
On Triangular Norm Based Fuzzy Description Logics

Àngel García-Cerdaña Eva Armengol Francesc Esteva

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific research

Campus UAB, 08193 Bellaterra, Spain
Email: {angel, eva, esteva}@iiia.csic.es

Abstract— Description Logics (DLs) are knowledge representa-
tion languages useful to represent concepts and roles. Fuzzy De-
scription Logics (FDLs) incorporate both vague concepts and vague
roles modeling them as fuzzy sets and fuzzy relations respectively. In
the present paper, following ideas from Hájek, we propose the use
of t-norm based (fuzzy) logics with truth constants in the language
as logics underlying the fuzzy description language. We introduce
the languages ALCL∗(S) and ALCL∗∼(S) as an adequate syntactical
counterpart of some semantic calculi given in different works dealing
with FDLs.

Keywords— Description Logics, Fuzzy Description Logics, t-
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1 Introduction

Description Logics (DLs) are knowledge representation lan-
guages (particularly suited to specify formal ontologies),
which have been studied extensively over the last two decades.
A full reference manual of the field is [1]. The vocabulary
of DLs consists of concepts, which denote sets of individ-
uals, and roles, which denote binary relations among indi-
viduals. From atomic concepts and roles DL systems allow,
by means of constructors, to build complex descriptions of
both concepts and roles, which are used to describe a domain
through a knowledge base (KB) containing the definitions of
relevant domain concepts or some hierarchical relationships
among them (TBox) and a specification of properties of the
domain instances (ABox). One of the main issues of DLs is
the fact that the semantics is given in a Tarski-style presenta-
tion and the statements in both TBox and ABox can be identi-
fied with formulae in first-order logic or a slight extension of
it, and hence we can use reasoning to obtain implicit knowl-
edge from the explicit knowledge in the KB.

A natural generalization to cope with vague concepts and
relations consists in interpret DL concepts and roles as fuzzy
sets and fuzzy relations, respectively. From this point of view,
it is at the end of the last decade (from 1998) when sev-
eral proposals of Fuzzy Description Logics (FDLs) were in-
troduced (e.g., the first ones by Yen [19], Tresp and Molitor
[18] and Straccia [14]). However, the logic framework behind
these initial works is very limited. With the aim of enriching
the expressive possibilities Hájek [9] proposes to take t-norm
based fuzzy logics as logics underlying FDLs. This change
of view gives a wide number of choices on which a DL can
be based: for every particular problem we can consider the
t-norm based (fuzzy) logic that seems to be more adequate.
As an example, Hájek studies the FDL associated with the de-

scription language ALC. After this work, several researchers
on FDLs have developed approaches based on the spirit of
Hájek’s paper, even though their work is more related to ex-
pressiveness and algorithms than in its logical base (see for
instance [16, 13, 17]).

The main motivation of the present work is based on the fol-
lowing consideration: since the axioms of the bases of knowl-
edge in FDLs include truth degrees (see for instance [14]), a
natural choice is to include symbols for these degrees in both,
the description language and, as truth constants, in the t-norm
based logic where that language is interpreted.

To this goal in the present paper we propose two new
families of description languages, denoted by ALCL∗(S) and
ALCL∗∼(S) that are extensions of the language ALC consid-
ered by Hájek in [9]. After some introductory notions we
define their semantics and describe the corresponding knowl-
edge base (TBox and ABox) from a syntactic and semantic
perspective and, taking advantage of having truth constants in
the logic, we define graded notions of validity, satisfiability
and subsumption. We also give some representative exam-
ple and some new results for the case of ALC language over
Gödel logic with truth constants and an involutive negation.

2 Fuzzy Logic: basics

In the last decade a family of fuzzy logics as t-norm based
fuzzy logics has defined and studied (see, for instance, the
monograph [8] for the main notions used in this section).
They are multi-valued systems with additive conjunction and
disjunction, multiplicative conjunction, implication, negation
and the constant 0̄ which are interpreted in [0, 1] as min, max,
a continuous t-norm ∗, its residuum →∗, the negation func-
tion n(x) = x →∗ 0 and 0, respectively. This interpretation
is mainly defined by a continuous t-norm and its residuum
which justify the name t-norm based logics. Remember that
the main continuous t-norms are the minimum, the product
and the Lukasiewicz since all other continuous t-norm are or-
dinal sum of these three basic ones.

