
Chapter 29
Building Relationships with Trust

Carles Sierra and John Debenham

Abstract In this chapter we put together two major threads of work: trust in the en-
actment of contracts and the modelling of relationships between agents. We depart
from previous work where trust is defined as the relationship between commitment
of action and instant observation of the actual actions being performed. Here we
generalise the approach by assuming a time delay between the observation of the
actions and their valuation. The fundamental new idea being that commitment for
action has a social dimension as the commitment of an agent should mean ‘attempt-
ing to act’ in the interest of the contractual partner, and that attempt has a time
dimension that cannot be ignored.

29.1 Introduction

In this section trust is presented as the foundation for a rich sense of friendship be-
tween agents in a multiagent system. When agents interact their growing history of
illocutionary dialogues is their relationship. An agent understands its relationships
using various measures that summarise its dialogue history. These summary mea-
sures, of which trust is fundamental, enable relationships to be understood in the
context of a multifaceted continuum rather than the simplistic cooperative / com-
petitive divide. On the basis of this understanding an agent may choose: to form
speculative beliefs concerning the future behaviour of other agents, to decide who
to interact with under given circumstances, and to determine how to interact with
them. This opens the way for an agent to proactively influence its dialogues with
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the aim of shaping its relationships so that they provide some degree of protection
against future unknowns in an uncertain world.

Section 29.2 introduces the framework within which the work is developed; in
particular, the term trust is defined in the context of the signing, enactment and
evaluation of contracts. Section 29.3 describes the components of the trust model:
the ontology, the core trust mechanism, the representation of prior knowledge, and
the context. Then in Section 29.4 the relationship model is introduced — this models
the relationships between agents. Section 29.5 draws the previous ideas together by
discussing negotiation.

29.2 Trust

The informal meaning of the statement “agent a trusts agent b” is that a expects b

to act in a way that is somehow preferred by a . Human agents seldom trust another
for any action that they may take — it is more usual to develop a trusted expectation
with respect to a particular set of actions. For example, “I trust John to deliver fresh
vegetables” whilst the quality of John’s advice on investments may be terrible. This
section describes trust when the set of actions is restricted to negotiating, signing
and enacting contracts that are expressed using some particular ontology.

A multiagent system {a,b1, . . . ,bo,x ,q1, . . . ,qt}, contains an agent a that inter-
acts with negotiating agents, X = {bi}, information providing agents, I = {q j},
and an institutional agent, x , that represents the institution where the interactions
are assumed to happen [3]. Institutions give a normative context to interactions that
simplify matters (e.g an agent can’t make an offer, have it accepted, and then renege
on it). The institutional agent x may form opinions on the actors and activities in
the institution and may publish reputation estimates on behalf of the institution. The
agent x also fulfils a vital role to compensate for any lack of sensory ability in the
other agents by promptly and accurately reporting observations as events occur. For
example, without such reporting an agent may have no way of knowing whether it
is a fine day or not.

Our agents are information-based [10], they are endowed with machinery for
valuing the information that they have, and that they receive. They were inspired by
the observation that “everything an agent says gives away information”, even if the
utterances are not truthful. They model how much they know about other agents,
how much they believe other agents know about them, and the extent to which they
believe other agents are telling the truth. Everything in their world, including their
information, is uncertain; their only means of reducing uncertainty is acquiring fresh
information. To model this uncertainty, their world model, M t , consists of random
variables each representing a point of interest in the world. Distributions are then
derived for these variables on the basis of information received. Over time agents
acquire large amounts of information that are distilled into convenient measures
including trust. By classifying private information into functional classes, and by
drawing on the structure of the ontology, information-based agents develop other
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measures including a map of the ‘intimacy’ [11] of their relationships with other
agents.

In this section agent interaction is limited to dealing with contracts. The scenario
is: two agents a and b negotiate with the intention of leading to a signed contract
that is a pair of commitments, (a,b), where a is a’s and b is b ’s. A contract is signed
by both agents at some particular time t. At some later time, t 0, both agents will have
enacted their commitments1 in some way, as say (a0,b0). At some later time again,
t 00, a will consume b0 and will then be in a position to evaluate the extent to which
b ’s enactment of (a,b), b0, was in a’s interests. See Figure 29.1.

a’s trust of agent b is expressed as an expectation of b ’s future actions. We
consider how a forms these expectations, how a will compare those expectations
with observations, and how a then determines whether b ’s actions are preferred to
a’s expectations of them.

a forms expectations of b ’s future actions on the basis of all that it has: its full
interaction history H

a

2H
a

where H
a

is the set of all possible interaction histories
that may be expressed in a’s ontology2. H

a

is a record of all interactions with each
negotiating agent in X and with each information providing agent in I . Let B =
(b1,b2, . . .) denote that space of all enactments that b may make and A the space of
a’s enactments. a’s expectations of b ’s behaviour will be represented as probability
distributions over B. Assuming that the space of contracts and enactments are the
same, the space of all contracts and enactments is: C = A ⇥B.

This raises the strategic question of given an expectation of some particular future
requirements how should a strategically shape its interaction history to enable it
to build a reliable expectation of b ’s future actions concerning the satisfaction of
those particular requirements. At time t 00 a compares b0 with a’s expectations of
b ’s actions, b having committed at time t to enact b at time t 0. That is:

comparet 00
a

(Et
a

(Enactt
0

b

(b)|signt
a,b ((a,b)),Ht

a

),b0)

where signt
a,b ((a,b)) is a predicate meaning that the joint action by a and b of sign-

ing the contract (a,b) was performed at time t, and Enactt
0

b

(b) is a random variable
over B representing a’s expectations over b ’s enactment action at time t 0, Et

a

(·) is
a’s expectation, and compare(·, ·) somehow describes the result of the comparison.

Expectations over b ’s enactment actions:

Et
a

(Enactt
0

b

(b)|signt
a,b ((a,b)),Ht

a

)

could form the basis for trust. In practice, developing a sense on expectation over
b ’s actions is tricky except possibly in the case that there is a history of contracts
with a high degree of similarly to (a,b). Given such an expectation an agent may
be prepared to use the structure of the ontology to propagate these expectations.

1 For convenience it is assumed that both agents are presumed to have completed their enactments
by the same time, t 0.
2 The ontology is not made explicit to avoid overburdening the notation.
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Fig. 29.1: Contract signing, execution and evaluation.
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For example, if a has a history of observing b ’s ‘trusted’ executions of orders for
cow’s cheese then it may be prepared to partially propagate this expectation to goat’s
cheese — perhaps on the basis that cow’s cheese and goat’s cheese are semantically
close concepts in the ontology.

