
A Methodology to Engineer Graded BDI Agents

Ana Casali
Depto. de Sistemas e Informática FCEIA - UNR

Av Pellegrini 250, 2000 Rosario, Argentina.
acasali@fceia.unr.edu.ar

and

Llu ı́s Godo and Carles Sierra
Institut d‘Investigacío en Intel·ligència Artificial (IIIA) - CSIC

Campus UAB, 08193 Bellaterra, Catalunya, España.
godo, sierra@iiia.csic.es

Abstract

In this work we present a methodological framework to engineer graded BDI agent-based systems. The graded
BDI agent model allows to specify an agent’s architecture able to deal with the environment uncertainty and
with graded mental attitudes. We work up previous approaches on software engineering process, adapting and
extending them, in order to develop agents with a more complex internal architecture.

Keywords: Agent-Based Software Engineering, Graded BDI Agents.

1 INTRODUCTION

Agent technology has received a great deal of attention in the last few years and, as a result, many
software applications are developed using this technology. In spite of the different developed agent
theories, languages, architectures and the successful agent-based applications, further work is needed
for specifying (and applying) techniques to develop applications using agent technology. The role of
agent-oriented methodologies is to assist in all the phases of the life cycle of an agent-based applica-
tion, including its management.

Many different Agent Oriented Software Engineering (AOSE) approaches have been proposed, a
survey of some of them can be seen in [1]. Each of the methodologies has different strengths and
weaknesses, and diverse specialized features to support different aspects of their intended application
domains. Most of the methodologies have shown that there is a conceptual level for analysing the
agent-based systems, no matter the agent theory, agent architecture or agent language they are sup-
ported by. This conceptual level should describe fundamentally the external view point of agents by
the Agent Models (the characteristics/tasks of each agent) and the Society Models (the relationships
and interactions between the agents). We consider that is important for a methodology also to include
the agent development from an internal point of view, selecting the necessary models to develop its
architecture, as is pointed in [7].

Among the architectures proposed to give the agent-based systems a formal support, a relevant ap-
proach is the BDI architecture proposed by Rao and Georgeff [8]. This model is based on the explicit
representation of the agent’s beliefs (B), desires (D) and intentions (I). Indeed, this architecture has



evolved over time and it has been applied, to some extent, in several of the most significant multiagent
applications developed up to now.

With the purpose of making the BDI architecture more flexible, we have proposed a general model
for Graded BDI (g-BDI) Agents. This model allows to specify an agent’s architecture able to deal with
the environment uncertainty and with graded mental attitudes, see [3] for first results. In this model,
belief degrees represent to what extent the agent believes a formula is true. Degrees of positive or
negative desires allow the agent to set different levels of preference or rejection respectively. Intention
degrees give also a preference measure but, in this case, modeling the cost/benefit trade-off of reaching
an agent’s goal. Then, agents having different kinds of behavior can be modeled on the basis of the
representation and interaction of these three attitudes. The graded BDI model we have developed
is based in the notion ofmulti-context system(MCS) used to design complex logical systems and
particularly, agent systems [9]. This framework allows the definition of different formal components
and their interrelation.

Since there is no standard agent architecture, the design of the agents needs to be customised to
each agent architecture. We want to set a methodology in order to engineer graded BDI agent systems.

Software Engineering Process for BDI Agent Based Systems

There are few works on Software Engineering Process for BDI Agent Based Systems. Kinny et al. in
[7] proposed a methodology for agent-oriented analysis and design, focusing upon the BDI model of
agents. In specifying an agent system, they have found that is highly desirable to adopt specialized
set of models which operate at two distinct levels of abstraction. First, from the external viewpoint,
the system is decomposed into agents, modeled as complex objects characterized by their purpose,
responsibilities and services they perform, the information they require and maintain, and their ex-
ternal interactions. Second, from the internal point of view, the elements required by a particular
agent architecture must be modeled for each agent. More recently, Jo et al. in [5] proposed the BDI
Agent Software Development Process (BDI-ASDP) as a specialization of traditional and Object Ori-
ented software engineering methodologies, embracing several steps. A similar approach of software
engineering process is presented by Zhang et al. in [11].

