
Privacy in Distributed Meeting
Scheduling 1

Ismel Brito and Pedro Meseguer 2

IIIA, CSIC, Campus UAB, 08193 Bellaterra, Spain

Abstract. Meetings are an important vehicle for human interaction. The Meeting
Scheduling problem (MS) considers several agents, each holding a personal cal-
endar, and a number of meetings which have to be scheduled among subsets of
agents. MS is a naturally distributed problem with a clear motivation to avoid cen-
tralization: agents desire to keep their personal calendars as private as possible dur-
ing resolution. MS can be formulated as Distributed CSP, but due to the form of its
constraints the PKC model does not bring any benefit here. We take entropy as a
measure for privacy, and evaluate several distributed algorithms for MS according
to efficiency and privacy loss. Experiments show interesting results with respect to
the kind of tested algorithms.

Keywords. Distributed constraints, privacy, entropy.

1. Introduction

The Meeting Scheduling problem (MS) consists of a set of agents, each holding a per-
sonal calendar where previous appointments may appear, and a set of meetings among
them. The goal is to determine when and where these meetings could occur [7]. This
problem is naturally distributed because (i) each agent knows only his/her own personal
calendar and (ii) agents usually desire to preserve their personal calendars during resolu-
tion. In a centralized approach, all agents must give their private information to a central
server, which solves the problem and returns a solution. This causes a high privacy loss,
because each agent has to give his/her personal calendar to the server. In a distributed ap-
proach, to find a solution some information of the personal calendars has to be revealed,
but not all of them as in the centralized case.

A natural formulation of MS is as Distributed Constraint Satisfaction (DisCSP) with
privacy requirements. To enforce privacy in DisCSP, two main approaches have been
explored. One considers the use of cryptographic techniques [10], which causes sig-
nificant overhead in solving. Alternatively, other authors try to enforce privacy by dif-
ferent search strategies [7,6]. In this paper, we follow this line. It is worth noting that
the partially-known constraints (PKC) approach [2,4], developed to enforce privacy in
DisCSP, it does not offer benefits for this problem because an equality constraint cannot

1This work is partially supported by the project TIN2006-15387-C03-01 and by the Generalitat de Catalunya
grant 2005-SGR-00093.

2Corresponding Author: IIIA CSIC, Campus UAB, 08193 Bellaterra, Spain; email: pedro@iiia.csic.es

be divided in two private parts (one for each agent of a binary constraint), and this prob-
lem is modelled using equality constraints. We analyze three distributed approaches for
MS, which can be seen as representative algorithms of the state-of-the-art in distributed
constraint solving. One is the simple RR algorithm [7], developed for this problem. The
other two are generic DisCSP algorithms: the synchronous SCBJ and the asynchronous
ABT. We compare them experimentally, with especial emphasis on the privacy level they
can reach. Privacy is measured using entropy from information theory, as done in [4].

This paper is structured as follows. In section 2, we give a formal definition of the
MS problem, providing a DisCSP encoding. In section 3, we present entropy as a measure
for privacy and we discuss its applicability for the considered solving approaches. In
section 4, we discuss the idea of using lies to enforce privacy. In section 5, we compare
empirically the considered algorithms, and we extract some conclusions in section 6.

2. The Meeting Scheduling Problem

The MS problem [7] involves a set of agents and a set of meetings among them. The goal
is to decide when and where these meetings could be scheduled. Formally, a MS is defined
as (A, M, S, P), where A = {a1, a2, ..., an} is a set of n agents; M = {m1, m2, ...,mq}
is a set of q meetings; att(mk) is the set of mk attendees; S = {s1, s2, ..., sr} is the set of
r slots in any agent’s calendar; P = {p1, p2, ...po} is the set of places where meetings can
occur. We also define the set of meetings where agent ai is involved as Mi = {mj |ai ∈
att(mj)}, the common meetings between agents ai and aj as Mij = Mi ∩ Mj , and
the set of agents connected with ai as Ai = ∪mj∈Miatt(mj). Initially, agents may have
several slots reserved for already filled planning in their calendars. A solution must assign
a time and a place to each meeting, such that the following constraints are satisfied (i) a
meeting attendees must agree where and when it will occur; (ii) mi and mj cannot be
held at same time if they have one common attendee; (iii) each attendee ai of meeting
mj must have enough time to travel from the place where he/she is before the meeting
to the place where the meeting mj will be; human agents need enough time to travel to
the place where their next meeting will occur.

