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Abstract
Construct, merge, solve and adapt (CMSA) is a recently developed, generic algorithm for combinatorial optimisation. Even though 
the usefulness of the algorithm has been demonstrated by applications to a range of combinatorial optimisation problems, in some 
applications, it was observed that the algorithm can be sensitive to parameter settings. In this work, we propose a self-adaptive 
variant of CMSA, called Adapt-CMSA, with the aim of reducing the parameter sensitivity of the original version of CMSA. The 
advantages of this new CMSA variant are demonstrated in the context of the application to the so-called minimum positive influ-
ence dominating set problem. It is shown that, in contrast to CMSA, Adapt-CMSA does not require a computation time intensive 
parameter tuning process for subsets of the considered set of problem instances. In fact, after tuning Adapt-CMSA only once for the 
whole set of benchmark instances, the algorithm already obtains state-of-the-art results. Nevertheless, note that the main objective 
of this paper is not the tackled problem but the improvement of CMSA.
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Abbreviations
CMSA Construct, merge, solve and adapt
Adapt-CMSA Self-adaptive construct, merge, solve and 
adapt
CO Combinatorial optimisation
ILP Integer linear programming
QAP Quadratic assignment problem
MDS Minimum dominating set
LNS Large neighbourhood search
MPIDS Minimum positive influence dominating set

1 Introduction

Algorithms for solving combinatorial optimisation (CO) prob-
lems [1] generally fall into two different categories: (1) exact 
techniques provide optimal solutions to the tackled problems in 

bounded time, and (2) approximate techniques are designed to 
provide good-enough solutions to the tackled problems within 
rather low computation times. The first category of approaches 
includes algorithms such as dynamic programming and math-
ematical programming techniques, as, for example, branch and 
bound or branch and cut. Most cutting edge mathematical pro-
gramming techniques are implemented in commercial solvers 
such as CPLEX1 and Gurobi.2 These solvers exhibit a great 
performance, for example, for combinatorial optimisation prob-
lems that can be expressed in terms of integer linear program-
ming (ILP) models.3 However, with growing problem instance 
size and/or difficulty, these solvers start to fail. For some prob-
lems, this happens already for rather small problem instances 
[as an example consider the well-known quadratic assign-
ment problem (QAP)], and for other problems, these solvers 
are able to solve surprisingly large instances to optimality in 
short computation times [as an example consider the minimum 
dominating set (MDS) problem]. In those cases in which exact 
solvers fail, approximate techniques are applied instead. This 
category of algorithms includes simple Greedy heuristics, but 
also more sophisticated metaheuristics [2, 3]. Examples of the 
latter ones are tabu search, iterated local search, evolutionary 
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algorithms, and ant colony optimisation. These algorithms per-
form often very well for instances of medium and even large 
size. However, in the context of large to very large instances, 
metaheuristics might get lost in the huge search spaces defined 
by these instances. For this reason, a popular trend in recent 
years concerns the hybridisation between exact techniques and 
metaheuristics [4–6]. The resulting hybrid algorithms often 
benefit from synergies between the exact and the approximate 
algorithm components of which they are composed. This has 
turned out to be beneficial, especially in the context of huge 
search spaces.

1.1  Background

One of the most popular hybrid techniques is large neighbour-
hood search (LNS) [7], respectively, large-scale neighbour-
hood search [8]. LNS is a method based on local search. In 
other words, the algorithm generally works with one incum-
bent solution per iteration and tries to identify a better solu-
tion in a predefined neighbourhood of the incumbent solution. 
The difference to a standard local search technique is that the 
neighbourhoods considered in LNS are much larger. In fact, 
in some cases, it might even be an NP-hard problem itself to 
find an improving neighbour in such a large neighbourhood. 
The main difference between existing LNS approaches is the 
way in which the large neighbourhoods are generated. However, 
many LNS approaches are based on the principle of ruin-and-
recreate [9], also sometimes found as destroy-and-recreate 
or destroy-and-rebuild. In this type of LNS, the following is 
done at each iteration. First, the incumbent solution is partially 
destroyed, resulting in a partial solution. Second, a heuristic or 
an exact technique is used to search for an improving solution 
in the space of all feasible solutions that contain this partial 
solution. Examples of applications can be found in [10–12], just 
to name a few. Alternative ways of defining large neighbour-
hoods include local branching [13], the corridor method [14], 
and POPMUSIC [15].

A recent alternative to LNS is construct, merge, solve and 
adapt (CMSA) [16]. In principle, the idea of CMSA is similar 
to the one of LNS: at each iteration, the search space of a sub-
stantially reduced sub-instance of the tackled problem instance 
is searched for a better solution than the best solution found so 
far. The way, however, in which these reduced sub-instances are 
produced is conceptually very different. At each iteration, the 
algorithm probabilistically generates a set of solutions to the 
tackled problem instance. These solutions are then merged with 
an initially empty sub-instance, and an exact solver is applied 
to possibly find a best solution to the current sub-instance. 
Finally, the sub-instance is adapted based on this solution, and 
the algorithm proceeds with the subsequent iteration. CMSA 

has been successfully applied to a number of combinatorial 
optimisation problems. Some of the latest applications include 
the one to the maximum happy vertices problem [17], to route 
planning for cooperative air-ground robots [18], to refuelling 
and maintenance planning of nuclear power plants [19], and to 
the prioritised pairwise test data generation problem in software 
product lines [20].