All these proposals share the same principal stages. They take advantage of different artifacts
proved to be useful in Object-Oriented Software Engineering, adapting them to their purpose. They
are designed to identify the beliefs, desires, and intentions for agents during the software analysis and
design phases. Following the natural style of human thinking “goal-plan-data”, their approaches first
extract the desires from the requirement, and then create the proper plans. Finally they find the beliefs.
The task of agent recognition is done during the BDI process after the goals and plans identification.

Despite of having common issues, we can remark that in the work of Jo et al. [5] and of Zhang et
al. [11], there is not a clear separation in the agent analysis and design from an external and internal
viewpoint, as is pointed in [7]. More specifically, their proposals contain the following stages:
(1) They use some artifacts to specify system requirements (such as External Use Cases) and to ex-
tract goals (desires) from them.
(2) They use Dynamic Models (such as Internal Use Cases, Sequence Diagrams, and Activity Dia-
grams) to provide a more precise description of each goal and its corresponding plan (intentions).
(3) Then, a role analysis is performed from the list of goals and their corresponding plans. The rele-
vant roles and their interactions (role composition) are taken into account to define the set of agents.
(4) Finally, using Data Models (such as Data Flow Diagrams) they propose to obtain the environment
information (beliefs) that is necessary for the goals completion.
This software modeling is processed and modified iteratively. After a complete BDI specification has



been described, then it is assigned to an agent.

In this work we present a methodological framework based on these previous works, to engineer
graded BDI agents. We work up these previous approaches, adapting and extending them, in order
to engineer agents with a more complex internal architecture. In this sense, we make more emphasis
in the separation of the agent design process from an external an internal point of view, adding some
steps for the internal design of the agents. Particularly, we focus on a graded BDI model of agent and
we present an insight of the process of its multicontext specification.

This paper is organized as follows. In Section 2, the Graded BDI agent model is briefly revised. In
Section 3, we outline the development process of g-BDI Agent-Based Systems. Following, in Section
4 the most important stages of the process are described and a case study is used to illustrate them.
Finally, in Section 5 we present some conclusions and future work.

2 GRADED BDI AGENT MODEL

The architecture proposed is inspired by previous work about multi-context agent’s specification
[9]. The MCS specification contains three basic components: units or contexts, logics, and bridge
rules, which channel the propagation of consequences among theories. Thus, an agent is defined
as a group of interconnected units:

〈
{Ci}i∈I , ∆br

〉
, where each contextCi ∈ {Ci}i∈I is the tuple

Ci = 〈Li, Ai, ∆i〉 whereLi, Ai and∆i are the language, axioms, and inference rules respectively.
When a theoryTi ∈ Li is associated with each unit, the specification of a particular agent is complete.
The deduction mechanism of these systems is based on two kinds of inference rules, internal rules
∆i, and bridge rules∆br, which allow to embed formulae into a context whenever the conditions of
the bridge rule are satisfied. In our model, we havementalcontexts to represent beliefs (BC), desires
(DC), intentions (IC), and a social context (SC) which represents the trust in other agents. We also
consider twofunctionalcontexts: for Planning (PC) and Communication (CC). In summary, the BDI
agent model is defined as a tupleAg = ({BC, DC, IC, PC, CC}, ∆br). The overall behavior of
the system will be the result of the logical representation of each intentional notion in the different
contexts and their interaction by means of the bridge rules.

In order to represent and reason about graded notions of belief, desire and intention, we use a
modal many-valued approach. In particular, we shall follow the approach where uncertainty reason-
ing is dealt with by defining suitable modal theories over suitable many-valued logics. For instance,
let us consider a Belief context where belief degrees are to be modeled as probabilities. Then, for
each classical formulaϕ, we consider a modal formulaBϕ which is interpreted as “ϕ is probable”.
This modal formulaBϕ is then afuzzyformula which may be more or less true, depending on the
probability ofϕ. In particular, we can take as truth-value ofBϕ precisely the probability ofϕ. More-
over, using Łukasiewicz infinitely-valued logic, we can express the governing axioms of probability
theory as logical axioms involving modal formulae. To set up an adequate axiomatization for our be-
lief context logic we need to combine axioms for the crisp formulae, axioms of Łukasiewicz logic for
modal formulae, and additional axioms for B-modal formulae according to the probabilistic seman-
tics of theB operator. The same modal many-valued logic approach is used to represent and reason
under graded attitudes in the other mental contexts. The formalization of the adequate logics for the
different contexts are described in [3, 4].