2.1 From BL to the logic of a continuous t-norm

The Basic fuzzy Logic (BL) (defined in [8]) has the following
basic connectives: multiplicative conjunction (&) implication
(→) (both binary) and falsity (0̄) (nullary). It is defined by the
inference rule of Modus Ponens and the following schemata
(taking → as the least binding connective):
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(BL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(BL2) ϕ&ψ → ϕ
(BL3) ϕ&ψ → ψ&ϕ
(BL4) ϕ&(ϕ→ ψ) → ψ&(ψ → ϕ)
(BL5a) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ)
(BL5b) (ϕ&ψ → χ) → (ϕ→ (ψ → χ))
(BL6) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(BL7) 0̄ → ϕ

The usual defined connectives are introduced as follows:
ϕ ∨ ψ := ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
ϕ ∧ ψ := ϕ&(ϕ→ ψ), ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ),
¬ϕ := ϕ→ 0̄, 1̄ := ¬0̄.

Łukasiewicz, Product and Gödel Logics can be obtained as ax-
iomatic extensions ofBL with the following axioms: ¬¬ϕ→
ϕ for Łukasiewicz; (ϕ ∧ ¬ϕ) → 0̄ and ¬¬χ → (((ϕ&χ) →
(ψ&χ)) → (ϕ→ ψ)) for Product; and ϕ→ ϕ&ϕ for Gödel.

An evaluation of propositional variables is a mapping e as-
signing to each variable p a truth value e(p) ∈ [0, 1]. Given
a continuous t-norm ∗, the evaluation e is extended induc-
tively to a mapping of all formulas into the so-called stan-
dard algebra [0, 1]∗ = 〈[0, 1], ∗,→∗,max,min, 0, 1〉 defined
on [0,1] by the t-norm and its residuum in the following way:
e(ϕ&ψ) = e(ϕ) ∗ e(ψ); e(ϕ → ψ) = e(ϕ) →∗ e(ψ);
e(0̄) = 0. In [3] it is proved that the formal system BL is
sound and complete w.r.t. the standard algebras defined in
[0, 1] by continuous t-norms and their residua, i.e., a formula
ϕ is provable in BL if and only if it is a common tautology of
all standard algebras defined by a continuous t-norm and its
residuum. Consequently we say that BL is the logic of con-
tinuous t-norms and their residua. It is also well known that
Łukasiewicz (Product, Gödel) Logic is the logic of the t-norm
of Łukasiewicz (Product, Gödel) and its residuum in the sense
that a formula is provable in each logic if and only if it is a tau-
tology over the standard algebra defined by the corresponding
t-norm and its residuum.

In [6] the logic L∗ of each continuous t-norm ∗ and its
residuum is proved to be finitely axiomatizable as extension
of BL. Moreover it is also given an algorithm to find a finite
set of axioms characterizing each logicL∗. When the negation
¬ϕ := ϕ→ 0̄ defined in L∗ is not involutive, a new logic L∗

∼,
expanding L∗ by adding an involutive negation, can be con-
sidered. This negation, denoted by ∼, could be introduced,
as is done in the context of intuitionistic logic (see [11]) or in
the context of Gödel or Product logics (cf.[5]) by adding the
axioms

(∼ 1) ∼∼ ϕ→ ϕ
(∼ 2) ∼ (ϕ ∨ ψ) ↔ (∼ ϕ∧ ∼ ψ)
(∼ 3) ¬ϕ→∼ ϕ

Notice that having an involutive negation in the logic en-
riches the representational power of the logical language in a
non-trivial way because a multiplicative (or strong) disjunc-
tion ϕ � ψ is definable now (by duality) as ∼ (∼ ϕ& ∼ ψ),
being the associated truth function ⊕ defined as x ⊕ y :=
n(n(x) ∗ n(y)), where n is the truth function of ∼ and,
on the other hand, a contrapositive implication ϕ ↪→ ψ is
definable as ∼ ϕ � ψ, with truth function ↪→⊕ defined as
x ↪→⊕ y = n(x) ⊕ y.