MS is a truly distributed benchmark, in which each attendee may desire to keep the
already planned meetings in his/her calendar private. This problem is very suitable to be
treated by distributed techniques, trying to provide more autonomy to each agent while
enforcing privacy. With this purpose, we formulate the Distributed Meeting Scheduling
(DisMS) problem, which can be seen as a Distributed Constraint Satisfaction problem
(DisCSP). One agent in DisMS corresponds exactly with an agent in DisCSP. Each agent
includes one variable per meeting in which it participates. The variable domain enumer-
ates all the possible alternatives of where and when the meeting may occur. Each domain
has o× r values, where o is the number of places where meetings can be scheduled and
r represents the number of slots in agents’ calendars. There are two types of constraints:
equality and difference constraints. There is a binary equality constraint between each
pair of variables of different agents that corresponds to the same meeting. There is an
all-different constraint between all variables that belong to the same agent.

3. Privacy in DisMS Algorithms

To solve a DisMS instance, agents exchange messages looking for a solution. During
this process, agents leak some information about their personal calendars. Privacy loss
is concerned with the amount of information that agents reveal to other agents. In the
DisCSP formulation for DisMS, variable domains represent the availability of agents to
hold a meeting at a given time and place, which is the information that agents desire to
hide from other agents. In that sense, measuring the privacy loss of a DisMS modeled as
DisCSP is the same as measuring the privacy loss of variable domains.

Following [4], we use entropy from information theory as a quantitative measure for
privacy. The entropy of a random variable Z taking values in the discrete set S is,

H(Z) = −
∑
i∈S

pi log2 pi

where pi is the probability that Z takes the value i. H(Z) measures the amount of missing
information about the possible values of the random variable Z [9,5]. If only one value k
is possible for that variable, there is no uncertainty about the state of Z, and H(Z) = 0.
Given a DisCSP, let us consider agent aj . The rest of the problem can be considered
as a random variable, with a discrete set of possible states S. Applying the concept of
information entropy, we define the entropy Hj associated with agent aj and the entropy
H associated with the whole problem as,

Hj = −
∑
i∈S

pi log2 pi H =
∑
j∈A

Hj

Solving can be seen as an entropy-decrement process. Initially, agents know nothing
about other agents. If a solution is reached after distributed search, agent ai has no un-
certainty about the values of its meetings (that also appear in other agents) so its entropy
decrements. In addition, some information is leaked during search, which contributes to
this decrement. We take the entropy decrement in solving as a measure of privacy loss,
and this allows us to compare different algorithms with respect to privacy. We consider
three particular states: init, it is the initial state, where agents know little about others; sol,
it is when a solution has been found after solving; we are interested in the current states
of the agents’ calendars; end, it is the state after the solving process, no matter whether
a solution has been found or not; here, we are interested in the initial state of agents’
calendars. Assessing entropy of sol state, we evaluate how much of the reached solution
is known by other agents. Assessing entropy of the end state, we evaluate how much
information about the initial state has leaked in the solving process. In the following, we
present RR, SCBJ and ABT, and their corresponding entropies for these states.