1.2  Contribution

An overly high sensitivity to changes in parameter values is a 
recognised problem in research on metaheuristics [21]. Hereby, 
a metaheuristic is generally said to be parameter sensitive, if 
(1) the algorithm performance for specific instances or instance 
groups strongly depends on the parameter values and if (2) the 
required parameter values for different instances or instance 
groups are rather different to each other. When algorithms are 
too sensitive to parameter settings, this is seen as a rather nega-
tive aspect in the research community. Unfortunately, such a 
high sensitivity to parameter values was noticed in some appli-
cations of CMSA in the literature. One of the examples con-
cerns the preliminary application of CMSA to an NP-hard CO 
problem known as the minimum positive influence dominating 
set (MPIDS) problem [22]. Therefore, in this paper, we propose 
a self-adaptive variant of CMSA, called Adapt-CMSA, with the 
aim of obtaining an algorithm less sensitive to parameter val-
ues. As a test case, we use the above-mentioned MPIDS prob-
lem. The obtained results show that Adapt-CMSA has several 
advantages over standard CMSA in the context of the MPIDS 
problem. First, Adapt-CMSA does, indeed, not require specific 
parameter tuning for subsets of the considered benchmark set. 
After applying parameter tuning once, Adapt-CMSA works 
very well for the whole benchmark set containing instances of 
very different sizes. Second, Adapt-CMSA clearly outperforms 
standard CMSA in the context of large networks for which even 
a specialised tuning does not enable CMSA to compete with 
Adapt-CMSA. We would expect a similar advantage of Adapt-
CMSA over standard CMSA in most applications in which 
standard CMSA shows a high parameter sensitivity.

1.3  Paper Outline

The remainder of this paper is organised as follows. In Sect. 2, 
first, an introduction to standard CMSA is given, before the 
new self-adaptive CMSA variant is presented. Subsequently, 
in Sect. 3, the application of both standard CMSA and Adapt-
CMSA to the MPIDS problem are outlined. Finally, a com-
prehensive experimental evaluation is provided in Sect. 4, 
while conclusions and an outline of future work can be found 
in Sect. 5.
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2  Construct, Merge, Solve and Adapt

In this section, we first describe the standard version of CMSA 
in the context of CO problems that can be modelled in terms 
of binary ILPs. Subsequently, we introduce the self-adaptive 
variant of CMSA, henceforth labelled Adapt-CMSA. For the 
description of both CMSA variants, we assume to be tackling 
a CO problem which can be modelled in term of an ILP where 
f() is the objective function to be minimised, and xi ∈ {0, 1} 
( i = 1,… , n ) is the set of binary decision variables used to 
model the objective function and the constraints of the prob-
lem. Note that many NP-hard CO problems fall into this cat-
egory of problems. Examples include the well-known travelling 
salesman problem (TSP) and the quadratic assignment problem 
(QAP), just to name two emblematic problems.

In the general case as described above, we introduce a solu-
tion component c0

i
 and a solution component c1

i
 for each binary 

variable xi , i = 1,… , n . Hereby, c0
i
 corresponds to xi = 0 , while 

c1
i
 corresponds to xi = 1 . Moreover, C = {c0

1
,… , c0

n
, c1

1
,… , c1

n
} 

is the complete set of 2n solution components. Any candidate 
solution s is a subset of C with |s| = n . In addition, it is required 
that s contains exactly one of the two components c0

i
 and c1

i
 for 

each i = 1,… , n . Finally, a candidate solution s is a valid solu-
tion if it fulfils all the constraints of the tackled problem.

2.1  Standard CMSA

Algorithm 1 provides the pseudo-code of a standard CMSA 
for binary optimisation problems. Note that all functions in the 
pseudo-code are indicated with a special font as, for example, 
in GenerateGreedySolution(C). This function is used to 

initialise the best-so-far solution sbsf with the solution gener-
ated by a greedy algorithm, as outlined in detail below. This is 
done at the start of the algorithm. Moreover, the sub-instance 
C′ , which is solved by an ILP solver at each iteration, is initial-
ised to sbsf . Note that, alternatively, sbsf might be initialised to 
���� and C′ to the empty set. Each solution component c ∈ C 
maintains a so-called age value age[c] . These age values are 
all initialised to zero. Note that the purpose of the age value of 
a solution component c is to count the number of consecutive 
CMSA iterations for which c forms part of C′ , without being 
included in the ILP-solution to the reduced problem instance 
generated on the basis of C′ . At each iteration, CMSA iter-
ates through four algorithmic steps. In the construct step, na 
valid solutions to the tackled problem are probabilistically con-
structed in function ProbabilisticSolutionGeneration(C). In 
the merge step, those solution components that (1) are found in 
at least one of the constructed solutions from the construct step, 
and (2) do currently not form part of C′ , are added to C′ and 
their age value is set to zero. Next, the solve step first generates 
a reduced problem instance on the basis of C′ , which is done by 
adding—for all i = 1,… , n—the following constraints to the 
original ILP model of the tackled problem: 