The discussion above is based on expectations of what action b will do. It makes
more practical sense to develop a sense of expectation over the evaluation of b ’s
actions. Let V = (v1,v2, . . . ,vV ) be the valuation space. Then a’s expectation of the
evaluation of a particular action that b may make is represented as a probability
distribution over V : ( f1, f2, . . . , fV ). For example, a simple valuation space could be
(good,ok,bad). The sequence V will generally be smaller than the sequence B, and
so developing a sense of expectation for the value of b ’s actions should be easier
than for the actions themselves. That is, it is simpler to form the expectation:

Et
a

(Valuet 00
b

(b)|signt
a,b ((a,b)),Ht

a

)

where Valuet 00(b) is a random variable over V representing a’s expectations of the
value of b ’s enactment action given that he signed (a,b) and given Ht

a

. At time
t 00 it then remains to compare expectation, Et

a

(Valuet 00
b

(b)|signt
a,b ((a,b)),Ht

a

), with
observation, val

a

(b0), where val(·) represents a’s preferences — i.e. it is a’s utility
function3.

We are now in a position to define ‘trust’. Trust, t

ab

(b), is a computable4 es-
timate of the distribution: Et

a

(Valuet 00
b

(b)|signt
a,b ((a,b)),Ht

a

). t is a summarising
function that distils the trust-related aspects of the (probably very large) set H

a

into
a probability distribution that may be computed. t

ab

(b) summarises the large set
H

a

. The set of contracts C is also large. It is practically unfeasible to estimate trust
for each individual contract. The structure of the ontology is used to deal with this
problem by aggregating estimates into suitable classes such as John’s trustworthi-
ness in supplying Australian red wine.

In real world situations the interaction history may not reliably predict future
action, in which case the notion of trust is fragile. No matter how trust is defined
trusted relationships are expected to develop slowly over time. On the other hand

3 It is arguably more correct to consider: Value((a,b)) = Value(b)�Value(a), as b ’s actions may
be influenced by his expectations of a’s enactment of a — this additional complication is ignored.
4 Computable in the sense that it is finitely computable, and hopefully not computationally com-
plex.



29 Building Relationships with Trust 487

they can be destroyed quickly by an agent whose actions unexpectedly fall below
expectation. This highlights the importance of being able to foreshadow the possi-
bility of untrustworthy behaviour.

t

ab

(b) is predicated on a’s ability to form an expectation of the value of b ’s
future actions. This is related to the famous question posed by Laplace “what is the
probability that the sun will rise tomorrow?”. Assume that it has always previously
been observed to do so and that there have been n prior observations. Then if the
observer is in complete ignorance of the process he will assume that the probability
distribution of a random variable representing the prior probability that the sun will
rise tomorrow is the maximum entropy, uniform distribution on [0,1]. Further, using
Bayes’ theorem he will derive the posterior estimate n+1

n+2 ; the key assumption is that
the observer is “in complete ignorance of the process”. There may be many reasons
why the sun may not rise such as the existence of a large comet on a collision
trajectory with earth. These all important reasons are the context of the problem.

Laplace’s naïve analysis above forms the basis of a very crude measure of trust.
Suppose that the valuation space is: V = (bad,good), and that a is considering
signing contract (a,b) with b . Let the random variable B denote the value of b ’s
next action. Then assume that nothing is known about the contract or about b except
that this contract has been enacted by b on n prior occasions and that the valuation
was “good” on s of those occasions. Using the maximum entropy prior distribution
for B, [0.5,0.5], Bayes’ theorem gives us a posterior distribution [ n�s+1

n+2 , s+1
n+2 ]. If at

time t a signs the contract under consideration then the expected probability of a
“good” valuation at time t 00 is: s+1

n+2 . This crude measure has little practical value
although it readily extends to general discrete valuation spaces, and to continuous
valuation spaces. The zero-information, maximum entropy distribution is the trivial
trust measure. The crude Laplacian trust measure is in a sense the simplest non-
trivial measure.

The weaknesses of the crude trust measure above show the way to building a
reliable measure of trust. A reliable trust measure will include:

Prior knowledge. The use of the maximum entropy prior5 is justified when there
is absolutely no prior knowledge or belief of an agent’s behaviour. In practical
scenarios prior observations, reputation measures or the opinions of other agents
are expected to be available and to be reflected in the prior.

Time. There is no representation of time. In the crude trust measure all prior ob-
servations have the same significance, and so an agent that used to perform well
and is deteriorating may have the same trust measure as one that used to perform
badly and is now performing well.

Context. There is no model of general events in the world or of how those events
may affect an agent’s behaviour. This includes modelling causality, namely why
an agent might behave as it does.

5 The maximum entropy prior expresses total uncertainty about what the prior distribution is.
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29.3 Trust Model

The previous section defines trust as an optimistic6 estimator of the expected value
of future enactments, and concluded with three features of a reliable measure of
trust. This section describes such a measure that uses the computational methods of
information-based agents [10] particularly their information evaluation, acquisition
and revelation strategies that ideally suits them to this purpose. Section 29.2 also
described the fundamental role that the structure of the ontology plays in the trust
model. This is described next followed by the core trust mechanism and then a
reliable measure of trust.

29.3.1 Ontology

The structure of the ontology plays a central role in maintaining the trust model. Ob-
servations are propagated across the model moderated by their “semantic distance”
from the concepts in the observation to nearby concepts.

Our agent communication language, U , is founded on three fundamental primi-
tives: Commit(a,b ,j) to represent, in j , the world that a aims at bringing about
and that b has the right to verify, complain about or claim compensation for any
deviations from, Observe(a,j) to represent that a certain state of the world, j ,
is observed, and Done(u) to represent the event that a certain action u7 has taken
place. In our language, norms, contracts, and information chunks are represented as
instances of Commit(·) where a and b can be individual agents or institutions, U is
the set of expressions. u 2U is defined as:

u ::= illoc(a,b ,j, t) | u;u | Let context InuEnd
j ::= term | Done(u) | Commit(a,b ,j) | Observe(a,j) | j ^j |

j _j | ¬j | 8v.jv | 9v.jv

context ::= j | id = j | prolog_clause | context;context

where jv is a formula with free variable v, illoc is a predicate defining any appro-
priate set of illocutionary particles, ‘;’ means sequencing, and context represents
either previous agreements, previous illocutions, or code that aligns the ontological
differences between the speakers needed to interpret an action u, and term repre-
sents logical predicates. t represents a point in time.8 We denote by F the set of
expressions j used as the propositional content of illocutions.