3.1. The RR Algorithm

RR was introduced in [7] to solve DisMS. This algorithm is based on a very sim-
ple communication protocol: agent ai considers one of its meetings mj , and pro-
poses a time/place to the other agents in att(mj). These agents answer ai with accep-
tance/rejection, depending whether the proposed time/place is acceptable or not accord-

ing to their calendars. In both cases, another agent takes control and proposes (i) a new
time/place for mj if it was not accepted in the previous round, or (ii) a time/place pro-
posal for one of its meetings, if mj was accepted. If an agent finds that no value exists for
a particular meeting, backtracking occurs, and the latest decision taken is reconsidered.
The process continues until finding a solution for every meeting (a whole solution for the
DisMS problem), or when the first agent in the ordering performs backtracking (meaning
that no global solution exists). Agent activation follows a Round Robin strategy.

RR agents exchange six types of messages: pro, ok?, gd, ngd, sol, stp. When ai

receives a pro message, this causes ai to become the proposing agent. It considers one
of its meetings mj with no assigned value: ai chooses a time/place for mj and ask
for agreement to other agents in att(mj) via ok? messages. When ak receives an ok?
message, it checks if the received proposal is valid with respect to previously scheduled
appointments in its calendar. If so, ak sends a gd message to ai announcing that it accepts
the proposal. Otherwise, ak sends a ngd message to ai meaning rejection. If ai exhausts
all its values for mj without reaching agreement, it performs backtracking to the previous
agent in the round-robin. Messages sol and stp announce to agents that a solution has
been found or the problem is unsolvable, respectively.

Before search starts, the entropy of agent ai is

Hi(init) = −
∑

ak∈A,k 6=i

d∑
l=1

pl log2 pl =
∑

ak∈A,k 6=i

log2 d

where we assume that meetings have a common domain of size d = r× o, whose values
have the same probability pl = 1

d∀l. In the sol state, when a solution is found, agent ai

knows the values of meetings in common with other agents, so its entropy is,

Hi(sol) =
∑

ak∈Ai,k 6=i

log2(d− |Mik|) +
∑

ak∈A−Ai

log2 d

that is, the contribution of agents connected with ai has decreased because ai knows
some entries their calendars, while the contribution of unconnected agents remains the
same. Meetings in common with ai is the minimum information that ai will have in
the sol state. Therefore, the previous expression is optimal for DisMS. The information
leaked during the solving process has little influence in the entropy associated with the
sol state, because an entry in ai’s calendar that is revealed as free in a round for a par-
ticular meeting mj , it could be occupied by another meeting mk involving a different
set of attendees. However, this information is very relevant to dig into the initial state
of other agents’ calendars. During the solving process, each time ai reveals that a slot
is free (because it proposes that slot or because it accepts a proposal including that slot
by another agent), it reveals that it was free at the beginning. This accumulates during
search, and when search ends ai knows some entries in the initial calendar of ak. In the
end statethe entropy is,

Hi(end) =
∑

ak∈Ai,k 6=i

log2(d− freei
k) +

∑
ak∈A−Ai

log2 d

where freei
k is the number of different entries of ak calendar that ai knows were free at

the beginning. It has been evaluated experimentally in section 5.

3.2. SCBJ

Synchronous Conflict-based Backjumping algorithm (SCBJ) is the synchronous dis-
tributed version of the well-known CBJ algorithm in the centralized case. SCBJ assigns
variables sequentially, one by one. It sends to the next variable to assign the whole partial
solution, that contains all assignments of previous variables. This variable tries a value
and checks if this value is consistent with previous assignments. If so, that variable re-
mains assigned and the new partial solution (that includes this new assignment) is sent to
the next variable. If this value is inconsistent, a new value is tried. If the variable exhausts
all its values, backjumping is performed to the last previous variable responsible for the
conflict. Agents implement the described algorithm by exchanging assignments and no-
goods through ok? and ngd messages, respectively. From the point of view of DisMS,
agents accept or reject the proposals made by other agents. ok? messages are used for the
agents to send proposals regarding time/place that are acceptable for a meeting. Contrary
to what happens in RR, ngd messages only mean that someone has rejected the proposal,
but the agent who has done such is not easily discovered. It is important to note that SCBJ
loses some possible privacy in the sense that as the agents send ok? messages down the
line, each agent knows that all the previous agents have accepted this proposal.