2.2 The logics BL∀ and L∗∀

The language of the basic fuzzy predicate logic BL∀ con-
sists of a set of predicate symbols P = {P,Q, . . . }, each
together with its arity n ≥ 1 and a set of constant symbols
C = {c, d, . . . }. The logical symbols are variable symbols
x, y, . . . , connectives &,→, 0̄ and quantifiers ∀,∃. Other con-
nectives (∨,∧,¬,↔, 1̄) are defined as in BL. Terms are con-
stant symbols and variable symbols. An atomic formula is an
expression of the form P (t1, . . . , tn), where P is a predicate
letter of arity n and t1, . . . , tn are terms. The set of predicate
formulas is built from atomic formulas in the usual way.

A fuzzy interpretation for our language is a tuple M =
〈M, (rP )P∈P , (mc)c∈C〉, where M is a set, for each n-ary
predicate symbol P , rP is a fuzzy n-ary relationMn → [0, 1];
and for each constant symbol c, mc is an element of M.

Given a continuous t-norm ∗, an M-evaluation of the vari-
ables assigns to each variable x an element v(x) of M . From
M and v we define the truth value of a term t in the following
way: ‖t‖M,v = v(t) when t is a variable, and ‖t‖M,v = mc

when t is a constant c. The truth value of a formula ϕ for an
evaluation v, denoted by ‖ϕ‖∗M,v , is a value in [0, 1] defined
inductively as follows:

‖ϕ‖M,v if ϕ is an atomic formula,
0 if ϕ = 0̄,
‖α‖∗M,v ∗ ‖β‖∗M,v if ϕ = α&β,
‖α‖∗M,v →∗ ‖β‖∗M,v if ϕ = α→ β,
inf{‖α‖∗M,v : v ≡x v

′} if ϕ = (∀x)α,
sup{‖α‖∗M,v : v ≡x v

′} if ϕ = (∃x)α,
where v ≡x v′ means that for all variables y �= x, v(y) =
v′(y).
The truth value of a formula ϕ is defined by ‖ϕ‖∗M :=
inf{‖ϕ‖∗M,v : v is an M-evaluation}. A formula ϕ is a ∗-
tautology if ‖ϕ‖∗M = 1 for every fuzzy interpretation M; ϕ is
a standard tautology if it is a ∗-tautology for each continuous
t-norm ∗. The following standard tautologies are taken as ax-
ioms of the basic fuzzy predicate logic BL∀ (see [8]): a) the
axioms of BL; b) the following axioms on quantifiers:

(∀1) (∀x)ϕ(x) → ϕ(t) (t substitutable for x in ϕ(x)),
(∃1) ϕ(t) → (∃x)ϕ(x) (t substitutable for x in ϕ(x)),
(∀2) (∀x)(ϕ→ ψ) → (ϕ→ (∀x)ψ) (x not free in ϕ),
(∃2) (∀x)(ϕ→ ψ) → ((∃x)ϕ→ ψ) (x not free in ψ),
(∀3) (∀x)(ϕ ∨ ψ) → (∀x)ϕ ∨ ψ (x not free in ψ).

Deduction rules are (as in classical logic) Modus Ponens and
Generalization. Notions of proof, provability, theory, etc., are
defined in the usual way. Let C be an axiomatic extension of
BL. C∀ is obtained by taking the axioms and rules of BL∀
plus the axioms characterizing C. Thus, given a continuous
t-norm ∗, the predicate logic L∗∀ is the logic obtained from
L∗ by adding to its axiomatization the schemas for quantifiers
and the rule of generalization.

2.3 Adding truth constants to the language

T-norm based logics are infinite-valued logics. However, the
advantage of being a many-valued logic is not used in cur-
rent approaches since the semantic deduction of formulas do
not take into account the intermediate or partial truth degrees.
That is to say, current approaches use a truth-preserving con-
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sequence relation in the same way as in the classical logic, i.e.
deduce true formulas (having value 1) from sets of true for-
mulas. An elegant way to take advantage from being many-
valued is to introduce truth constants into the language, as it
is done by Pavelka in [12] and more recently in [8, 6, 4]. The
approach considered in this paper is based in these ideas.

