeed, in that case, we would
be forced to take as focal element, besides X itself, the set small ∧man-like =
{Paul,Mary}, and since there would be no focal element included in {Paul},
we woud get b({Paul}) = 0.

4 Belief functions and their integral representations

The map ρc : M → [0, 1] that we defined in (3) can be represented in two ways
as an integral. This representation, in turns, enable us to provide an integral
description of belief functions on MV-algebras. In this section we are going to
address this issue.

Let us start recalling that, given a set X, a map π : X → [0, 1] is called a
possibility distribution, and π is said to be normalized if there is a x ∈ X such that
π(x) = 1. Given a possibility distribution π, the Sugeno integral of a function
f : X → [0, 1] with respect to π is defined as the value maxx∈X(min(π(x), f(x))).
When we replace the min operation by  Lukasiewicz t-norm (or even more in
general by an arbitrary t-norm T ), we obtain the so called generalized Sugeno
integral: for every f : X → [0, 1],

S
ˆ
X

f dπ = max
x∈X

(π(x)� f(x)).

The dual of the generalized Sugeno integral is defined as follows: for all f : X →
[0, 1],

S
ˆ ′
X

f dπ = 1− S
ˆ
X

(1− f) dπ = min
x∈X

(π(x)⇒ f(x)). (5)

Following [11], consider a function a ∈ M = [0, 1]X , and a monotone set
function β : P(X) → [0, 1] such that β(∅) = 0 and β(X) = 1 (also called
capacity). The Choquet integral of a with respect to β is defined as

C
ˆ
a dβ =

ˆ 1

0

β(a−1([t, 1])) dt.



Since we are only concerning finite domain MV-clans, for every a ∈ M , Ć a dβ
exists, and letting X = {x1, . . . , xn} indexed in a way that y1 ≥ y2 ≥ . . . ≥
yn where yi = a(xi), and letting yn+1 = 0 and for every i = 1, . . . , n, Si =
{x1, . . . , xi}, Ć a dβ =

∑n
i=1(yi − yi+1)β(Si).

Theorem 2. For every finite domain MV-clan M = [0, 1]X , and for every b :
Bel(M), the following hold:

1. There exists a fin. additive probability measure µ on P(M) such that, for
every c ∈M ,

b(c) =

ˆ
M

(
S
ˆ ′
X

J dc

)
dµ.

where J : M →M is the identity function
2. There exists a fin. additive probability measure µ on P(M) such that, for

every c ∈M ,

b(c) =

ˆ
M

(
C
ˆ
Ic dχX

)
dµ.

where Ic : M →M is defined by Ic(a) = a⇒ c, and χX is the characteristic
function of X over P(X).

Proof. From (4), for every c ∈ M , there exists a state s : [0, 1]M → [0, 1] such
that for all c ∈ M b(c) = s(ρc) and therefore, from Theorem 1, there exists a
unique probability measure µ : P(M)→ [0, 1] such that

b(c) =

ˆ
M

ρc dµ. (6)

Then 1, and 2 follow from the description of ρc.

1. For every c, a ∈ M recall that ρc(a) = min{a(x) ⇒ c(x) : x ∈ X}. Then we
have:

ρc(a) = S
ˆ ′
X

a dπc = S
ˆ ′
X

J(a) dπc.

2 Since for all S ∈ P(X), χX(S) = 1 if S = X, and 0 if S 6= X, it is easy to
observe that

ρc(a) = C
ˆ

(a⇒ c) dχX = C
ˆ
Ic(a) dχX ,

�

Notice that for the case of countably supported belief functions, the above
integral representations can be simplified as follows.



Corollary 1. For every finite domain MV-clan M = [0, 1]X with X, and every
countably supported belief function b on M , there exists a mass assignment m :
M → [0, 1] such that the following hold:

1. for every c ∈M , b(c) =
∑

a∈Supp(s) (minx∈X(a(xi)⇒ c(xi))) ·m(a);

2. for every c ∈M , b(c) =
∑

a∈Supp(s) (
∑n

i=1(yi − yi+1) · χX(Si))·m(a), where

X = {x1, . . . , xn} such that yi = a(xi) ⇒ c(xi), yn+1 = 0, with y1 ≥ . . . ≥
yn, and Si = {x1, . . . , xi} for all i = 1, . . . , n.

5 Combining belief functions

In this section we will present a way to generalize the well-known Dempster rule
to combine the information brought by two belief functions b1,b2 ∈ Bel(M),
into a third b1,2 ∈ Bel(M).

First of all let us introduce an easy result about the definition of states in a
product space.

Proposition 3. For every MV-algebra M = [0, 1]X , and for every pair of states
s1, s2 : M → [0, 1], there exists a state s1,2 : M ×M → [0, 1] such that for every
(b, c) ∈M ×M , s1,2(b, c) = s1(b) · s2(c).