The entropy associated with the init state is as in the RR case. In the sol state, ai

knows the value of every meeting in Mi, and the values of meetings scheduled prior its
own meetings (there values were included in the last partial solution that reached ai). So

Hi(sol) =
∑

ak∈Ai,k 6=i

log2(d− |Mik|) +
∑

ak∈A−Ai

log2(d− knowni
k)

where knowni
k is the number of meetings of ak unconnected with ai, whose time/place

are known by ai because they were scheduled before its own meetings. It is easy to see
that SCBJ is less private than RR comparing their expressions of Hi(sol). The first term
is equal, but the second term is lower for SCBJ than for RR (it may be equal for some i,
but for others has to be necessarily lower). This entropy decrement of SCBJ is due to the
fact that ai, besides knowing meetings in Mi (something shared with RR), it also knows
the times/places of some other meetings where ai does not participate. This is a serious
drawback of this algorithm regarding privacy.

Regarding the initial state of calendars, a similar analysis to the one done for RR
applies here. Each time ai receives a partial solution with proposals, a free slot in the
calendar of the proposing agent is revealed, and this information accumulates during
search. At the end, the entropy associated with initial domains is,

Hi(end) =
∑

ak∈A,k 6=i

log2(d− freei
k)

where freei
k is the number of free slots that ai detects in ak. It has been evaluated exper-

imentally in section 5.

3.3. ABT

Asynchronous Backtracking (ABT) [11] is an asynchronous algorithm that solves
DisCSPs. Agents in ABT assign their variables asynchronously and concurrently. ABT

computes a solution (or detects that no solution exists) in finite time; it is correct and
complete. ABT requires constraints to be directed. A constraint causes a directed link
between two constrained agents. To make the network cycle-free, there is a total order
among agents that corresponds to the directed links. Agent ai has higher priority than
agent aj if ai appears before aj in the total order. Each ABT agent keeps its own agent
view and nogood list. The agent view of ai is the set of values that it believes to be as-
signed to agents connected to ai by incoming links. The nogood list keeps the nogoods
received by ai as justifications of inconsistent values.

ABT agents exchange four types of messages: ok?, ngd, addl, stp. ABT starts by
each agent assigning their variables, and sending these assignments to connected agents
with lower priority via ok? messages. When an agent receives an assignment, it updates
its agent view, removes inconsistent nogoods and checks the consistency of its current
assignment with the updated agent view. If the current assignment of one of its variables
is inconsistent, a new consistent value is searched. If no consistent value can be found, a
ngd message is generated. When receiving a nogood, it is accepted if it is consistent with
the agent view of ai. Otherwise, it is discarded as obsolete. An accepted nogood is used
to update the nogood list. It makes ai search for a new consistent value of the considered
variable, since the received nogood is a justification that forbids its current value. When
an agent cannot find any value consistent with its agent view, either because of the orig-
inal constraints or because of the received nogoods, new nogoods are generated from its
agent view and each one sent to the closest agent involved in it, causing backtracking. In
addition, if ai receives a ngd message mentioning an agent aj not connected with ai, a
message addl is sent from ai to aj , asking for a new directed link, that will be permanent
from this point on. The message stp means that no solution exists. When a solution is
found, this is detected by quiescence in the network.

The entropy associated with the init state is equal to the RR case. In the sol state,
ai knows the value of every meeting in Mi. It also knows the values of meetings corre-
sponding to variables initially unconnected with ai but later connected by added links,

Hi(sol) =
∑

ak∈Ai,k 6=i

log2(d− |Mik|) +
∑

ak∈A−Ai

log2(d− linki
k)

where linki
k is the number of meetings of ak initially unconnected with ai, whose

time/place are known by ai because they were connected by its new links during search.
It has been evaluated experimentally in section 5.