Given a continuous t-norm ∗, its residuum →∗ and its cor-
responding logic L∗, let S = 〈S, ∗,→∗,max,min, 0, 1〉 be a
countable (i.e., finite or enumerable) subalgebra of the corre-
sponding standard algebra [0, 1]∗. The expansion ofL∗ adding
into the language a truth constant r̄ for each r ∈ S, denoted
by L∗(S), is defined as follows:
i) the language of L∗(S) is the one of L∗ plus a truth constant
r̄ for each r ∈ S,
ii) the axioms and rules of L∗(S) are those of L∗ plus the
book-keeping axioms: for each r, s ∈ S \{0, 1}, r̄&s̄↔ r ∗ s
and (r̄ → s̄) ↔ r →∗ s.

Completeness results for propositional logic L∗(S) when ∗
is a continuous t-norm has been fully studied in [4].

2.4 Defining the logics L∗(S)∀ and L∗
∼(S)∀

When the negation associated to the continuous t-norm ∗ is
not involutive, the logic L∗

∼(S) can be defined in a similar way
although in this case S has to be a countable subalgebra of the
algebra obtained by adding the truth function of the involutive
negation n(x) := 1 − x to the operations of [0, 1]∗. Moreover
we need to add the book-keeping axioms for the involutive
negation: ∼ r̄ ↔ n(r). The corresponding predicate logics
L∗(S)∀ and L∗

∼(S)∀ are respectively obtained from L∗∀ and
L∗
∼∀ by expanding the language with a truth constant r̄ for

every r ∈ S and by adding the book keeping axioms. The
truth value of the formula r̄ is given by ‖r̄‖∗M = r. The logics
L∗(S)∀ and L∗

∼(S)∀ will be the basis of our proposal for the
description languages presented in the next section.

3 The description languages ALCL∗(S) and
ALCL∗∼(S)

Similarly as first-order logic is the counterpart for interpreting
the classic description language ALC, the logics L∗(S)∀ and
L∗
∼(S)∀ will be the counterpart for interpreting the description

languages ALCL∗(S) and ALCL∗∼(S) we will define in this
section. In these languages, take an special role the so-called
evaluated formulas. An evaluated formula is a formula of one
of the types r̄ → ϕ, ϕ→ r̄ where ϕ is a formula without new
truth constants (i.e., different from 0̄ and 1̄). In this setting
r̄ ↔ ϕ is definable as (r̄ → ϕ)&(ϕ → r̄). The name of eval-
uated formulas cames from the fact that e(r → ϕ) = 1 (resp.
e(ϕ → r) = 1) if and only if e(ϕ) ≥ r (resp. e(ϕ) ≤ r).
Thus, evaluated formulas correspond to the type of formulas
(under the notation 〈ϕ,� r〉 and 〈ϕ,� r〉) used for the knowl-
edge bases in papers on FDLs (cf.[14, 15, 17]). Next we de-
fine the description languages ALCL∗(S) and ALCL∗∼(S) from
a syntactic and semantic perspective. Then we introduce the
notions of TBox and ABox for that languages.

Syntax. In the languages of description we start from atomic
concepts and atomic roles. Complex descriptions are built in-
ductively with constructors of concepts. We will use the letters
A for atomic concepts, R for atomic roles and both C and D

for descriptions of concepts. Using the connectives 0̄,&,→
(falsity, conjunction, implication), the quantifiers ∀,∃ and the
point . as an auxiliary symbol, the description of concepts in
classic ALC can be built using the following syntactical rules
C,D � A | 0̄ | C&D | C → D | ∀R.C | ∃R.C
Given a continuous t-norm ∗ and a countable subalgebra S

of the corresponding standard algebra [0, 1]∗, let us consider
the logic L∗(S). We define ALCL∗(S) by adding to ALC, for
every r ∈ S, a nullary connective r̄ and the rule C � r̄.