3 THE DEVELOPMENT PROCESS OF G-BDI AGENT-BASED SYSTEMS

In our approach we need first to recognize the agents composing a multiagent system. Then, in order
to model BDI agents, we must discover from the system requirements which are the different mental
attitudes. In some cases, the inclusion of additional mental attitudes may be important, but in our
current methodological guide we consider fundamentally these three basic attitudes (i.e. BDIs).

We first find the goals (positive desires) from the system requirements. In this stage we take
a bipolar view of desires, allowing to distinguish the goals from rejected states (negative desires).
Also, we consider important to incorporate degrees on desires to set different levels of preference or
rejection, respectively. Starting from the system goals or positive desires, responsibilities are defined
as an intermediary step in the role identification process (i.e. a responsibility has a list of goals
attached to it and a role has a list of responsibilities). The agents in the multiagent system will
be defined through the integration of the relevant role models. The role composition analysis is
needed because when the agent carries out their responsibilities and interacts/collaborates, there may
be synergy between the different roles played by the agent [11]. Following with the design process,
the model of each agent (a BDI model ) must be analyzed, for which we propose a methodology
adapting some steps of the BDI process presented in [5, 11] and adding other stages we consider
important for our purpose.

To design a particular agent in the multiagent system, we restrict the system goals to the ones
assigned to this agent. Beginning with these goals, we can set the agent’s positive and negative
desires. The second stage is to determine how the agent will make some plans, to fulfill the positive
desires and to avoid the negative ones. These will constitute the feasible plans for the agent. In order
to execute these plans a set of beliefs is needed, describing the inner state of the agent and the state
of the world. Sometimes these beliefs may be uncertain, imprecise or incomplete. Finally, we must
establish what factors the agent will take into account to find the intention to follow. In our approach,
the notion of intention is related to a pair desire/plan, where the desire is the one that the agent will
try to satisfy by executing the plan. The agent may have different sets of positive desires, that may
be cooperative or competitive, and in order to satisfy them there may be alternative plans, in turn
with associated costs. Then, in our approach the agent will consider pairs desire/plan with the best
cost/benefit relation for reaching a given goal by executing a feasible plan. As a result of this analysis
the agent has to decide which intention (a chosen goal) to follow by executing the best plan towards
it. In an agent design, this deliberation process and the elements involved must be both specified.

Following the flow “goals-feasible plans-beliefs-intention”, our approach will first extract the de-
sires from the requirements, then it will analyze the possible plans towards them and the beliefs
involved, and finally it will set its intentions by modeling an appropriate deliberation process. In our
approach we must also find the interactions between the BDI attitudes and the kind of information
involved in each one.

The development process for BDI agent-based systems is depicted in Figure 1. The white boxes
represent some artifacts or tools that give support to the principal steps in this process, some of
them are described in Section 4. The colored boxes are the necesary parts of the internal agent’s
design. As our approach is focused on the development of graded BDI agents, this internal blocks
are the mental attitudes (i.e. BDIs) and the bridge rules, relating them. The arrows intend to show a
possible sequence between the different steps. Since in practice the methodology is iterative, analysts
or designers may freely move between steps and phases and each successive iteration will produce
additional details to finally provide a complete, yet consistent system design.



Figure 1: Development Process for BDI Agent-Based Systems

4 DEVELOPMENT STAGES: A CASE STUDY

In the following subsections we describe the most important stages and steps of the software engi-
neering process presented in the previous Section. To illustrate and clarify these different steps, we
describe the process using a Case Study in the Tourism Domain.

4.1 Requirement Analysis

As usual in Software Engineering, the requirement analysis is the initial part of the software develop-
ment Process. It will assist us to understand the purpose of the system and how to construct it.