6 Optimistic in the sense that the estimation can be performed on the basis of the agent’s interaction
history.
7 All actions are assumed to be dialogical.
8 Usually omitted to simplify notation.
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For example, the following offer: “If you spend a total of more than e 100 in my
shop during October then I will give you a 10% discount on all goods in November”,
is represented as:

Offer(a , b ,spent(b , a , October, X) ^ X � e 100 !
8 y. Done(Inform(x , a , pay(b , a , y), November)) !

Commit(a , b , discount(y,10%)))

or, “If I tell you who I buy my tomatoes from then would you keep that information
confidential?” as:

Offer(a , b , 9d . (Commit(a ,b ,Done(Inform(a ,b ,provider(d ,a ,tomato)))) ^
8g . 8 t. Commit(b ,a ,¬Done(Inform(b ,g ,provider(d ,a ,tomato), t))))

In order to define the terms of the language introduced above (e.g. pay(b ,a,y)
or discount(y,10%)) an ontology is required that includes a (minimum) repertoire
of elements: a set of concepts (e.g. quantity, quality, material) organised in a is-a
hierarchy (e.g. platypus is a mammal, australian-dollar is a currency), and a set of
relations over these concepts (e.g. price(beer,AUD)).9

We model ontologies following an algebraic approach [6] as: an ontology is a
tuple O = (C,R,,s) where:

1. C is a finite set of concept symbols (including basic data types);
2. R is a finite set of relation symbols;
3.  is a reflexive, transitive and anti-symmetric relation on C (a partial order)
4. s : R !C+ is the function assigning to each relation symbol its arity

where  is a traditional is-a hierarchy, and R contains relations between the concepts
in the hierarchy.

The semantic distance between concepts plays a fundamental role in the esti-
mation of trust. The concepts within an ontology are closer, semantically speaking,
depending on how far away they are in the structure defined by the  relation. Se-
mantic distance plays a fundamental role in strategies for information-based agency.
How signed contracts, Commit(·) about objects in a particular semantic region, and
their execution Observe(·), affect our decision making process about signing future
contracts on nearby semantic regions is crucial to modelling the common sense that
human beings apply in managing trading relationships.

A measure [7] bases the semantic similarity between two concepts on the path
length induced by  (more distance in the  graph means less semantic similarity),
and the depth of the subsumer concept (common ancestor) in the shortest path be-
tween the two concepts (the deeper in the hierarchy, the closer the meaning of the
concepts). [7] defines semantic similarity as:

Sim(c,c0) = e�k1l · ek2h � e�k2h

ek2h + e�k2h

9 Usually, a set of axioms defined over the concepts and relations is also required. We will omit
this here.
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where e is Euler’s number (⇡ 2.71828), l is the length (i.e. number of hops) of the
shortest path between the concepts, h is the depth of the deepest concept subsuming
both concepts, and k1 and k2 are parameters scaling the contribution of shortest path
length and depth respectively. If l = h = 0 then Sim(c,c0) = 1; in general Sim(c,c0)2
[0,1].

29.3.2 The core trust mechanism

Section 29.2 ends with three essential components of a reliable trust model. Those
three components will be dealt with in due course. This section describes the core
trust estimation mechanism. In subsequent sections the core is enhanced with the
three essential components. The final component, context, is unresolved as it relies
on the solution to hard problems, such as modelling rare but significant contextual
events, that are beyond the scope of this discussion.

The general idea is that whenever a evaluates valt
00

a

(b0) for the enactment (a0,b0)
of some previously signed contract (a,b) the trust estimates are updated. The con-
tract space is typically very large and so estimates are not maintained for individual
contracts; instead they are maintained for selected abstractions based on the ontol-
ogy. Abstractions are denoted by the ‘hat’ symbol: e.g. â. For example, “red wine
orders for more that 24 bottles” or “supply of locally produced cheese”. Whenever
an evaluation valt

00
a

(b0) is performed the trust estimates, t

ab

(b̂), for certain selected
nearby abstractions, b̂, are updated.

In the absence of incoming information the integrity of an information-based
agent’s beliefs decays in time. In the case of the agent’s beliefs concerning trust,
incoming information is in the form of valuation observations valt

00
a

(b0) for each
enacted contract. If there are no such observations in an area of the ontology then
the integrity of the estimate for that area should decay.

In the absence of valuation observations in the region of b̂, t

ab

(b̂) decays to a
decay limit distribution t

ab

(b̂) (denoted throughout this section by ‘overline’). The
decay limit distribution is the zero-data distribution, but not the zero-information
distribution because it takes account of reputation estimates and the opinions of
other agents [13]. We assume that the decay limit distribution is known for each
abstraction b̂. At time s, given a distribution for random variable t

ab

(b̂)s, and a
decay limit distribution, t

ab

(b̂)s, t

ab

(b̂) decays by:

t

ab

(b̂)s+1 = D(t
ab

(b̂)s,t
ab

(b̂)s)

where s is time and D is the decay function for the X satisfying the property that
lims!• t

ab

(b̂)s = t

ab

(b̂). For example, D could be linear:

t

ab

(b̂)s+1 = (1�µ)⇥ t

ab

(b̂)s + µ ⇥ t

ab

(b̂)s
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where 0 < µ < 1 is the decay rate.
We now consider what happens when valuation observations are made. Suppose

that at time s, a evaluates b ’s enactment b0 of commitment b, vals
a

(b0) = vk 2 V .
The update procedure updates the probability distributions for t

ab

(b̂)s for each b̂
that is “moderately close to” b. Given such a b̂, let Ps(t

ab

(b̂) = vk) denote the prior
probability that vk would be observed. The update procedure is in two steps. First,
estimate the posterior probability that vk would be observed, Ps+1(t

ab

(b̂) = vk) for
the particular value vk. Second, update the entire posterior distribution for t

ab

(b̂) to
accommodate this revised value.

Given a b̂, to revise the probability that vk would be observed three things are
used: the observation: vals

a

(b0), the prior: Ps(t
ab

(b̂) = vk), and the decay limit
value: Ps(t

ab

(b̂) = vk). The observation vals
a

(b0) may be represented as a proba-
bility distribution with a ‘1’ in the k’th place and zero elsewhere, uk. To combine it
with the prior its significance is discounted for two reasons:

• b may not be semantically close to b̂, and
• vals

a

(b0) = vk is a single observation whereas the prior distribution represents the
accumulated history of previous observations.

to discount the significance of the observation vals
a

(b0) = vk a value is determined
in the range between ‘1’ and the zero-data, decay limit value Ps(t

ab

(b̂) = vk) by:

d = Sim(b, b̂)⇥k +(1�Sim(b, b̂)⇥k)⇥Ps(t
ab

(b̂) = vk)

where 0 < k < 1 is the learning rate, and Sim(·, ·) is a semantic similarity function
such as that shown in Equation 29.3.1. Then the posterior estimate Ps+1(t

ab

(b̂) =
vk) is given by:

Ps+1(t
ab

(b̂) = vk) =
rd (1�w)

rd (1�w)+(1�r)(1�d )w
= n

where r = Ps(t
ab

(b̂) = vk) is the prior value, and w = Ps(t
ab

(b̂) = vk) is the decay
limit value.