The language ALCL∗∼(S) is defined by adding to ALCL∗(S)

the connective ∼ and the syntactic rule C � ∼ C.
Following [8], the notions of instance of a concept and in-

stance of a role allow us to read the formulas of both languages
as formulas of the corresponding predicate fuzzy logic. For
each term t (variable or constant). The instance D(t) of a
concept D is defined as follows:

A(t), if D is an atomic concept A,
0̄, if D = 0̄,
∼ C(t), if D =∼ C,
C1(t) ◦ C2(t), if D = C1 ◦ C2, where ◦ ∈ {&,→},

and, if y is a variable not occurring in C(t),

(∀y)(R(t, y) → C(y)), if D = ∀R.C,
(∃y)(R(t, y)&C(y)), if D = ∃R.C,

where, given two terms t1 and t2, R(t1, t2) is an atomic for-
mula corresponding to the atomic role R. We will refer to the
expressions of the form R(t1, t2) as instances of the atomic
role R.

Semantics. According to semantics for L∗(S)∀ and
L∗
∼(S)∀ a fuzzy interpretation M associates a fuzzy set AM

to each atomic concept A and a fuzzy binary relation RM to
each atomic role R, and the truth value for complex descrip-
tions is given as follows:

0̄M(a) = 0
r̄M(a) = r, for every r ∈ S

(C&D)M(a) = CM(a) ∗DM(a)
(C → D)M(a) = CM(a) →∗ DM(a)

(∀R.C)M(a) = inf{RM(a, b) →∗ CM(b) : b ∈M}
(∃R.C)M(a) = sup{RM(a, b) ∗ CM(b) : b ∈M}

In the case of complex descriptions in ALCL∗∼(S) we must to
add the following:

(∼ C)M(a) = 1 − CM(a)

Fuzzy TBox and Fuzzy ABox. Now we define the notions
of TBox and ABox for ALCL∗(S) and ALCL∗∼(S). In these
definitions we use the following graded notion of inclusion be-
tween fuzzy sets: degree(C ⊆ D) = infx(C(x) →∗ D(x)).
Of course this degree is 1 if and only if C(x) ≤ D(x) for all
x and 0 if the support1 of the two fuzzy sets are disjoint. Hav-
ing the truth constants in the language allows us to associate
sentences like “degree (C ⊆ D) ≤ r” with formulas such as
(∀x)(C(x) → D(x)) → r̄.

A fuzzy concept inclusion axiom is a sentence of one of the
following forms:

• r̄ → (∀x)(C(x) → D(x))

1The support of a fuzzy set is the cardinal of the set of elements
which membership degree is greater than 0.
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Table 1: The graded notation for fuzzy KB.
Evaluated Formula FDL Graded Notation

r̄ → (∀x)(C(x) → D(x)) 〈C � D,� r̄〉
(∀x)(C(x) → D(x)) → r̄ 〈C � D,� r̄〉
r̄ ↔ (∀x)(C(x) → D(x)) 〈C � D,≈ r̄〉

r̄ → C(a) 〈a : C,� r̄〉
C(a) → r̄ 〈a : C,� r̄〉
r̄ ↔ C(a) 〈a : C,≈ r̄〉
r̄ → R(a, b) 〈(a, b) : R,� r̄〉
R(a, b) → r̄ 〈(a, b) : R,� r̄〉
r̄ ↔ R(a, b) 〈(a, b) : R,≈ r̄〉

• (∀x)(C(x) → D(x)) → r̄

• r̄ ↔ (∀x)(C(x) → D(x))

A fuzzy assertion axiom is a sentence of one of the following
forms:

• r̄ → C(a) or r̄ → R(a, b)

• C(a) → r̄ or R(a, b) → r̄

• C(a) ↔ r̄ or R(a, b) ↔ r̄

Now a fuzzy TBox is defined as a finite set of fuzzy concept
inclusion axioms while a fuzzy ABox is defined as a finite set
of fuzzy assertion axioms. A fuzzy KB is a pair K = 〈T ,A〉,
where the first component is a fuzzy TBox and the second one
is a fuzzy ABox.