1. If c0
i
∈ C� and c1

i
∉ C� : add constraint xi = 0 to the ILP 

model
2. If c0

i
∉ C� and c1

i
∈ C� : add constraint xi = 1 to the ILP 

model

Note that, the more of these constraints are added to the original 
ILP, the smaller is the search space of the resulting sub-
instance. Afterwards the extended ILP is solved in function 
SolveSubinstance(C′ , tILP ), for example, by the application of 
an ILP solver with a CPU time limit of tILP seconds. Note that 
a variable xi is only free in the extended ILP, if both solution 
components c0

i
 and c1

i
 form part of C′ . Note also that the output 

of function SolveSubinstance(C′ , tILP ) is—due to the compu-
tation time limit—not necessarily an optimal solution to the 
extended ILP. In those cases in which f (s�

opt
) < f (sbsf ) , the 

output of function SolveSubinstance(C′ , tILP ) is set as sbsf . 
Finally, in the adapt step, sub-instance C′ is adapted in function 
Adapt(C′ , s�

opt
 , agemax ) depending both on s�

opt
 and on the age 

values of the solution components. This is done by increasing 
the age values of all components in C� ⧵ s�

opt
 by one, and by 

re-initialising the age values of all components in s�
opt

 to zero. 
The final action in the adapt step consists in removing all those 
components from C′ whose age value has reached the maxi-
mum allowed age of agemax . This is done in order to prevent 
components that never appear in s�

opt
 to slow down the ILP 

solver in subsequent iterations.
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2.2  Self‑Adaptive CMSA

4 Remember that this means that solutions constructed in this way 
will be more similar to s

bsf
 than with lower values of �

bsf
.

The pseudo-code of self-adaptive CMSA (Adapt-CMSA) 
is provided in Algorithm 2. The first noticeable difference 
to standard CMSA is the absence of the age values. This is 
because Adapt-CMSA works with a fixed maximum age of one, 
that is, after each iteration all solution components apart from 
those that form part of the best-so-far solution sbsf are removed 
from the sub-instance C′ (see line 23). Another difference can 
be seen in function ProbabilisticSolutionConstruction(C, 
sbsf , �bsf ) for the probabilistic generation of solutions at each 
algorithm iteration (see line 8). Note that this latter function 
receives, apart from the set of all possible solution components 
(C), the currently best-so-far solution sbsf and a parameter �bsf 
(where 0 ≤ 𝛼bsf < 1 ) as input. This parameter biases the con-
struction of new solutions towards the best-so-far solution sbsf . 
More specifically, the higher the value of �bsf , the higher will 
be the similarity of the solutions constructed in ProbabilisticS
olutionConstruction(C, sbsf , �bsf ) to sbsf.

The dynamic change of the value of �bsf is one of the aspects 
that is handled in a self-adaptive way in Adapt-CMSA. First 
of all, Adapt-CMSA requires a lower bound �LB and an upper 

bound �UB for the value of �bsf as input. Moreover, the step 
size �red for the reduction of �bsf must also be given as input. 
Adapt-CMSA starts with setting �bsf to the highest possible 
value �UB ; see line 5.4 In case the resulting ILP can be solved 
in a computation time tsolve which is below a proportion tprop of 
the maximally possible computation time tILP , the value of �bsf 
is reduced by �red ; see line 12. The rationale behind this step is 
the following one. In case the resulting ILP can be solved eas-
ily, the search space of the ILP is too small due to a rather low 
number of free variables. In order to have more free variables in 
the ILP, the solutions constructed in ProbabilisticSolutionCo
nstruction(C, sbsf , �bsf ) should be more different to sbsf , which 
can be achieved by reducing the value of �bsf.

The second aspect which is handled in a self-adaptive way 
in Adapt-CMSA is the number of solution constructions per 
iteration ( na ); see lines 13–22. The algorithm starts with a value 
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of na = 1 ; see line 5. Moreover, in case the solution of the 
reduced ILP ( s�

opt
 ) improves over the best-so-far solution sbsf , 

na is set back to one; see line 15. If, however, the solution of the 
reduced ILP ( s�

opt
 ) is strictly worse than the best-so-far solution 

sbsf , the corresponding sub-instance was clearly too large and/
or complex in order to be solved by the ILP solver within tILP 
seconds. In this case, if na = 1 the value of �bsf is slightly 
increased (by �red

10
 ); resp. na is set back to one, otherwise. In the 

remaining case ( f (s�
opt
) = f (sbsf ) ), na is incremented by one; 

see line 20. This is done because the sub-instance did not con-
tain a better solution than sbsf . At the same time, the sub-
instance was solved within the allowed computation time of tILP 
seconds, which means that the size of the sub-instance should 
be increased.

Finally, note that functions SolveSubinstance(C′ , tILP ) are 
exactly the same in both version of CMSA (standard CMSA 
and Adapt-CMSA).

3  Application to the MPIDS Problem

The only problem-dependent part of both standard CMSA and 
Adapt-CMSA is the construction of feasible solutions. For the 
purpose of describing the solution construction procedures, 
we first need to introduce the tackled problem. As mentioned 
in the introduction, both standard CMSA and Adapt-CMSA 
are applied to an NP-hard combinatorial optimisation prob-
lem known as the minimum positive influence dominating set 
(MPIDS) problem. This problem is known for its applications 
in the context of social networks. Imagine that the nodes and 
edges in such a social network represent individuals (per-
sons) and relationships/interactions between those individu-
als, respectively. In general, information propagated in social 
networks has the potential to have a significant impact, which 
might be either positive or negative, on (parts of) the society. As 
social norms theory shows that the behaviour of individuals can 
be affected by the perception of others’ thoughts and behaviours 
[23], relationships among people in social networks may be 
exploited in order to obtain economical and/or societal benefits. 
In this sense, the aim of the MPIDS problem is to identify a 
small subset of influential individuals (or key individuals) for 
speeding up the spread of positive influence in a social network 
[24, 25]. Alternative applications of the MPIDS problem can be 
found in e-learning software [26], online business [27], drink-
ing, smoking, and other drug-related problems [28].