Let s1, s2 be two states on [0, 1]M such that b1(a) = s1(ρa) and b2(a) =
s2(ρa) for all a ∈M . Further let µ1, µ2 : P(M)→ [0, 1] be two probabilities such
that for i = 1, 2, si(f) =

´
M
f dµi as ensured by Theorem 1.

Consider the mapping µ1,2 : P(M ×M) → [0, 1] to be, as in the proof of
Proposition 3, the product measure on the product space generated by M ×
M such that µ1,2(b, c) = µ1(b) · µ2(c) for all (b, c) ∈ M × M . Then call s1,2
that unique state on [0, 1]M×M defined by integrating on µ1,2. Since every f ∈
[0, 1]M×M is measurable in the product space generated by M×M with measure
µ1,2, s1,2 exists, and moreover notice that, if there exists g, h : M → [0, 1] such
that f : (x, y) 7→ g(x) · h(y), then by Proposition 3, s1,2(f) = s1(g) · s2(h).

Finally, for every a ∈ M , consider the map ρ∧a : M ×M → [0, 1] defined by
ρ∧a (b, c) = ρa(b ∧ c). Then we are ready to define the following combination of
belief functions.

Definition 3. (Generalized Dempster rule) Given b1,b2 ∈ Bel(M) as above,
define its combination b1,2 : M → [0, 1] as follows: for all a ∈M ,

b1,2(a) = s1,2(ρ∧a ). (7)

From (7) we then obtain: for all a ∈M ,

b1,2(a) =
´
M×M ρ∧a dµ1,2

=
´
M×M ρa(b ∧ c) dµ1(b) dµ2(c)

and in the case of countable support belief functions, this yields

b1,2(a) =
∑

b,c∈M ρa(b ∧ c) · µ1({b}) · µ2({c}).

Notice that the above expression reduces to b1,2(a) =
∑

d∈M
∑

b,c∈M,b∧c=d ρa(d)·
(µ1({b})·µ2({c})) =

∑
d∈M ρa(d)·µ∗({d}), where µ∗({d}) =

∑
b,c∈M,b∧c=d µ1({b})·

µ2({c}) is indeed a mass assignment and hence b1,2 ∈ Bel(M).



6 Conclusion and future work

In this paper we have introduced a generalization of belief functions on MV-
algebras of fuzzy sets that further extends Kroupa definition (cf. [11]) by al-
lowing focal elements to be fuzzy sets, and not just classical sets. Indeed focal
elements play a central role in the (classical) theory of belief functions because
they can be interpreted as those basic pieces of information that are probabilis-
tically evaluated by the mass assignment to define the belief function we are
considering. More than the foundational aspects, another important role of focal
elements regards the fact that several particular belief functions (as like proba-
bility measures, necessity and possibility measures) can be characterized by the
fact that their focal elements satisfy a certain structural property. In particular,
for the classical case, it is well known that probability measures are those belief
functions whose focal elements are singletons, while necessity measures coincide
with those belief functions whose focal elements are nested (with respect to in-
clusion between sets). When we extend belief functions from Boolean algebras,
to MV-algebras, although it can be easily proved that states on MV-algebras co-
incides with that particular belief functions whose focal elements are singletons,
the belief functions having nested focal elements no longer satisfies the usual
property of a necessity measure: for all a, a′ ∈ M , b(a ∧ a′) = min{b(a),b(a′)}
(cf. [6] for an axiomatic approach of possibility and necessity measures on MV-
algebras). This fact was observed in [4] and it has been recently stressed in [11].
Of course, since our definition of belief functions extends somehow Kroupa’s, we
cannot expect to recover within our framework a characterization of necessity
measures on MV-algebras via nested structure for focal elements.

In our future work we plan to investigate which further properties should
a nested class of focal elements satisfy in order to characterize necessity and
possibility measures on MV-algebras. Following the line of [12], we also plan
to deepen the study on belief functions on more general MV-algebras than the
ones considered in this paper where the notion of state is well developed and
enjoy particularly nice properties (like the class of semi-simple MV-algebras,
that can be represented as certain class of continuous real-valued functions), as
well as investigating their algebraic and geometrical properties, and axiomatic
characterization. Moreover, following the line of [8], we also plan to introduce a
multi-modal expansion of  Lukasiewicz logic that could allow to treat both our
as well as Kroupa definition of belief function on finite MV-algebras. Indeed,
as a belief function on an MV-algebra is defined by combining a state s with

the map ρ : f ∈ [0, 1]X 7→ ρf ∈ [0, 1][0,1]
X

(in our case, and the map ρ̂ : f ∈
[0, 1]X 7→ [0, 1]P(X) in the case of Kroupa definition) that behaves like a necessity
measure on [0, 1]X , we argue that a belief function on a finite MV-algebra can be
axiomatized by combining the axioms of a state (cf. [5]) with the axioms for the
two possible extensions of the modal logic K on finite MV-algebras as provided
in [1] (i.e. the one relative to those Kripke frames with many-valued accessibility
relation, and the one that is complete with respect to those particular frames
whose accessibility relation is two-valued) to respectively characterize ρ and ρ̂.
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