Notice that all the axioms of the fuzzy KB are evaluated for-
mulas. Thus, the syntactic notion of fuzzy KB according to
our approach, both the TBox and the ABox can be seen as
theories of the logic L∗(S)∀ (or L∗

∼(S)∀).
In Tab. 3 we present an alternative graded notation for fuzzy

inclusion and fuzzy assertions that we will use in the exam-
ple. This notation is similar to the one used in some papers
of FDLs (see for instance [17]). Moreover this notation is ac-
cording to the semantical interpretation in the sense that, for
instance,

〈σ,� r̄〉M = r →∗ σM

and so

M |= 〈σ,� r̄〉 iff r →∗ σM = 1 iff σM ≥ r

It is interesting to remark that in ALCL∗∼(S)∀ the involutive
negation allows us to define graded expressions like, for in-
stance, 〈a : C,� r̄〉 as ∼ 〈a : C,� r̄〉 which corresponds to
the formula ∼ (C(a) → r̄).

An example. We will use a data set composed of nine robots
(Fig. 1), each one with either the same of different shape of
head and body (i.e., they are homogeneous or not homoge-
neous respectively), they can or cannot wear a tie, they can or
cannot smile, and they hold some object. Taking into account
all these characteristics, robots can have different friendliness
degree. The domain of interpretation of the robots is the set:
MR = {ri : 1 ≤ i ≤ 9} ∪ {oi : 1 ≤ i ≤ 9}, where the ri are
the robots and each oi is the object that the robot ri holds (e.g.,
the object o4 is the flower that r4 holds). Atomic concepts of

 

 

r1 r5r4r3r2

.    . .    . .    . .    . .    .

 

r6

.    .

r9

.    ..    .

r7

.    .

r8

Figure 1: The 9 little robots.

the language are the following: Robot, Happy, Object, Friend-
lyObject, Homogeneous, Balloon, Flag, Flower, Sword, Ax and
HasTie. There is only one atomic role: hasObject.

The TBox concerning the robots domain is the following:
Friendly ≡ Robot&(∃hasObject.FriendlyObject)&(Happy � Homogeneous)
〈Robot & Object 
 0̄,≈ 1̄〉
〈1̄ 
 Robot � Object,≈ 1̄〉
〈Flower 
 FriendlyObject,≈ 1̄〉
〈Balloon 
 FriendlyObject,≈ 0.75〉
〈Flag 
 FriendlyObject,≈ 0.50〉
〈Sword 
 FriendlyObject,≈ 0.25〉
〈Ax 
 FriendlyObject,≈ 0̄〉

where C � D is an abbreviation of ∼ (∼ C& ∼ D) and
C ≡ D is an abbreviation for the conjunction of the formulas
〈C � D,≈ 1̄〉 and 〈D � C,≈ 1̄〉.

Notice that objects have different friendliness degree. For
instance, a sword is a friendly object with degree 0.25 and an
ax is a friendly object with degree 0 (i.e., it should be consid-
ered unfriendly in the classical case). On the other hand, the
TBox also contains a definition of Friendly allowing to assess
the friendliness degree of a robot.

The ABox containing the descriptions of the robots is the
following:

For each i, 1 ≤ i ≤ 9, 〈ri : Robot,≈ 1̄〉, 〈(ri, oi) : hasObject,≈ 1̄〉
〈r1 : Homogeneous,≈ 1̄〉, 〈o1 : Balloon,≈ 1̄〉, 〈r1 : Happy,≈ 1̄〉
〈r2 : Homogeneous,≈ 1̄〉, 〈o2 : Flag,≈ 1̄〉, 〈r2 : Happy,≈ 1̄〉
〈r3 : Homogeneous,≈ 0.75〉, 〈o3 : Sword,≈ 1̄〉, 〈r3 : Happy,≈ 1̄〉
〈r4 : Homogeneous,≈ 0.50〉, 〈o4 : Flower,≈ 1̄〉, 〈r4 : Happy,≈ 0̄〉
〈r5 : Homogeneous,≈ 0.50〉, 〈o5 : Sword,≈ 1̄〉, 〈r5 : Happy,≈ 0̄〉
〈r6 : Homogeneous,≈ 0.75〉, 〈o6 : Flag,≈ 1̄〉, 〈r6 : Happy,≈ 0.50〉
〈r7 : Homogeneous,≈ 1̄〉, 〈o7 : Ax,≈ 1̄〉, 〈r7 : Happy,≈ 0.50〉
〈r8 : Homogeneous,≈ 0.75〉, 〈o8 : Ax,≈ 1̄〉, 〈r8 : Happy,≈ 0.50〉
〈r9 : Homogeneous,≈ 1̄〉, 〈o9 : Balloon,≈ 1̄〉, 〈r9 : Happy,≈ 0.50〉
Notice that, using truth constants, we can assess different