It remains to update the entire posterior distribution for t

ab

(b̂) to accommo-
date the constraint Ps+1(t

ab

(b̂) = vk) = n . Information-based agents [10] employ
a standard procedure for updating distributions, Pt(X = x) subject to a set of linear
constraints on X , c(X), using:

Pt+1(X = x|c(X)) = MRE(Pt(X = x),c(X))

where the function MRE is defined by: MRE(q,g) = argminr Â j r j log r j
q j

such that
r satisfies g, q is a probability distribution, and g is a set of n linear constraints
g = {g j(p) = aj ·p� c j = 0}, j = 1, . . . ,n (including the constraint Âi pi � 1 = 0).
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The resulting r is the minimum relative entropy distribution10 [8]. Applying this
procedure to t

ab

(b̂):

Ps+1(t
ab

(b̂) = v) = MRE(Ps(t
ab

(b̂) = v),Ps+1(t
ab

(b̂) = vk) = n)

where n is the value given by Equation 29.3.2.
Whenever a evaluates an enactment vals

a

(b0) of some commitment b, the above
procedure is applied to update the distributions for P(t

ab

(b̂) = v). It makes sense
to limit the use of this procedure to those distributions for which Sim(b, b̂) > y for
some threshold value y.

29.3.3 Prior knowledge

The decay-limit distribution plays a key role in the estimation of trust. It is not di-
rectly based on any observations and in that sense it is a “zero data” trust estimate.
It is however not “zero information” as it takes account of opinions and reputations
communicated by other agents [13]. The starting point for constructing the decay-
limit distribution is the maximum entropy (zero-data, zero-information) distribution.
This gives a two layer structure to the estimation of trust: opinions and reputations
shape the decay-limit distribution that in turn plays a role in forming the trust esti-
mate that takes account of observed data. Communications from other agents may
not be reliable. a needs a means of estimating the reliability of other agents before
they can be incorporated into the decay-limit distribution — reliability is discussed
at the end of this section.

Reputation is the opinion (more technically, a social evaluation) of a group about
something. So a group’s reputation about a thing will be related in some way to the
opinions that the individual group members hold towards that thing. An opinion is
an assessment, judgement or evaluation of something. Opinions are represented in
this section as probability distributions on a suitable ontology that for convenience
is identified with the evaluation space V . That is, opinions communicated by b con-
cerning another agent’s trustworthiness are assumed to be expressed as predicates
using the same valuation space as V over which a represents its trust estimates.

An opinion is an evaluation of an aspect of a thing. A rainy day may be evaluated
as being “bad” from the aspect of being suitable for a picnic, and “good” from the
aspect of watering the plants in the garden. An aspect is the “point of view” that
an agent has when forming his opinion. An opinion is evaluated in context. The
context is everything that the thing is being, explicitly or implicitly, evaluated with
or against. The set of valuations of all things in the context calibrates the valuation
space; for example, “this is the best paper in the conference”. The context can be

10 This may be calculated by introducing Lagrange multipliers l : L(p,l ) = Â j p j log p j
q j

+ l · g.

Minimising L, { ∂L
∂l j

= g j(p) = 0}, j = 1, . . . ,n is the set of given constraints g, and a solution to
∂L
∂ pi

= 0, i = 1, . . . , I leads eventually to p.
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vague: “of all the presents you could have given me, this is the best”. If agents are to
discuss opinions then they must have some understanding of each other’s context.

Summarising the above, an opinion is an agent’s evaluation of a particular aspect
of a thing in context. A representation of an opinion will contain: the thing, its
aspect, its context, and a distribution on V representing the evaluation of the thing.
a acquires opinions and reputations through communication with other agents. a

estimates the reliability of those communicating agents before incorporating that
information into the decay-limit distributions. The basic process is the same for
opinions and reputations; the following describes the incorporation of opinions only.

Suppose agent b

0 informs agent a of his opinion of the trustworthiness of an-
other agent b using an utterance of the form: u = inform(b 0,a,t

b

0
b

(b)), where
conveniently b is in a’s ontology. This information may not be useful to a for at
least two reasons: b

0 may not be telling the truth, or b

0 may have a utility function
that differs from a’s. We will shortly estimate b

0’s “reliability”, Rt
a

(b 0) that mea-
sures the extent to which b

0 is telling the truth and that a and b

0 “are on the same
page” or “think alike”11. Precisely, 0 < Rt

a

(b 0)< 1; its value is used to moderate the
effect of the utterance on a’s decay-limit distributions. The estimation of Rt

a

(b 0) is
described below.

Suppose that a maintains the decay limit distribution t

ab

(b̂)s for a chosen b̂. In
the absence of utterances informing opinions of trustworthiness, t

ab

(b̂)s decays to
the distribution with maximum entropy. As previously this decay could be linear:

t

ab

(b̂)s+1 = (1�µ)⇥MAX+ µ ⇥ t

ab

(b̂)s

where µ < 1 is the decay rate, and MAX is the maximum entropy, uniform distri-
bution.

When a receives an utterance of the form u above, the decay limit distribution is
updated by:

t

ab

(b̂)s+1 | inform(b 0,a,t
b

0
b

(b)) =
⇣

1�k ⇥Sim(b̂,b)⇥Rs
a

(b 0)
⌘
⇥ t

ab

(b̂)s

+k ⇥Sim(b̂,b)⇥Rs
a

(b 0)⇥ t

b

0
b

(b)

where 0 < k < 1 is the learning rate and Rs
a

(b 0) is a estimate of b

0’s reliability. It
remains to estimate Rs

a

(b 0).
Estimating Rs

a

(b 0) is complicated by its time dependency. First, in the absence
of input of the form described following, Rs

a

(b 0) decays to zero by: Rs+1
a

(b 0) =
µ ⇥Rs

a

(b 0). Second, describe how Rs
a

(b 0) is increased by comparing the efficacy
of t

ab

(b̂)s and t

b

0
b

(b)s in the following interaction scenario. Suppose at a time s,
a is considering signing the contract (a,b) with b . a requests b

0’s opinion of b

with respect to b, to which b may respond inform(b 0,a,t
b

0
b

(b)). a now has two

11 The reliability estimate should perhaps also be a function of the commitment, Rt
a

(b 0,b), but that
complication is ignored.
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estimates of b ’s trustworthiness: t

ab

(b̂)s and t

b

0
b

(b)s; t

ab

(b̂)s and t

b

0
b

(b)s are
both probability distributions that each provide an estimate of Ps(Value

b

(b) = vi)
for each valuation vi. a increases its reliability estimate of b if the trust estimate in
b ’s inform is ‘better’ than a’s current decay limit value. Suppose that a signs the
contract (a,b) at time t, and at some later time t 00 evaluates b ’s enactment valt

00
a

(b0) =
vk, say. Then:

P(t
b

0
b

(b)s = vk) > P(t
ab

(b̂)s = vk)

and b

0’s trust estimate is better than a’s; a increases Rs
a

(b 0) using:

Rs+1
a

(b 0) = k +(1�k)⇥Rs
a

(b 0)

where 0 < k < 1 is the learning rate.