In the following, the MPIDS problem is described in a 
technical way. Let G = (V ,E) be an undirected graph without 
loops and without parallel edges. Any subset S ⊆ V that fulfils 
the following condition is a valid solution to the problem: at 
least half of the neighbours of each vertex v ∈ V must form 
part of S. Note that, if G is connected, any valid solution S 

is also a dominating set of G. The MPIDS problem aims to 
find a valid solution S∗ ⊆ V of minimum size. In other words, 
given a valid solution S ⊆ V , the objective function value of 
S is f (S) ∶= |S| . Note that S ∶= V is a trivial solution to the 
problem. The MPIDS problem is NP-hard.

From an algorithmic point of view, the efforts of the 
research community initially focussed on the development of 
well-working greedy heuristics [29–34]. In fact, until 2021, 
the best available approach was our own greedy method from 
[34]. The development of successful metaheuristic approaches 
seemed much harder. This is shown by the results of the first 
two metaheuristics—an ILP-based memetic algorithm [35] and 
a swarm intelligence based algorithm [36]—whose results are 
inferior to the greedy approach from [34]. The first metaheuris-
tic that was able to improve over [34] is the iterated carousel 
approach from [37]. Finally, the currently best metaheuristics 
are our own approaches: a negative learning ant colony optimi-
sation approach from [38] and the preliminary standard CMSA 
approach from [22]. Both approaches perform on a comparable 
level.

Note that, for the application of CMSA and Adapt-CMSA, 
we make use of the following ILP model which is well known 
from the related literature. This model is based on a binary 
variable xi for each vertex vi ∈ V.

Hereby, N(vi) denotes the neighbourhood of vi in the input 
graph G. Moreover, deg(vi) is the degree of vertex vi , where 
deg(vi) ∶= |N(vi)| . Equation (2) forces any feasible solution 
to contain at least half of the neighbours of each vertex vi ∈ V.

3.1  Solution Construction in CMSA and Adapt‑CMSA

In the following, we outline the remaining aspect of CMSA 
and Adapt-CMSA: the construction of solutions in function 
ProbabilisticSolutionConstruction (C, lsize , drate ) in the case 
of CMSA, respectively in function ProbabilisticSolutionCon-
struction (C, sbsf , �bsf ) in the case of Adapt-CMSA. Both func-
tions make use of the solution construction mechanism of the 
greedy procedure from [34]. They only differ in the way in 
which this procedure is made probabilistic. For the following 
discussion, remember that a vertex v ∈ V is called covered with 
respect to a (partial) solution s if and only if at least half of its 

(1)min

n∑

i=1

xi,

(2)s.t.

∑

vj∈N(vi)

xj ≥

⌈
deg(vi)

2

⌉
∀vi ∈ V ,

(3)xi ∈ {0, 1}.
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neighbours form part of S. In the opposite case, v is labelled as 
uncovered.

The solution construction mechanism utilised by both func-
tions is shown in Algorithm 3. First, each solution s to be con-
structed is initialised by a set spar ⊂ V of nodes that must form 
part of an optimal solution; see line 3. Note that spar is obtained 
by the application of a pre-processing procedure described in 
[34]. Then, at each step of the solution construction mechanism, 
the following is done. First, the set of all uncovered vertices 
with respect to (partial) solution s is determined; see line 5. This 
set is labelled U. Second, a node v ∈ U  such that 
deg(v) ≤ deg(v�) for all v� ∈ U is selected (line 6). Third, nodes 
from N(v) ⧵ s are iteratively added to s  while 
|N(v) ∩ s| <

⌈
deg(v)

2

⌉
 ; see lines 7–10. Hereby, exactly one vertex 

from N(v) ⧵ s is selected by function ChooseFrom(N(v) ⧵ s ) 
at each entry of the while loop.

In standard CMSA, function ChooseFrom(N(v) ⧵ s ) is 
implemented as follows. At first, a candidate list L is created. 
This list includes all vertices v� ∈ N(v) ⧵ s . Each vertex v′ in L 
is characterised by its cover degree cov_deg(v�) , which is the 
number of uncovered adjacent vertices of v′ . Note that vertices 
in L are sorted according to a non-increasing cover degree 

value. Then, a uniform random number r is generated from the 
interval [0, 1]. If r ≤ drate (where drate is the so-called determin-
ism rate) the vertex with the highest cover degree is selected 
and added to s. Otherwise, a vertex is selected randomly from 
the restricted candidate list which contains the first lsize vertices 
of L. Hereby, lsize is the size of the restricted candidate list. All 
vertices in the restricted candidate list have an equal probability 
1

lsize
 of being selected.
In contrast, in Adapt-CMSA, function Choos-

eFrom ( N(v) ⧵ s ) is implemented in the following 
way. First, each vertex v� ∈ N(v) ⧵ s such that v� ∈ sbsf 
o b t a i n s  a  va l u e  q(v�) ∶= (cov_deg(v�) + 1) ⋅ �bsf  , 
while all other vertices v�� ∈ N(v) ⧵ s receive a value 
q(v��) ∶= (cov_deg(v��) + 1) ⋅ (1 − �bsf ) . A vertex v̂ is then 
chosen from N(v) ⧵ s according to the following probabilities:

In other words, the higher the value of parameter �bsf ∈ [0, 1] , 
the stronger is the bias towards the best-so-far solution sbsf . This 
bias does not exist in standard CMSA.