Step 1: Initial Problem Statement
This is the previous and fundamental step for the System Analysis, where the problem that the

system is expected to solve is described. It is a hight level conceptualization of the system from the
user’s point of view, and describes the services that the system will provide. It is the input to capture
the system goals.

Case Study:
We want to design a Travel Assistant System, a recommender system on Argentinian touristic

plans. This system will be in charge of looking for different holiday plans in Argentinian destinations,
in order to satisfy the desires of a tourist. The customer’s desires may be preferences about geographic
conditions, infrastructures, activities, travelling forms, accomodation, etc. He/she may also have
different rejections or restrictions, as for example a given maximum amount he can spend. The
touristic plan the system is expected to offer must be the best choice among the packages supplied by
a set of tourism operators. The system has to decide which touristic package (plan) to recommend
taking into account the interests of the customer, the expected satisfaction of the preferences by the
plan, its cost and the trust in the plan supplier.



4.2 System Analysis: Extracting Goals

During this phase, the investigation on the problem and its requirement is deepened. We focus on
finding the multiagent system goals, which in turn will result in the first element of agent’s specifica-
tion: the desires.

Step 2: External Use Cases
The External Use Case treat the system as a black box, and show how the entities outside of the

system interact with it. During the External Use Case process, we identify the services of the system
being developed from an external point of view; we do not describe the internal working components
or design of the system. The External Use Case captures who (actor) does what (interaction) with the
system, for what purpose (goal), without dealing with the system internals. In an iterative process,
more detailed use cases are given.

Case Study:
In order to discover all the functions that the Recommender system should provide, we use exter-

nal use cases. See the next example:
Name: Look for Feasible Tourist Packages
Actors: tourist, tourism-operators (touristic plan reservories)
Description:
- A Tourist wants a recommendation of touristic plan in Argentinien destinations.
- He/she has different preferences (geography, transport, activities, acommodation, etc)
- He/she may have some rejections or restrictions (about zones, distances, acommodation, etc)
- The system has touristic packages provided by different Tourism Operators.
- The system wants to find feasible plans satisfying most of the Tourist’s preferences and avoiding
the rejections.
Preconditions: The system is asked for a recomendation and a list of preferences/rejections are
given.
Sucess/Postcondition: The system finds a set of feasible packages.
Extensions: System fails
- the system finds no plan satisfying both a set of preferences and the rejections conditions.
- ask the customer if some of the rejections can be removed.
- ask the providers for more alternatives satisfying the list of preferences

Step 3: Goal Hierarchy
From the previous stages a set of goals (positive desires) can be structured considering possi-

ble inter-relationships between them. A Goal Hierarchy Diagram should be used to represent these
relationships, beginning with the overall system goal. Each goal may be different, not only in the hi-
erarchy (w.r.t. a global goal) but also in importance. For dealing with this, we propose to use graded
expressions (in[0, 1]) in order to represent the different levels of importance of desires at the same
level of the hierarchy. In this step, we also propose to distinguish another set of graded rejected states
(negative desires), representing the situations that we do not want the system reach, also with different
importance degrees.

Case Study:
The overall goal of the system is to satisfy the tourist with the best touristic package(s) the system

may find. To achieve this, we adopt as system subgoals the set of tourist’s preferences that the touristic
packages are expected to satisfy. On another branch of the goal hierarchy, we consider the tourist’s
rejections. Since all the preferences (positive and negative) are at the same level in the hierarchy, we



use different degrees to reflect the different importance the tourist gives to both, positive and negative
desires. For example, we may have a user who is looking for a touristic package for his holidays.
He has a strong desire of going to a mountain place (degree 0.8), to make rafting (degree 0.6) and
rejecting to go to the northern Argentinian region (degree 0.9). The system then takes these desires as
subgoals to find some packages satisfying these preferences and rejections.

4.3 System design: Defining agents

During an agent-based design, emphasis is put on defining software agents and on how they collabo-
rate to fulfill the requirements.