29.3.4 Time

The core trust mechanism and the prior knowledge both give greater weight to recent
observations than to historic data. This may be a reasonable default assumption but
has no general validity. Trust, t

ab

(b̂)s, estimates how b is expected to act. If an
agent is considering repeated interaction with b then he may also be interested in
how b ’s actions are expected to change in time.

The way in which the trust estimate is evolving is significant in understanding
which agents to interact with. For example, an agent for whom t

s
ab

(b̂) is fairly
constant in time may be of less interest than an agent who is slightly less trustworthy
but whose trust is consistently improving. To capture this information something
like the finite derivative is required: d

d s t

s
ab

(b̂). The sum of the elements in such a
vector will be zero, and in the absence of any data it will decay to the zero vector.

Estimating the rate of change of t

s
ab

(b̂) is complicated by the way it evolves that
combines continual integrity decay with periodic updates. Evolution due to decay
tells us nothing about the rate of change of an agent’s behaviour. Evolution caused
by an update is performed following a period of prior decay, and may result in
compensating for it. Further, update effects will be very slight in the case that the
commitment b is semantically distant from b̂. In other words, the evolution of t

s
ab

(b̂)
itself is not directly suited to capturing the rate of change of agent behaviour.

The idea for an indirect way to estimate how b ’s actions are evolving comes
from the observation that t

ab

(b̂)s is influenced more strongly by more recent obser-
vations, and the extent to which this is so depends on the decay rate. For example.
if the decay rate is zero then t

ab

(b̂)s is a time-weighted “average” of prior obser-
vations. Suppose that t

ab

(b̂)s has been evaluated. We perform a parallel evaluation
using a lower decay rate to obtain t

�
ab

(b̂)s, then t

ab

(b̂)s � t

�
ab

(b̂)s is a vector the
sum of whose elements is zero, and in which a positive element indicates a value
that is presently “on the increase” compared to the historic average.
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The preceding method for estimating change effectively does so by calculating
a first difference. If another first difference is calculated using an even lower decay
rate then calculate a second difference to estimate the rate of change. This may be
stretching the idea too far!

29.3.5 Trust in Context

The informal meaning of context is information concerning everything in the en-
vironment that could affect decision making together with rules that link that in-
formation to the deliberative process. That is, context consists of facts about the
environment, including rare but significant events, and rules that link those facts
to the agent’s reasoning. Those rules typically rely on common sense reasoning.
Dealing with context is a hard problem for intelligent agents generally and for their
management of trust estimates in particular.

From an artificial intelligence point of view, artificial agents lack the skills of
their human counterparts for dealing with context. Humans then rely on common
sense and experience to learn how to key contextual information to their delibera-
tion, and to identify incompleteness in their knowledge. For artificial agents; identi-
fying and dealing with inconsistency and incompleteness is a hard problem, and so
is keying general information to their own deliberative apparatus.

Even if ‘trust in context’ is narrowed to just one issue “is there any reason to
distrust our trust estimate due to a change in context?” the problems remain hard.
Supposing that a is considering signing a contract (a,b) at time t, to address this
issue the following are required:

1. knowledge of the context of previous observations of behaviour. Their context is
the state of each of the observables in the environment and of the states of the
other agents when those previous observations of behaviour were made.

2. founded beliefs concerning the context that will pertain at the future time of the
evaluation of the presumed future behaviour — i.e. at time t 00 in Figure 29.1.

3. some reasoning apparatus that enables us to decide whether differences between
the believed future context and the observed previous contexts cause us to modify
our experience-based trust estimate.

The information-based architecture makes a modest contribution to trust in con-
text in the following sense. An agent builds up a sense of trust on the basis of its
own past experience and statements of opinion and reputation from other agents. In
a sense those statements of opinions and reputation are contextual information for
the business of estimating trust. It also moderates its trust estimates through the per-
sistent decay of contextual information integrity by Equation 29.3.2. Beyond that
no ‘magic bullet’ solutions are given to the contextual problems described above
and the discussion is left as a pointer to the work that is required to increase the
reliability of trust estimation in dynamic environments.
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29.4 Relationship Model

The trust model described in Section 29.3 is a summary of the history of interaction
between a and b , H

ab

, augmented by reputation estimates. Reputation estimates
per se are outside the a’s direct experience and are therefore part of the context of
a’s trust. Trust is not the only way in which the interaction history may be use-
fully summarised. The relationship model contains summary estimates that include
trust. Before describing these measures human relationships are examined particu-
larly ways in which they are summarised. This leads to a discussion of the formal
representation of relationships using the LOGIC framework.

29.4.1 Relationships

A relationship between two human or artificial agents is their interaction history
that is a complete record of their interactions evaluated in context. There is evidence
from psychological studies that humans seek a balance in their negotiation relation-
ships. The classical view [2] is that people perceive resource allocations as being
distributively fair (i.e. well balanced) if they are proportional to inputs or contri-
butions (i.e. equitable). However, more recent studies [14, 15] show that humans
follow a richer set of norms of distributive justice depending on their intimacy level:
equity, equality, and need. Here equity is allocation proportionally to the effort (e.g.
the profit of a company goes to the stock holders proportional to their investment),
equality being the allocation in equal amounts (e.g. two friends eat the same amount
of a cake cooked by one of them), and need being the allocation proportional to the
need for the resource (e.g. in case of food scarcity, a mother gives all food to her
baby).

We believe that the perception of balance in dialogues, especially in negotiation,
is grounded on social relationships, and that every dimension of an interaction be-
tween humans can be correlated to the social closeness, or intimacy, between the
parties involved. The more intimacy the more the need norm is used, and the less in-
timacy the more the equity norm is used. This might be part of our social evolution.
There is ample evidence that when human societies evolved from a hunter-gatherer
structure12 to a shelter-based one13 the probability of survival increased [14].