(4)�(v�) ∶=
q(v�)

∑
v��∈N(v)⧵s q(v

��)
∀ v� ∈ N(v) ⧵ s.

4  Experimental Evaluation

All experiments reported in the following were performed on 
a cluster of machines with  Intel®  Xeon® 5670 CPUs with 12 
cores of 2.933 GHz and a minimum of 32 GB RAM. Note 
that CPLEX version 20.1 was used in one-threaded mode both 
in a standalone manner and within CMSA and Adapt-CMSA 
for solving the respective sub-instances. Two sets of experi-
ments were performed. A comprehensive experimentation in 
the context of a new set of 800 scale-free networks is described 
in Sect. 4.1. The second set of experiments makes use of small, 

medium and large problem instances that were already used in 
the related literature; see Sect. 4.2.

4.1  Experiments Regarding Scale‑Free Networks

In order to be able to compare CMSA and Adapt-CMSA on a 
controlled set of benchmark instances with different features, 
we generated the following set of 800 scale-free networks using 
the igraph software package [39]. An undirected network is 
said to be scale-free—or, equivalently, to follow a power-law 
distribution—if the statistical distribution of the degrees of its 
nodes is as follows:
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where P(k) is the probability that a given node has exactly 
k neighbours. Specifically, we used the random power-law 
graph generator function called igraph_static_power_
law_game to generate networks differing in the following 
parameters:

• Number of nodes, |V| ∈ {1.000, 10.000, 50.000, 100.000
250.000, 500.000, 750.000, 1.000.000}.

• Number of edges: l ∈ {5, 10, 20, 30} , where l ⋅ |V| is the 
number of edges

• Exponent for the power-law exponential distribution, 
� ∈ {2, 2.25, 2.5, 2.75, 3} . Note that parameter � establishes 
the pace at which the probability of having highly connected 
nodes decreases.

Note that five networks were generated for all combinations of 
the number of nodes, the number of edges, and the exponent for 
the power-law exponential distribution. This makes a total of 
800 networks. Neither of the generated networks has self-loops 
or multiple edges between a pair of nodes. Note that, following 
the suggestion in the igraph package, the finite_size_
correction mechanism [40] for the generation of the net-
works. Our reason for choosing power-law, scale-free networks 
for the comparison between CMSA and Adapt-CMSA is that 
they are generally accepted models for social networks [41, 
42].5

For the purpose of parameter tuning, we sepa-
rately generated one graph for each combination of 
|V| ∈ {50.000, 100.000, 500.000, 1.000.000} , l ∈ {5, 30} and 
� ∈ {2, 3} . That is, 16 graphs were used for parameter tuning 
purposes. In particular, we used the scientific tuning software 
irace [43] for fine-tuning the parameters of CMSA and Adapt-
CMSA. The parameters of CMSA (together with their domains 
allowed for tuning) are the following ones: 

1. Number of solution constructions per iteration, 
na ∈ {1, 2,… , 19, 20}.

2. Upper limit for the age values, agemax ∈ {1, 2,… , 9, 10}.
3. Time limit for CPLEX per call, tILP ∈ {1, 2,… , 49, 50} 

CPU seconds.
4. Determinism rate for solution construction, 

drate ∈ [0.0, 0.99].

(5)P(k) ∼ k−�, 5. Length  of  the  rest r ic ted  candidate  l i s t , 
lsize ∈ {2, 3,… , 9, 10}.

The parameters of Adapt-CMSA, together with their domains, 
are the following ones: 

1. Time limit for CPLEX per call, tILP ∈ {1, 2,… , 49, 50} 
CPU seconds.

2. Lower bound for the bias towards the best-so-far solution, 
�LB ∈ [0.6, 0.99].

3. Upper bound for the bias towards the best-so-far solution, 
�UB ∈ [0.6, 0.99].

4. Step size for the reduction of this bias, �red ∈ [0.01, 0.1].
5. Parameter used for determining when to reduce the bias, 

tprop ∈ [0.1, 0.8].

Note that in the case of numerical parameters, the precision 
of irace was fixed to two positions behind the comma. Both 
for the tuning of CMSA and Adapt-CMSA irace was applied 
with a budget of 3.000 algorithm applications. The time limit 
for each problem instance was set to |V|∕100 CPU seconds. 
The outcome of the tuning runs can be summarised as follows:

• CMSA parameter values: na = 1 , agemax = 1 , tILP = 38 , 
drate = 0.53 , lsize = 2.

• Adapt-CMSA parameter values: tILP = 44 , �LB = 0.85 , 
�UB = 0.97 , �red = 0.05 , tprop = 0.13.

Note that both parameter settings indicate that we are dealing 
with very large graphs. In the case of CMSA, for example, 
na = 1 and agemax = 1 are set in this restrictive way because, 
otherwise, the size of the sub-instances would be too large to be 
solved by CPLEX. Similarly, the parameters of Adapt-CMSA 
are characterised by a strong bias towards the best-so-far solu-
tion in order to keep the sub-instance as small as possible, while 
still being able to find improving solutions.