In specifying an agent system, it has been found that is highly desirable to adopt specialized set
of models which operate at two distinct levels of abstraction as in [7]. In one level, from the external
viewpoint, the system is decomposed into agents, modeled by their roles, responsibilities and services
they perform, the information they require and maintain, and their external interactions. In a second
level, from the internal point of view, the elements required by a particular agent architecture must be
modeled for each agent. In our case, these will be done using our graded BDI model of agency. Then,
for its specification we need to set the different contexts for the agent’s beliefs, desires and intentions,
and the interactions between them, represented by bridge rules.

Step 4: Defining agents by role composition
Different agent-based software engineering methodologies take advantage of a role analysis for

the agents definition as for example in [6, 11]. From the list of goals and plans, a responsibility
and role analysis is held in order to define the set of agents and interactions that compose the system.
Roles, responsibilities and goals (or services) are just descriptions of purposeful behaviors at different
levels of abstraction: roles can be seen as a set of responsibilities and responsibilities as sets of goals.
This process of role composition and the role assignment to agents is a difficult task because is not
only a distribution problem. There is a need to compose roles because, when agents carry out their
responsibilities and interact/collaborate, there may be a synergy between the different roles played by
an agent. [11]

In our research, a role includes a set of goals and a set of plans towards them. Such a role will
be mapped to an agent who is responsible for satisfying its corresponding goals. The activity of
identifying roles from use cases and the use of role patterns in agent software engineering can be seen
in [6]. These roles are candidate agents.

In agent-based modeling, Dynamic Diagrams imported from the object oriented modeling may be
useful, for example, some sequence diagrams representing related actions for the plans in each use
case, or activity diagrams expressing operations and the events that trigger agents [2].

Case Study:
For our case study we have detected two important roles: the tourist packages provider (Provider)

and the finder of the most suitable tourist packages acording to the tourist prefeences (Travel Assis-
tant). The Provider role has the responsabilities of building different packages, updating the list of
touristic plans (charge-discharge) and sending messages to the Travel Assistant role with the package
updates. Different Tourist Operators will collaborate in this task.

The Travel Assistant role is described in more detail using a Responsability, Goals and Collabo-
rator (RGC) card as is shown in Table 1.

From this process of role identification and composition, the list of the candidate agents, which
might then be refined or modified during the design process, can be obtained.

For this simplified version of our Recommender System, the conceptual agents are: The Travel



Responsabilities Goals Collaborators
Update Touristic Packages Receive the message sent by Operators Operators
Reservory Update Packages Reservory
Find Feasible Packages Identify the subsets of the set of preferences Tourist

For each subset, find the packages satisfying itOperators
Take the union to be the set of Feasible Packages

Select best Feasible PackagesEstimate the benefit of each package Tourist
Estimate the normalized cost of each package
Estimate the benefit/cost relation
Choose the best packages

Table 1: RGC card for Travel Assistant role

Assistant Agent (T-Agent) and the Tourist Operator Agents (T-Operators) that supply the T-Agent
with touristic packages.

Step 5: Internal Use Cases
The Internal Use Case concerns interactions among elements inside the system. and how they use

each other to get things done. We propose a set of interacting agents which are assigned a particular
role (or set of roles), where in turn a role specifies a particular goal (or set of goals). The purpose
of this step is to identify the plans for each goal in the agent’s role. Based on the external use cases,
the scenario of each use case may be further detailed. This step will help us to find suitable agents
plans to reach the positive desires avoiding the negative ones. Some authors as [5, 11] directly relate
these plans to the notion of intentions in the agent design. We consider a more complex notion of the
agent’s intention that looks for the pairfeasible plan-desirethat best satisfies a cost/benefit relation.
As a matter of example, we describe one internal use case for theLook for Feasible Tourist Packages
functionality.

Case Study:
Name: Look for Feasible Tourist Packages
Actors: Tourist, T-Operators
Description:
- A Tourist asks the System for a recommendation of touristic plans in Argentinien destinations.
- The Systems gets the different graded preferences from the user (the system lists the possibilities
the tourist may choose, the tourist also include degrees for them).
- The Systems gets the different graded rejections from the user (the system lists the possibilities
the tourist may choose)
- The different T-Operators send the T-Agent the touristic packages they offer provided by them
in a format established by the T-Agent.
- The system looks for feasible plans, each one satisfies a set of preferences (taking all the
subsets from the set of preferences) and avoids all the rejections.
- A set of feasible packages passes to theSelect the best feasible packagesresponsability.