degrees of homogeneity according to the shape of both head
and body. In particular, we assess, in a subjective way, that a
combination of round shapes of head and body (i.e., a circle
and an octagon) give a more homogeneous aspect to the robot
than combining round and square shapes. Thus, robots r6 and
r8 are considered more homogeneous than robot r4. Similarly,
robots have different form of mouth that give them different
degree of happiness (i.e., robot r1 is assessed as more happy
than robots r8 and r4).

Fuzzy reasoning. Reasoning in fuzzy description logics
consists on the same kind of tasks than in the classical case but
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now they depend on the chosen continuous t-norm ∗. One of
the advantages of introducing truth constants in the language
is the possibility to define the graded versions of the notions
of ∗-satisfiability, ∗-subsumption and ∗-validity defined in [9]
without modifying the semantics. Thus, given a concept C, a
t-norm ∗ and a truth value r ∈ S we introduce the following
graded notions with respect to a knowledge base K:
•C is ∗-satisfiable in a degree greater or equal than r iff there
is a model M of K such that ‖r̄ → C(a)‖∗M = 1 (being a a
constant).
• C is ∗-valid in a degree greater or equal than r in a model
M of K iff ‖r̄ → (∀x)C(x)‖∗M = 1.
• C is ∗-subsumed by D in a degree greater or equal than
r in a model M of K iff the concept C → D is ∗-valid in
a degree greater or equal than r in the model M, that is, iff
‖r̄ → (∀x)(C(x) → D(x))‖∗M = 1.

On the other hand, we can analogously define the notions
of lower thresholds. For instance, a concept C is ∗-satisfiable
in a degree lower or equal than r iff ‖C(a) → r̄‖∗M = 1
for some model M of K. Moreover, it is also possible to
define an interval where a concept is either valid, satisfi-
able or subsumed. For instance a concept C is ∗-satisfiable
in an interval of degrees [r, s] iff ‖r̄ → C(a)‖∗M = 1 and
‖C(a) → s̄‖∗M = 1 for some model M. In particular, when
r = s the interval became a value called the degree of satisfi-
ability.

Example 3.1 The concept C below is ∗-satisfiable with de-
gree 0.75 in the robots model using any continuous t-norm.

C := Homogeneous &∃hasObject.FriendlyObject

According to the semantics, C is ∗-satisfiable with degree
0.75 if there is at least one robot such that
C(x) = Homogeneous(x)∗ supy∈MR(hasObject(x, y) ∗

FriendlyObject(y)) = 0.75
The equality is true since the robots r1 and r9 have
Homogeneous(x) = 1 and both hold a ballon that, as the
TBox states, it is a friendly object with degree 0.75. Thus,
because 1 is the unity element of any t-norm, both robots have
friendliness degree 0.75.

Example 3.2 Let us to analyze the ∗-subsumption degree of
the concept Object & Sword & FriendlyObject by 0̄ with respect
to the TBox.

According to the definition of ∗-subsumption, we have to
analyze the following formula

r̄ ↔ (∀x)((Object & Sword & FriendlyObject)(x) → 0̄)

and thus, according to the interpretation, the ∗-subsumption
has degree

r = inf
x∈MR

{Object(x)∗ Sword(x)∗ FriendlyObject(x) →∗ 0}

For all t-norms: a) when x is an element that is neither an
object nor a sword, then r is 0 →∗ 0 = 1, and b) when x is a
sword, r = FriendlyObject(x) →∗ 0. In such case r depends
on the t-norm. For instance, taking the Łukasiewicz’s t-norm,
r = min(1, 1 − FriendlyObject(x) + 0) = 0.75. Taking either
the minimum or the product t-norms r = 0.25 →∗ 0 = 0.