In this context, for example, families exchange not only goods but also informa-
tion and knowledge based on need, and that few families would consider their rela-
tionships as being unbalanced, and thus unfair, when there is a strong asymmetry in
the exchanges. For example, a mother does not expect reciprocity when explaining
everything to her children, or buying toys for them. In the case of partners there is

12 In its purest form, individuals in these societies collect food and consume it when and where it
is found. This is a pure equity sharing of the resources, the gain is proportional to the effort.
13 In these societies there are family units, around a shelter, that represent the basic food sharing
structure. Usually, food is accumulated at the shelter for future use. Then the food intake depends
more on the need of the members.
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some evidence [4] that the allocations of goods and burdens (i.e. positive and neg-
ative utilities) are perceived as fair, or in balance, based on equity for burdens and
equality for goods.

The perceived balance in a negotiation dialogue allows negotiators to infer in-
formation about their opponent, about its stance, and to compare their relationships
with all negotiators. For instance, if every time requested information is provided,
and that no significant questions are returned, or no complaints about not receiving
information are given, then that probably means that our opponent perceives our
social relationship to be very close. Alternatively, issues that are causing a burden
to our opponent can be identified by observing an imbalance in their information or
utilitarian utterances on that issue.

We assume that the interactions between agents can be organised into dialogues,
where a dialogue is a set of related utterances. This section is concerned with com-
mitment dialogues that contain at least one commitment, where a commitment may
simply be the truth of a statement or may be a contractual commitment. We assume
that all commitment dialogues take place in some or all of the following five stages:

1. the prelude during which agents prepare for the interaction
2. the negotiation that may lead to
3. signing a contract at time t
4. the enactment of the commitments in the contract at time t 0
5. the evaluation at time t 00 of the complete interaction process that is made when

the goods or services acquired by enactment of the contract have been consumed

The notation of a commitment dialogue is broad in that a dialogue that does not
contain any sort of commitment is arguably of little interest.

A major issue in building models of dialogues and relationships is dealing with
the reliability of the utterances made. For an information-based agent the reliability
of an utterance is an epistemic probability estimate of the utterance’s veracity. For
example, if the utterance is an inform containing a proposition then its reliability
is an estimate of the probability that the proposition is correct. If the utterance is
an opinion then its reliability is an estimate of the probability that the opinion
will in time be judged to be sound. The difficulty with estimating reliability is that
it may take months or years for an agent to be able to say: “Ah, that was good
advice”. Reliability is a measure attached to an utterance, and integrity is a measure
attached to a complete dialogue. A blanket estimation of the reliability of an agent
was described in Section 29.3.3.

29.4.2 The LOGIC Framework

The LOGIC illocutionary framework for classifying argumentative interactions was
first described in [11] where it was used to help agents to prepare for a negotiation
in the prelude stage of an interaction as described above. This section generalises
that framework and uses it to define one of the two dimensions of the relationship
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model described below, the second dimension is provided by the structure of the on-
tology as specified by a partial order  defined by the is-a hierarchy, and a distance
measure between concepts such as Equation 29.3.1. The five LOGIC categories for
information are quite general:

• Legitimacy contains information that may be part of, relevant to or in justification
of contracts that have been, or may be, signed.

• Options contains information about contracts that an agent may be prepared to
sign.

• Goals contains information about the objectives of the agents.
• Independence contains information about the agent’s outside options — i.e. the

set of agents that are capable of satisfying each of the agent’s needs.
• Commitments contains information about the commitments that an agent has.

and are used here to categorise all incoming communication that feeds into the
agent’s relationship model. This categorisation is not a one-to-one mapping and
some illocutions fall into multiple categories. These categories are designed to pro-
vide a model of the agents’ information as it is relevant to their relationships. They
are not intended to be a universal categorising framework for all utterances.

Taking a more formal view, the LOGIC framework categorises information in an
utterance by its relationship to:

L = {B(a,j)}, that is a set of beliefs, communicated by: inform.
O = {Accept(b ,a,c)}, that is a set of acceptable contracts, communicated by:

offer, reject and accept.
G = {D(a,j)}, that is a set of needs or desires, communicated by: Ineed.
I = {Can(a,Do(p))}, that is a set of capabilities, communicated by: canDo.
C = {I(a,Do(p))}[{Commit(a,Do(p))}, that is a set of commitments and in-

tentions, communicated by: commit (for future commitments), and intend
(commitments being enacted).

Four predicates L, O, G, I and C recognise the category of an utterance. Information
in an inform utterance is categorised as Goals, Independence and Commitments
if the inform contains the illocutions listed above: Ineed, canDo, commit and
intend. Otherwise it is categorised as Legitimacy.

Given a need n and an agent b the variables Lt
nb

, Ot
nb

, Gt
nb

, It
nb

and Ct
nb

are
aggregated from observations of how forthcoming b was during prior dialogues.
They are then used to form a’s expectation of b ’s future readiness to reveal private
information across the five LOGIC categories. They are updated at the end of each
dialogue14 using a linear form that is consistent with [5] for the human brain in a
volatile environment.

In the following a dialogue G commences at time t � s and terminates at time t
when the five variables are updated. t �d denotes the time at which these variables
were previously updated. For convenience assume that d � s. G aims to satisfy need

14 This is for efficiency. Updating the model following each utterance could expend resources to
little effect.
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n . All the estimates given below are for the effect of G on variables for a nearby
need n

0 for which h

0 = h ⇥Sim(n ,n 0), h is the learning rate, and µ the decay rate.
Lt

nb

measures the amount of information in b ’s Legitimacy inform utterances.
The procedure by which inform utterances update M t is described in [10]. The
Shannon information in a single inform statement, u, is: I(u) = H(M t�1) �
H(M t |u). It is defined in terms of the contents of M t , and so the valuation is re-
stricted to ‘just those things of interest’ to a . During G observe: l = Âu2G ,L(u) I(u).
Then update Lt

n

0
b

with:

Lt
n

0
b

= h

0 Â
u2G ,L(u)

I(u)+(1�h

0)µ

dLt�d
n

0
b

Ot
nb

measures the amount of information b reveals about the deals he will accept.
b ’s limit contracts were modelled on the basis of observed behaviour in [10]. Let
random variable Y over contract space C denote a’s beliefs that a contract is a limit
contract for b . The information gain in Y during G is: Ht�s(Y )�Ht(Y ), and Ot

n

0
b

is updated by:

Ot
n

0
b

= h

0 �Ht�s(Y )�Ht(Y )
�
+(1�h

0)µ

dOt�d
nb

Gt
nb

measures the information b reveals about his goals, and It
nb

about his sug-
gested capabilities. Gt

nb

and It
nb

are similar in that both Ineed and canDo preempt
the terms of a contract. Suppose b informs a that: Ineed(n) and canDo(d ). If b is
being forthcoming then this suggests that he has in mind an eventual contract (a,b)
in which a  n and b  d (using  from the ontology). Suppose that G leads to the
signing of the contract (a,b) then observe: g = Sim(a,n) and i = max

d

Sim(b,d );
max

d

is in case b utters more than one canDo. Gt
n

0
b

is aggregated by:

Gt
n

0
b

= h

0Sim(a,n)+(1�h

0)µ

dGt�d
n

0
b

Similarly: It
n

0
b

= h

0 max
d

Sim(b,d )+(1�h

0)µ

dIt�d
n

0
b

.
Ct

nb

measures the amount of information b reveals about his commitments and
intentions. These are measured just as for Lt

nb

by aggregating the observation: c =

Âu2G ,C(u) I(u), and Ct
n

0
b

is updated by:

Ct
n

0
b

= h

0 Â
u2G ,C(u)

I(u)+(1�h

0)µ

dCt�d
n

0
b

The measures described above are based on what b says. In negotiation what
was not said but could have been said may be equally significant. A confidentiality
measure described in [12] addresses this issue.

In addition, if val
a

(·) is a’s utilitarian evaluation function that is used to evaluate
both the contract and the enactment in context then the observations
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vt(G ) = val
a

((a0,b0)|Ht)�val
a

((a,b)|Ht�s)

update the variable Ut
nb

that estimates utility gain during G :

Ut
n

0
b

= h

0 �val
a

((a0,b0)|Ht)�val
a

((a,b)|Ht�s)
�
+(1�h

0)µ

dUt�d
n

0
b

Finally the LOGIC evaluation of a complete dialogue is assembled. Putting the
six measures together define a’s evaluation function, logict(G ), for a complete dia-
logue G in which the contract (a,b) is signed. With notation as above:

logict(G ) =

✓
Â

u2G ,L(u)

I(u),Ht�s(Y )�Ht(Y ),Sim(a,n),max
d

Sim(b,d ),

Â
u2G ,C(u)

I(u),val
a

((a0,b0)|Ht)�val
a

((a,b)|Ht�s)

◆

We model our expectation of observing any particular value logict(G ) with the six-
dimensional random variable Et

nb

where (Et
nb

)k is the expectation for Lt
n

0
b

, Ot
n

0
b

,
Gt

n

0
b

, It
n

0
b

, Ct
n

0
b

, Ut
n

0
b

respectively, k = 1, . . . ,6.

29.5 Negotiation

If a prefers to deal with trusted partners then because trust is established by interac-
tion a needs to determine the pool of agents to interact with who are then potential
negotiation partners for each generic need. If the pool is large then the integrity of
the trust estimates will be low, and if the pool is small then a may deny itself access
to new partners. The pool selection problem is to manage the size and composi-
tion of the pool of partners for each generic need so as to balance these conflicting
values. Pool selection is addressed followed by the offer strategy, and finally the
strategic use of argumentation to build strong and trusted relationships.

29.5.1 Pool Selection

The aim of the pool selection phase is to select a strategically diverse pool of agents,
P

n

, for each of a’s needs n . Let Bn be the set of n-element subsets of {b1, . . . ,bo},
then

P
n

=argmax
n

{B 2 Bm |

8bb0 2 B : P((Et
nb)k > ek) > ck,H((Et

nb)k) < hk,div(b,b0) > d}
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where: e, h, c and d are selected constants, k = 1, . . . ,6, and div(bi,b j) is a measure
of: geographic, political, economic and/or functional agent diversity. Suppose that
a’s needs model is such that the probability that need n is triggered at any time is
e

n

.
The uniform selection strategy selects an agent from P

n

when n is triggered by:
Pt(Select b |n) = 1

n , and each b 2 P
n

expects to be selected each m = 1
ne

n

time
steps. If b is selected at time t � s and if the value logict(G ) is observed for the
resulting negotiation dialogue then:

P(Et
nb

= logict(G )) = h +(1�h)⇥P(Et�1
nb

= logict(G ))

The full distribution for Et
nb

is then calculated using the MRE (minimum relative
entropy) process described in Section 29.3.2 using Equation 29.5.1 as the constraint.
By time t +m full distribution for Et

nb

will have decayed in line with Equation 29.3.2
and:

P(Et+m
nb

= logict(G )) =

(1�µ

m)P(Et
nb

= logict(G ))+ µ

m(h +(1�h)P(Et�1
nb

= logict(G )))

To ensure decreasing entropy: P(Et+m
nb

= logict(G )) > P(Et�1
nb

= logict(G )). Sup-

pose p = P(Et
nb

= logict(G )) and P(Et�1
nb

= logict(G )) = k ·p; i.e. expect kk > 1
and kkpk < 1 for k = 1, . . . ,6. Let k = kk and p = pk for some value of k.
Then the expected least value of m to prevent integrity decay is such that: k p =
(1�µ

m)p+ µ

m (h +(1�h)k p), and so:

m =
log(p(k �1))� log(h � p+(1�h)k p)

log µ

E.g. suppose p = 0.2, k = 3, h = 0.7, µ = 0.98 then m = 26. Alternatively, solving

for h : h =
(k�1)(1�µ

�m)p
k p�1 . The lower limit for m in Equation 29.5.1 and a value for

e

n

gives an upper limit for n the size of the pool P
n

.
A stochastic selection strategy selects an agent from P

n

when n triggers by:

Pt(Select b |n) = P(Et
nb

�)

where Pt(Et
nb

�) denotes the probability that b is better than for all the others
in the following sense. If the six-dimensional sample space for Et

nb

is linearly or-
dered in increasing degree of satisfaction, then the probability that the evaluation of
a dialogue for n with b will be more satisfactory that, b

0 Pt(Et
nb

> Et
nb

0), may
be estimated. To prevent integrity decay of P

n

for this strategy repeat the cal-
culation above for the worst choice for n that will expect to be selected every:
m0 = 1

e

n

P(Et
nb

⌧) time steps. For any stochastic strategy denote Pt(Select b |n)

by Pt(S
n

= s
n ,i) for random variable S

n

then H(S
n

), i = 1, . . . ,n, measures selection
strategy diversity, or normalised as: 1

lognH(S
n

) [1].
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29.5.2 Offer Strategy