With the final parameter settings as provided above, both 
CMSA and Adapt-CMSA were applied exactly once to each of 
the 800 problem instances. The computation time limit was the 
same as the one chosen for tuning, that is, |V|∕100 CPU sec-
onds. The results are shown in a summarised way in the graphic 
of Fig. 1. The graphic is composed of 4 × 8 = 24 sub-graph-
ics for each combination of |V| = n (rows) and l (columns). 
Each sub-graphic shows—for all five values of �—the average 
improvement of Adapt-CMSA over CMSA (in percent). Note 
that those cases in which Adapt-CMSA improves over CMSA 
are additionally marked by bars in blue colour, while bars in 
red colour indicate the cases in which CMSA is better than 
Adapt-CMSA.

The following observations can be made. First, for smaller 
graphs (up to 50.000 nodes) not much difference between 
the two algorithms can be observed. However, starting from 
100.000 nodes, Adapt-CMSA clearly outperforms CMSA. This 

5 Note that, due to the size and the number of the generated graphs, 
this instance set is very large and consumes a large amount of mem-
ory (more than 17 GB). It can be obtained by contacting the corre-
sponding author by email.
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holds especially with a growing number of nodes and a grow-
ing number of edges. Interestingly, for the smallest values of �
—that is, for � ∈ {2, 2.25} in the case of l = 5 , respectively for 
� = 2 in the case of the remaining values of l—CMSA often 
seems to have a slight advantage over Adapt-CMSA. In other 
words, the advantage of Adapt-CMSA over CMSA is higher for 
graphs with less nodes with high degrees. Nevertheless, these 
results provide a strong indication for the general superiority of 
Adapt-CMSA over CMSA.

4.2  Experiments Regarding Instances 
from the Literature

In our second set of experiments, we compare CMSA and 
Adapt-CMSA to the standalone application of CPLEX and 

to the best metaheuristic from the literature [37] (ICG). This 
is done in the context of 17 social networks that are partially 
used in the related literature on the MPIDS problem. These 
networks are of small and medium size, and contain between 
34 and 36.692 nodes and between 788 and 198.050 edges. 
In addition, CPLEX and our CMSA variants were applied to 
10 larger social networks from the SNAP library that contain 
between 37.700 and 1.134.890 nodes and between 2.289.003 
and 3.387.388 edges (https:// snap. stanf ord. edu/ data/).

While CPLEX was applied exactly once to each of these 27 
problem instances, both CMSA and Adapt-CMSA were applied 
10 times to each instance. A computation time limit of 2 h was 
given to each CPLEX run. On the contrary, much less time 
was given to the CMSA variants. In the case of the 17 small/
medium size problem instances we allowed a computation time 

Fig. 1  Average improvement of Adapt-CMSA over standard CMSA (in percent)

https://snap.stanford.edu/data/
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of |V|∕10 CPU seconds for each run. A relatively shorter com-
putation time of |V|∕100 CPU seconds was allowed for the 
application to the large instances from the SNAP library. The 
main reason for this difference is that |V|∕100 s would have 
been a very short computation time for most of the small and 
medium size instances.

In a first experiment we applied both CMSA and Adapt-
CMSA with the parameter values from the previous section 
to all 27 instances. The obtained results are shown in numeri-
cal form in Table 1 (small/medium size instances) and Table 2 

(large instances). These tables have the following structure. The 
first column contains the instance name, and the second col-
umn provides information about the quality of the best solutions 
known to date. Columns with heading ‘q’ report on the quality 
of the best solutions found by the four approaches, and columns 
with heading ‘avg’ provide the respective average solution 
quality. Furthermore, columns with heading ‘ t(s) ’ indicate the 
average computation times of CMSA and Adapt-CMSA to find 
the best solutions in each run. Note that the information about 
average computation times was not provided in [37] for ICG. 
The authors, however, state that they chose a computation time 

Table 1  Numerical results for small to medium size instances

aThese best-known results were obtained by [22] (CA-AstroPh) and [38] (socfb-Brandeis99, socfb-Mich67)

Network Best CPLEX ICG CMSA Adapt-CMSA

known q Gap (%) q Avg q Avg t(s) q Avg t(s)

Karate 15 15 0.00 n.a. n.a. 15 15.00 0.004 15 15.00 0.004
Dolphins 30 30 0.00 30 30.0 30 30.00 0.02 30 30.00 0.02
Football 63 63 0.00 64 64.0 63 63.70 3.06 63 63.80 3.07
Jazz 79 79 0.00 n.a. n.a. 79 79.00 1.66 79 79.00 0.23
CA-AstroPh 6736a 6740 0.30 6808 6812.95 6751 6753.60 1311.32 6738 6739.40 1329.03
CA-GrQc 2587 2587 0.00 2587 2587.50 2587 2587.00 19.08 2587 2587.00 1.87
CA-HepPh 4718 4718 0.01 4743 4746.85 4726 4727.50 604.52 4718 4718.20 482.04
CA-HepTh 4471 4471 0.00 4481 4483.10 4474 4474.70 306.65 4471 4471.00 17.60
CA-CondMat 9584 9584 0.06 9625 9627.85 9593 9595.00 1773.06 9585 9586.20 1048.08
Email-Enron 11682 11682 0.00 11737 11740.65 11692 11693.40 1815.34 11682 11682.80 690.15
ncstrlwg2 2994 2994 0.00 n.a. n.a. 2995 2995.00 20.92 2994 2994.20 213.07
actors-data 3092 3092 0.24 n.a. n.a. 3099 3100.90 763.51 3093 3093.70 597.38
ego-facebook 1973 1973 0.00 1973 1973.25 1975 1975.00 5.553 1973 1973.00 95.42
socfb-Brandeis99 1397a 1400 1.41 1443 1445.05 1427 1428.90 324.00 1414 1416.30 340.99
socfb-nips-ego 1398 1398 0.00 n.a. n.a. 1398 1398.00 0.04 1398 1398.00 0.03
socfb-Mich67 1327a 1329 1.56 n.a. n.a. 1342 1344.60 241.66 1340 1342.70 288.82
soc-gplus 8244 8244 0.00 n.a. n.a. 8250 8251.20 956.37 8244 8244.00 2.425
Average 3552.88 3558.59 3559.56 3554.35 3554.96