Concerning the entailment, we say that a fuzzy assertion α
is ∗-entailed by the knowledge base K if every model M of K
also satisfies α. For instance, the reader can easily prove that
the fuzzy ABox of the robots’ example ∗-entails the assertion
〈Friendly(r6),� 0.50〉 with respect to the fuzzy TBox using
either Łukasiewicz or minimum t-norms. However, using the
product t-norm the above ∗-entailment is not satisfied.

4 A case study: Fuzzy description logics
associated to G∼∀(S)

The first FDL systems were related to the initial Zadeh pro-
posal for fuzzy sets operations. The logic underlying this pro-
posals is the logic associated to the calculus over [0, 1] defined
by the functions min, max, n(x) = 1− x, the Kleene-Dienes
implication x → y = max(1 − x, y), and quantifiers inter-
preted as in section 2.2. This is referred as minimalistic appa-
ratus of fuzzy logic by Hájek in [9]. But, as already noted by
Hájek, the (non residuated) implication of this logic has some
no nice behaviour. For example: (a) in this logic ϕ → ϕ is
not a tautology and (b) an implication ϕ → ψ is evaluated as
1 only if either ϕ is evaluated as 0 or ψ is evaluated as 1. The
languages ALC based on this logic was studied by Straccia in
[14]. The notion of subsumption is defined using the notion
of fuzzy subsets (C ⊆ D if and only if C(x) ≤ D(x) for all
x in the univers) with no relation to implication function due
to the lack of a good relation between the implication function
of this logic and the order relation in [0, 1]. Moreover it is not
known any (Hilbert style) axiomatization of this logic.

For these reasons in this short case study we propose the
interest of studying the ALC language associated to Gödel
Logic with truth constants G(S)∀ and specially the ALC lan-
guage associated to its expansion with an involutive negation
G∼(S)∀. In [7] the authors prove the canonical completenes
of the logic G(S)∀. The canonical completeness can also be
proved for G∼(S)∀.

Theorem 4.1 The logic G∼(S)∀ has the Canonical Finite
Strong completeness, i.e., for every finite set of formulas
Γ ∪ {ϕ},

Γ �G∼(S)∀ ϕ iff Γ |=[0,1]G∼(S)
ϕ

where
[0, 1]G∼(S)= 〈[0, 1],min,max,→G, n, {r | r ∈ S}, 0, 1〉,
with n(x) = 1 − x being the truth function associated to the
involutive negation.

The proof is a simplified version of [7, Theorem 11]. As a
consequence of this theorem, we have an equivalence between
∗-entailment in ALCG∼(S) and the semantics consequence re-
lation on [0, 1]G∼(S).

Notice that in G∼(S)∀ we have, in addition to the connec-
tives of this logic, the ones being the counterpart of the min-
imalistic logic, since an implication having as truth function
the Kleene-Dienes implication is definable as ∼ ϕ∨ψ. More-
over the truth constants allow us to have evaluated formulas
and their negation by the involutive negation that makes possi-
ble to represent by formulas the semantical expressions saying
that the interpretation of a formula is greater, greater or equal,
less, and less or equal than a value r.
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Thus the description language based on G∼∀(S) seems to
be a good choice because both it is actually very expressive
and it maintains the canonical completeness. In this setting
we have two implication connectives, that semantically corre-
spond to the residuum of the minimum plus the Kleene-Dienes
implication. Of course, as in the general case of L∗

∼(S)∀, the
degree of subsumption between concepts is defined by means
of the residuated implication, i.e, the Gödel implication. The
Straccia’s work [14] and the Bobillo’s work [2] gives algo-
rithms for proving satisfiability and subsumption in the ALC
description language based on the minimalistic logic and in
the SROIQ(D) description language based on Gödel logic
respectively. As future work we want to find analogous algo-
rithms for the ALC description languages based on G∼(S)∀.

5 Conclusions

This paper is a first step on the direction proposed by Hájek
concerning the relationships between some proposals of FDLs
and the recent developments in mathematical fuzzy logics.
The main contributions of our approach is the use of truth con-
stants in the language of description and the introduction of
an involutive negation in the required cases. This allows us to
recover graded notions of satisfiability, validity and subsump-
tion that have been used in the fuzzy logic setting. This choice
is oriented to search for the syntactical counterpart of the se-
mantic calculi proposed in some works dealing with FDLs.
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