The previous section analysed the intuition if an agent maintains too great a choice
of trading partners then its certainty in their behaviour will decay — no matter
whether their behaviour is good or bad. Having determined which negotiation part-
ners to interact with the offer strategy that determines what offers to make is con-
sidered, and so this section is concerned with the options component of the LOGIC
model, Ot

nb

. In the following Section 29.5.3 considers argumentation, that ‘wraps’
utterances with rhetorical argumentation, and will address the remaining LOGIC
components.

a is assumed to have a utilitarian negotiation strategy [9] that the following ideas
are intended to embellish. That strategy may reference the estimate that b will ac-
cept the contract (a,b): Pt(Accept(b ,a,(a,b))) — an estimate15 is derived in [10].
This leads to a variation of the issue-tradeoff strategy where a makes the offer that
is acceptable to her that b is most likely to accept. If Acceptt(a,b ,c) denotes that c
is acceptable to a then offer c⇤ where:

c⇤ = argmax
c

{Pt(Accept(b ,a,c)) | Acceptt(a,b ,c)}

Setting utilitarian considerations aside for a moment estimate which offer to
make for which b ’s response, accept or reject, gives a greatest information gain. If
b was prepared to answer repeated questions of the form then “Is contract y accept-
able to you?” then the expected shortest question sequence has a Shannon encoding
that is optimum with respect to the prior expectation of offer acceptance.

We show that if there is one issue and if the prior is the maximum entropy distri-
bution then the sequence with greatest information gain will select the ‘mid-value’
at each stage. Denote b ’s expected limit contract by random variable Y . Suppose
Y ’s sample space is (0, . . . ,n) and b ’s preferences are known to be monotonic in-
creasing over this space with n known to be acceptable and 0 known to be un-
acceptable. The prior for Y is the maximum entropy distribution over (1, . . . ,n)
with H(Y ) = log2 n, and P(Accept(b ,a,y) = y

n . If b reports that y is acceptable
then H(Y |y acceptable) = log2 y, and the information gain is log2[

n
y ]. Likewise

H(Y |y unacceptable) = log2(n� y). Solving the continuous model for maximal ex-
pected information gain:

d
dy

✓
y log2

n
y

+(n� y) log2
n

n� y

◆
= 1� log2

n
n� y

= 0, and y =
n
2

Consideration of the offer with maximal expected information gain is more in-
teresting in multi-issue negotiation where a may have a set of potential offers Dv
all with similar material value v, and may then wish to prioritise them on the basis

15 If a assumes the each dimension of the contract space may be ordered to reflect b ’s preferences
and interprets b ’s illocutionary actions of offer as willingness to accept whilst rejecting a’s
previous offers then a probabilistic model of b ’s limit contracts is derived using maximum entropy
inference.
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of expected information gain. Given an estimate for P(Accept(b ,a,y)),y 2 Dv (see
[10]) the preceding ideas may be used to enumerate the expected information gain
for each y 2 Dv and so to make the maximal offer.

This section takes both utilitarian gain and information gain into account in man-
aging the offer sequence. Within a single negotiation dialogue utilitarian gain is what
matters most. Information gain on the other hand is concerned with strengthening
the relationship and trust models and so underpins the agent’s long-term strategies
to build secure trading relationships for the future. Information-based agents aim to
strike a balance between short term gains and long term security.

29.5.3 Argumentation and Relationship Building

This section is concerned with trust and relationships between agents. Relationships
are built through dialogical interaction that is modelled using the LOGIC frame-
work. Argumentation strategies take account of bluff and counter-bluff in the cut
and thrust of competitive interaction, and contribute to relationships in each of the
five LOGIC categories. We discuss what an argumentation strategy should aim to
achieve from the LOGIC model point of view — the construction of the illocution-
ary sequences to achieve this aim is beyond the scope of this discussion.

Rhetoric argumentation aims to alter the beliefs of the recipient; it is also an infor-
mation acquisition and revelation process as measured using the LOGIC framework.
Equation 29.4.2 is a’s evaluation function that applies to both contract enactment
and argumentation, it is also the basis for a’s relationship-building strategies that
aim to influence the strength of b ’s relationship through argumentation and offer
acceptance.

For each generic need n a maintains a pool of potential partners (Section 29.5),
and for each negotiation partner b , a has a model of their relationship summarised
as: Lt

nb

, Ot
nb

, Gt
nb

, It
nb

, Ct
nb

and Ut
nb

. The idea is that for each agent in a pool a

has a target intimacy that is its desired LOGIC model for that agent: T Lt
nb

, TOt
nb

,
T Gt

nb

, T It
nb

, TCt
nb

and TUt
nb

. The prior to commencing an interaction dialogue G ,
a constructs a target LOGIC model for that dialogue: DLt

nb

, DOt
nb

, DGt
nb

, DIt
nb

,
DCt

nb

and DUt
nb

. The dialogue target then becomes a constraint on the argumenta-
tion strategy.

a does not give private information away freely, and seeks a level of balance
in information revelation. This is achieved by building a speculative model of b ’s
model of a — after all, a should have a fairly good idea of what b knows about
a — this is the reflection model. As the dialogue proceeds information in the five
logic categories is exchanged (or, ‘traded’) and whilst attempting to maintain a rea-
sonable level of balance a aims to achieve its dialogue target. Conversely, a may
deliberatively diverge from a balanced information exchange to send a (positive or
negative) signal to b .
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Contract enactment is a’s final opportunity to adjust the balance of an interac-
tion dialogue by enacting minor variations of the signed commitment or by further
information revelation. This mechanism is used widely by human agents who may
“add a little extra” to impress their partner, or may otherwise diverge from their
commitment to signal their intent.

The preceding discussion is at a high level but given the detailed measurement of
information exchange in the LOGIC framework it tightly constrains a’s utterances
possibly to the extent of making a’s behaviour appear to be predictable. Stance is
common device used by human agents to conceal their interaction strategies. Stance
randomly varies along the axis ‘tough guy’ / ‘nice guy’16 and is applied as a filter
on outgoing utterances to add strategic noise that aims to prevent its underlying
interaction strategies from being decrypted by b .

29.6 Conclusions

This section has drawn together two major threads: trust in the enactment of con-
tracts and the relationships between agents. Trust has been defined in terms of the
expected value derived from signing a contract — this is in contrast to defining trust
as the expected variation between commitment and enactment. The definition cho-
sen is more general in that it assumes some time delay between the enactment and
the valuation, and that the valuation reflects the personal preferences of the agent.
For example, if a car is purchased it may be delivered exactly as specified but after
driving the car for some time the agent may come to value the purchase as being im-
perfect in some way. This notion of trust treats commitment as not simply “acting
as specified” but as attempting to act in the interests of the contractual partner. This
is achieved with a model of the relationships between agents that enables agents to
build relationships with trust.
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