The development of the internal use cases helps to better understand the interactions and collab-
orations between responsabilities and roles, and consequently, between the candidate agents. Then,
the definition of agents by role assignment can be improved.



4.4 A Multicontext BDI Agent Design

Once we have defined the different agents in the system by means of the previous steps, we have to
deal with their internal design. Namely, we must decide what kind of agent architecture is appropriate
in each case according to its characteristics and the role assignment. The BDI paradigm provides
a strong notion of agency: agents are viewed as having certain mental attitudes (Beliefs, Desires
and Intentions) which represent respectively their information, motivational and deliberation states.
These mental attitudes play a relevant role in the process of determining the agent’s actions. The BDI
model has proved to be a suitable choice to model complex agents, situated in dynamic and uncertain
environments.

In the stage of an agent’s internal design, we focus on describing the process of modeling graded
BDI agents, which integrate a multiagent system. Taking advantage of the multicontext approach, this
amounts to specifying the different contexts (either mental –belief, desire and intention, or functional
–planner, communication) and the bridge rules. For the different contexts’ modelization we will use
the information acquired in the analysis and external design stages. The context design is done in two
phases. First, we must take into account what the contents of each mental unit will be, and then, which
is the appropriate logical formalism to represent this information and the reasoning process which is
involved. In the following subsections we depict this internal design process, using a multicontext
specification, for the Travel Assistant Agent in the Recommender System.

Desire Context (DC):
The different agents in the system were defined from role assignment, having a set of goals and

plans (Step 4). These goals constitute the agent’s basic positive desires. We also consider important
for the agent to include a set of negative desires, representing its rejection states. As it was mentioned
in the system analysis (Step 3), the set of desires (positive and negative) may have different levels
of importance, represented as degrees in[0, 1]. We propose to use modal many-valued formulae to
represent positive and negative desires (see [3] for details). Two (fuzzy) modal operatorsD+ andD−

are introduced.D+ϕ reads as “ϕ is positively desired” and its truth degree represents the agent’s level
of satisfaction wouldϕ become true.D−ϕ reads as “ϕ is negatively desired” and its truth degree
represents the agent’s measure of disgust onϕ becoming true.

In our Case Study, in the DC the tourist’s desires will be expressed by a theoryT containing quan-
titative expressions about positive and negative preferences. These formulae express what the tourist
desires (e.g.(D+(mountain), 0.8) or rejects (e.g.(D−(northregion), 0.9)) in different degrees, for
his holidays. These desires are the proactive elements of the recommender T-Agent and they start a
chain of intra and inter-context deductions in order to determine which is the best touristic plan to
recommend to the user.

Planner Context (PC):
Using Step 5, we find the set of actions that the agent may follow to reach a positive desire or

set of desires, avoiding the negative ones. These plans are composed by the elementary actions that
the agent can perform. The Planner context, a functional context, will be in charge of finding these
feasible plans. We propose to use a first order language restricted to Horn clauses (PL), where a theory
of planning includes at least special predicates for the actions and plans.

For our Travel Assistant Agent, the Planner context will be in charge of finding the feasible tourist
packages that are expected to satisfy the tourist’s preferences.

Belief Context (BC):
Beliefs represent the (uncertain) knowledge about the agent state and the changing environment.

This knowledge is used to derive conclusions about whether plans may fulfill the agent’s goals (de-



sires). In order to specify which are the agent beliefs, we may apply some artifacts as the Data Flow
Diagram, which show the flow of data as well as its logical storage. The agent’s beliefs will be the
needed information in relation to its goals assignment. For this design process the input and output
data requirements for each subgoal in a plan must be analyzed. Depending on the agent’s environ-
ment and how the agent gets the information from it, the agent knowledge about the world may be
of different kinds: uncertain, imprecise, incomplete, etc. In the case of having uncertain information,
we propose to use fuzzy modal formulae, following the logical framework described in Section 2 and
to consider probability theory as the uncertainty model (see [3] for details).