Table 2  Numerical results for large SNAP networks

Network Best CPLEX CMSA Adapt-CMSA

known q Gap (%) q Avg t(s) q Avg t(s)

musae_git 9752 9752 0.00 9793 9796.90 356.24 9757 9758.00 361.02
loc-gowalla_edges 67617 67617 0.07 67723 67727.90 1902.18 67690 67695.20 1915.43
gemsec_facebook_artist 15194 15194 1.20 15319 15330.70 494.05 15256 15259.50 484.12
deezer_HR 22699 54573 95.68 22567 22605.10 541.96 22338 22354.50 523.39
com-youtube 351281 351281 0.00 351960 351972.50 11134.93 351422 351431.20 11053.78
com-dblp 120492 120492 0.08 120640 120647.00 3082.43 120566 120576.30 3086.46
Amazon0302 130378 262111 97.50 128913 128939.80 2606.64 128587 128624.40 2605.34
Amazon0312 180853 400727 95.41 183113 183113.00 1.27 174495 174832.50 3994.77
Amazon0505 183114 410236 95.19 185310 185310.00 1.32 176882 177175.90 4100.25
Amazon0601 179964 403394 96.94 182279 182279.00 1.405 173509 173929.10 4030.06
Average 209537.70 126761.70 124050.20
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limit of |V| ⋅ 30∕1000 , because this assured convergence of 
their algorithm in the case of all considered problem instances. 
In other words, ICG would not profit from a higher computation 
time limit. Finally, the gap (in percent) between the solution 
obtained by CPLEX and the best lower bound is indicated in 
the column with heading ‘gap(%)’. Note that when the gap is 
zero, CPLEX was able to prove optimality. The best result for 
each instance is shown in bold font. Furthermore, in case the 
best solution known so far was improved, the respective result 
is underlined. Finally, in those cases in which none of the algo-
rithms was able to reach the currently best-known solution, we 
provide at the bottom of the table an indication of the algorithm 
that obtained the respective best-known solution.

The following observations can be made. First, CPLEX per-
forms strongly for small and medium size instances. Apart from 
instance CA-AstroPh, CPLEX obtains all best-known solu-
tions. Only in six out of 17 cases, CPLEX is not able to prove 
optimality of these results. The performance of Adapt-CMSA 
is very similar to the one of CPLEX. In one case (instance CA-
AstroPh) Adapt-CMSA outperforms CPLEX both in terms 
of best-performance and in average-performance. On the down-
side, in four other cases (instances CA-CondMat, actors-
data, socfb-Brandeis99 and socfbMich67) the 
results of Adapt-CMSA fall slightly short of those of CPLEX. 
On the other side, Adapt-CMSA clearly outperforms CMSA, 
which (with the parameter setting for scale-free networks) only 
matches the results of Adapt-CMSA for six out of 17 problem 
instances. Finally, note that both CMSA and Adapt-CMSA 
clearly outperform the most recent metaheuristic from the 
related literature (ICG). Concerning the large instances from 
the SNAP library—see Table 2—we can state that the stan-
dalone application of CPLEX clearly starts to fail with a grow-
ing problem instance size. In fact, in five out of 10 cases—see 
the ones with an optimality gap of more than 95%—CPLEX 
is only able to provide the trivial solution that simply contains 
all network nodes. In addition, it can also be observed that the 
standard CMSA approach fails for instances Amazon0312, 
Amazon0505 and Amazon0601. In these three cases, stand-
ard CMSA is not able to improve over the initial solutions pro-
vided by the greedy approach. Adapt-CMSA, on the other side, 
works very well also for these large-size SNAP networks. In 
fact, Adapt-CMSA is able to obtain new best-known solutions 
in five out of 10 cases. Moreover, in those five cases in which 
CPLEX still works fine, the results of Adapt-CMSA are only 
slightly worse than those of CPLEX. Therefore, a first conclu-
sion of this work is that Adapt-CMSA appears to be a CMSA 
variant that does not require to be specifically tuned for subsets 
of the considered benchmark set. It shows a high performance 
over the whole range of benchmark instances with one single 
parameter value set.

In a second experiment, we aimed at studying the change 
of performance of standard CMSA when specifically tuned for 

small and medium size problem instances on one side, and for 
large SNAP network on the other side. Again, we used irace 
for the purpose or parameter tuning. For small and medium size 
instances, the budget given to irace consisted of 1000 algo-
rithm applications, and instances CA-AstroPh and socfb-
Brandeis99 were used for tuning. The same budget was 
used for the tuning run concerning large SNAP networks. In 
this case, instances Amazon0505 and Amazon0601 were 
used for tuning. The outcome of these two tuning experiments 
was the following one:

• Small/med. size instances: na = 1 , agemax = 3 , tILP = 16 , 
drate = 0.09 , lsize = 8.

• Large SNAP networks: na = 1 , agemax = 1 , tILP = 39 , 
drate = 0.95 , lsize = 10.

Clearly, the parameter settings for small and medium size 
instances result in much larger sub-instance sizes than those 
for large SNAP networks. With these new parameter settings 
we repeated the experiments of CMSA. The results, in compari-
son to the CMSA results obtained with the previous parameter 
values, are shown in Tables 3 and 4.

The new CMSA results improve substantially in the case 
of small and medium size problem instances (Table 3). In 
fact, CMSA is now able to generate for 14 out of 17 problem 
instances the best-known solutions. In one case—see instance 
actors-data—CMSA is even able to generate a new best 
known solution of value 3091. With the specialised parameter 
setting, CMSA is now even able to perform slightly better, on 
average, than Adapt-CMSA (compare to Table 1). The results 
for large SNAP instances, however, show that specialised tun-
ing does not help in this case. Even though the results of CMSA 
improve over the original ones from Table 2 in the case of those 
problem instances that were used for tuning (Amazon0505 
and Amazon0601), they become worse for seven out of 10 
problem instances. Moreover, even in those cases in which 
CMSA is able to improve with a specialised parameter setting, 
the results are still clearly inferior to those of Adapt-CMSA.

5  Conclusions and Outlook to Future Work

Construct, merge, solve and adapt (CMSA) is a recent 
matheuristic for the application to combinatorial optimisa-
tion problems. The algorithm is based on solving opportunely 
defined sub-instances of the original problem instances at each 
iteration by means of an exact solver such as, for example, an 
integer linear programming solver. One of the occasional dis-
advantages of CMSA is the need for repeated parameter tuning 
for subsets of the considered benchmark set. For dealing with 
this problem, we proposed in this work a self-adaptive variant 



International Journal of Computational Intelligence Systems           (2022) 15:44  

1 3

Page 11 of 13    44 

of CMSA, called Adapt-CMSA, that adjusts its parameters on 
the fly in order to be able to solve problem instances of very 
different sizes without the need of re-tuning. Experiments were 
performed in the context of the minimum positive influence 
dominating set (MPIDS) problem.

Based on the obtained results, we can say that Adapt-CMSA 
has several advantages over standard CMSA in the context of 
the MPIDS problem. First, Adapt-CMSA does not need to be 
specifically tuned for subsets of the considered benchmark set. 
After one single tuning run, Adapt-CMSA works very well 
for the whole benchmark set, which contains instances of very 

different sizes. Second, Adapt-CMSA clearly outperforms 
standard CMSA in the context of large networks for which even 
a specialised tuning does not enable CMSA to compete with 
Adapt-CMSA.

In future work, we aim at confirming the findings of this 
paper in the context of other hard combinatorial optimisation 
problems. We believe that making CMSA self-adaptive is a 
significant step towards improving the wide applicability of this 
approach.

Table 3  Improvement of CMSA 
after specific tuning for small 
and medium size instances

Network Best CMSA CMSA (special tuning)

known q Avg t(s) q Avg t(s)

Karate 15 15 15.00 0.004 15 15.00 0.01
Dolphins 30 30 30.00 0.02 30 30.00 0.03
Football 63 63 63.70 3.06 63 63.70 4.81
Jazz 79 79 79.00 1.66 79 79.00 0.36
CA-AstroPh 6736 6751 6753.60 1311.32 6736 6737.30 1181.44
CA-GrQc 2587 2587 2587.00 19.08 2587 2587.00 1.57
CA-HepPh 4718 4726 4727.50 604.52 4718 4718.10 332.57
CA-HepTh 4471 4474 4474.70 306.65 4471 4471.00 14.08
CA-CondMat 9584 9593 9595.00 1773.06 9584 9584.10 1001.96
Email-Enron 11682 11692 11693.40 1815.34 11682 11682.00 1471.90
ncstrlwg2 2994 2995 2995.00 20.92 2994 2994.00 26.65
actors-data 3092 3099 3100.90 763.51 3091 3092.30 521.21
ego-facebook 1973 1975 1975.00 5.553 1973 1973.00 25.26
socfb-Brandeis99 1397 1427 1428.90 324.00 1406 1407.90 215.55
socfb-nips-ego 1398 1398 1398.00 0.04 1398 1398.00 0.04
socfb-Mich67 1327 1342 1344.60 241.66 1335 1338.30 198.67
soc-gplus 8244 8250 8251.20 956.37 8244 8244.20 808.90
Average 3558.59 3559.56 3553.29 3553.82

Table 4  Results of CMSA after specific tuning for the large SNAP networks

Network Best CMSA CMSA (special tuning)

known q Avg t(s) q Avg t(s)

musae_git 9752 9793 9796.90 356.24 9890 9896.40 359.88
loc-gowalla_edges 67617 67723 67727.90 1902.18 67993 68008.30 1957.53
gemsec_facebook_artist 15194 15319 15330.70 494.05 15511 15526.70 498.52
deezer_HR 22699 22567 22605.10 541.96 22727 22744.50 538.43
com-youtube 351281 351960 351972.50 11134.93 352225 352245.80 11246.08
com-dblp 120492 120640 120647.00 3082.43 120970 120977.20 3131.91
Amazon0302 130378 128913 128939.80 2606.64 130386 130422.20 2600.53
Amazon0312 180853 183113 183113.00 1.27 180438 181974.30 2372.35
Amazon0505 183114 185310 185310.00 1.32 182160 183670.60 1527.61
Amazon0601 179964 182279 182279.00 1.405 179584 181282.40 2197.99
Average 126761.70 126772.19 126188.40 126674.84
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