In our Case of Study, the theory for the BC of the T-Agent contains general knowledge about the
touristic domain, as the different Argentinian regions and destinations, the geographic characteristic
of each region, activities allowed in each place, among others. We structure this knowledge inspired
by some tourism ontologies. This context contains also the information about the touristic plans that
the different operators provide. Fusthermore, this theory includes the relationship between the pack-
ages the T-Agent has in its repository and the preferences that are satisfied by their execution. The
T-Agent has to represent the necessary knowledge to infer the beliefs about how the possible desires
D (e.g. going to a mountain place or making rafting) may be satisfied after executing different plans
α. Following the model presented, we consider the truth-degree ofB([α]D) as the probability ofD
becoming true after following the planα. We use classical formulae to represent part of the touristic
information as for example, the distance between two destinations. Also, many-valued modal formu-
lae are used to represent uncertain knowledge.

Intention Context (IC)
To complete the agent’s design we need to specify how the agent’s intentions will be determined.

In our model the intention of an agent is a pair desire/plan (the desire it decides to follow through a
plan) that is determined following a deliberation process. We consider that this attitude depends on
different factors as the degree of the desires involved, the expected satisfaction degree of the desires
through the plan execution and the cost of executing the plan. Different kinds of agents may be
defined according to the way these different elements are weighted. This is formalized using a bridge
rule. In the process of defining the agent intentions, the beliefs and desires of the agent are involved.
So, we may define in parallel the necessary bridge rules that which enable to export formulae from
one context to another.

For the IC we propose to represent two kinds of graded intentions, intention of a formulaϕ con-
sidering the execution of a particular planα, notedIαϕ, and the final intention to achieveϕ, noted
Iϕ, which takes into account thebestpath to reachϕ. Then, for each planα we introduce a modal
operatorIα, and a modal operatorI, in the same way as we did in the other contexts. The intention to
makeϕ true must be the consequence of finding afeasibleplanα, that permits to achieve a state of the
world whereϕ holds. A theory for IC in the T-Agent represents those desires the user can intend by
different feasible plans. Using this set of graded intentions, the T-Agent derives the final intention and
the most recommended touristic plan. This theory is initially empty and will receive from a suitable
bridge rule (see (1) in subsection Bridge Rules) formulae like(Iαϕ, i) for all the desiresϕ and for all
the feasible packageα that the Planner finds.

Communication Context (CC)
This context makes it possible to encapsulate the agent’s internal structure by having a unique

and well-defined interface with the environment. As in the PC we propose to use classical first order
logic. The theory inside this context will take care of the sending and receiving of messages to and
from other agents in the Multi Agent society where our graded BDI agents live.



Figure 2: Multicontext model of a graded BDI agent

Bridge Rules
Bridge rules (BRs) represent the interaction between the different attitudes. As they put into

relation different contexts, using different logics, these rules establish how a formula of a context can
be embedded or can be used to derive a new formula in another unit. The design of the bridge rules
is done simultaneously with the process to determine the agent’s intentions. The necessary BRs for
an agent’s specification will depend on its role assignment. As for example, the set of positive and
negative desires must be passed to the Planner context which is in charge to find the feasible plans
to satisfy these desires. Some beliefs are also needed by the PC context to find these plans, like the
elementary actions that the agent can execute, or the expected satisfaction of the different desires after
a plan implementation.

For the T-Agent we have defined a set of bridge rules, analizing the inter-context inferences. As
for example, there is a bridge rule that infers the degree ofIαϕ for each feasible planα that allows to
achieve the goalϕ. This value is deduced from the degree ofD+ϕ, the degreer of beliefB[α]ϕ and
the cost of the planα. These graded intentions are deduced by the following rule using an adequate
functionf :

DC : (D+ϕ, d), PC : fplan(ϕ, α, P, A, r, c)

IC : (Iαϕ, f(d, r, c))
(1)

Step 6: Specifying graded BDI Agents
Collecting the specification of the different contexts (BC, DC, IC, PC and CC) and the bridge

rules (BRs) , the multicontext specification for the graded BDI agent is complete. Figure 2 illustrates
this agent architecture.

5 CONCLUSIONS AND FUTURE WORK

Agent-based computing has increased in the last years and thus developing software engineering
methodologies to build these systems has become an urgent need. Even though there are valuable
approaches in this field, few of them emphasize the internal design of agents, considering differ-
ent architectures. In this paper we have presented some contributions in this direction, proposing a
software engineering process to develop graded BDI agents in a multiagent scenario. The method-
ology presented has been built adapting and extending previous approaches [5, 11] in order to en-
gineer agents with a more complex internal architecture. Our methodology extracts the necessary
elements for the design of BDI agents following a flow “goals-feasible plans-beliefs-intentions” and
presenting a new process to obtain the agents’ intentions. In this sense, we have modified the flow
“goals-plans(intentions)-beliefs” used in the mentioned approaches. Particularly, we have presented
the methodology applied to the design of graded BDI agents, extending the BDI model with the ca-
pabitities of dealing with the environment uncertainty and with graded mental attitudes, using MCS



for agent’s specification. One advantage of this logical approach to agency is that allows for a rather
affordable computational implementation.

Completing the development of the case study, we are now implementing a prototype of the Travel
Assistant Agent using a multi-threaded version of Prolog. This development process, from the system
requirements to implementation, will help us to revise all the stages of the methodology presented.
As for future work, we plan to use this methodology in other case studies in order to improve it.

Acknowledgments: The authors are indebted to Juan Antonio Rodrı́guez for his helpful com-
ments. They also acknowledge for partial support of the projects PCI-IBEROAMERICA (A/3541/05),
WEBI2 (TIC2003-08763-C02-00) and MULOG (TIN2004-07933-C03-01).

REFERENCES

[1] Bergenti F., Gleizes M.P. and Zambonelli F., Eds.,Methodologies and Software Engineering
For Agent Systems: The Handbook of Agent-oriented Software Engineering, Kluwer Academic
Publishing (New York, NY), July 2004.

[2] Booch G., Rumbaugh J. and Jacobson I. The Unified Modelling Language. Addison-Wesley,
1999.

[3] Casali A., Godo L. and Sierra C. Graded BDI Models For Agent Architectures. J. Leite and P.
Torroni (Eds.)CLIMA V, LNAI 3487, 126-143, 2005.

[4] Casali A., Godo L. and Sierra C. Multi-Context Specification for Graded BDI Agents. Proceed-
ings ofCONTEXT-05, Research Report LIP 6, Paris, 2005.

[5] Jo Ch.H., Chen G. and Choi J. A New Approach to the BDI Agent-BAsed Modeling.ACM Sym-
posium on Applied Computing SAC’04, ACM 1-58113-812-1/03/04, 1541-1545, 2004.

[6] Kendall E. A. Agent Software Engineering with Role Modeling. In Proceedings ofAgent Ori-
ented Software Engineering AOSE-2000Ciancarini P. and Wooldridge M. (eds.), Springer-Verlag,
Berlin, Germany, 2000.

[7] Kinny D., Georgeff M., and Rao A. A Methodology and Modelling Techniques for Systems of
BDI agents. Proc. of the 7th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, (LNAI Vol. 1038): 56-71, Springer, 1996.

[8] Rao A. and Georgeff M. Modeling Rational Agents within a BDI-Architecture. InKR-92, 473-
484 (ed R. Fikes and E. Sandewall), Morgan Kaufmann, 1991.

[9] Sabater J., Sierra C., Parsons S. and Jennings N. R. Engineering executable agents using multi-
context systems.Journal of Logic and Computation12(3): 413-442, 2002.

[10] Wooldridge M. J., Jennings N.R. and Kinny D. A Methodology for Agent-oriented Analysis and
Design, Proceedings of theThird International Conference on Autonomous Agents (Agents’99)
3(3), pp285-312. September 2000.

[11] Zhang T., Kendall E. and Jiang H. A Software Engineering Process for BDI Agent-Based Sys-
tems, in Proceedings of theIEEE/WIC International Conference on Intelligent Agent Technology
(IAT03). 0-7695-1931-8/03IEEE, 2003