It is easy to see that ABT is less private than RR comparing their expressions of
Hi(sol). The first term is equal, but the second term of ABT is lower than or equal to the
second term of RR. This entropy decrement of ABT is due to the fact that ai, in addition
knowing meetings in Mi (something shared by RR), it also knows the times/places of
some other meetings where ai does not participate. It is worth noting here that there is
a version of ABT that does not add new links during search [1]. For this version, called
ABTnot, its privacy is equal to the obtained by RR, considering the sol state. With respect
to SCBJ, no analytical result can be extracted: both share the first term, but their second
terms are incomparable. Regarding initial domains, a similar analysis to the one done for
RR and SCBJ applies here. Each time ai receives a proposal, a free slot in the calendar
of the proposing agent is revealed. This information accumulates during search. At the
end, the entropy associated with initial domains is,

Hi(end) =
∑

ak∈A,k 6=i

log2(d− freei
k)

where freei
k is the number of free slots that ai detects in ak (ak has to be higher than ai

in the total order). It has been evaluated experimentally in section 5.

4. Allowing Lies

A simple way to enforce privacy is to allow agents to lie: to declare they have as-
signed some value while this is not really true [3]. Formally, if variable i has m
values Di = {v1, v2, . . . , vm}, allowing lies means enlarging i’s domain D′i =
{v1, v2, . . . , vm, vm+1, . . . , vm+t}with t extra values. The first m values are true values,
while the rest are false values. If an agent assigns one of its variables with a false value
and informs other agents, the agent is sending a lie. We assume that agents may lie when
informing other agents, but they always say the truth when answering other agents.

If lies are allowed, an agent receiving a message cannot be sure whether it contains
true or false information. The accumulation of true information during search is more
difficult than when lies were not allowed. Lies are a way to conceal true information by
adding some kind of noise that makes more difficult any inference on the data revealed
during search. But this has a price in efficiency. Since the search space is artificially
enlarged with false values, its traversal requires more effort. So using lies increases the
privacy level achieved by solving algorithms but decreases their efficiency.

A solution reported by the algorithm must be a true solution, and it should not be
based on a lie. If an agent has sent a lie, it has to change and say the truth in finite
time afterwards. This is a sufficient condition to guarantee correctness in asynchronous
algorithms (assuming that the time to say the truth is shorter than the quiescence time
of the network) [3]. The inclusion of the lie strategy in synchronous algorithms presents
some difficulties, as we see next. RR cannot use lies. If the first proposing agent sends
a lie that is accepted by all other agents, this agent has no way to retract its lie. The
control is passed to another agent, which if it does not see any conflict it passes control to
another agent, etc. until all agents have been activated following the round-robin strategy.
If lies are allowed, the RR algorithm might generate incorrect solutions. SCBJ cannot
use lies, for similar reasons. An agent proposes when the partial solution reaches it. After
assigning its variables, the new partial solution departs from it, and the agent has no
longer control of that solution. If the agent introduces a lie in the partial solution, it may
be the case that it could not retract the lie in the future, causing incorrect solutions. So
using lies causes SCBJ to lose its correctness. ABT can use lies. An agent may change
its value asynchronously. If an agent has sent a lie, it can send another true value in finite
time afterwards Sending lies is not a problem for ABT-based algorithms [3].

The use of lies in ABT causes some changes in the information revealed during
search. Each time ai receives a proposal, it is unsure whether it contains a true value
(a free slot in the proposing agent’s calendar) or a false value (an occupied slot taken
as free). Even if the proposing agent changes afterwards, it is unclear whether this is
caused because the previous proposal was false or because it has been forced to change
by search. Since there is uncertainty about this, no true information can be accumulated
during search. At the end and only when there is a solution, the entropy associated with
initial domains is equal to the entropy of the sol state.

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12 14

n
c
c
c

p

Solving <n = 12, s = 40, c = 3, m = 1>

RR
SCBJ
ABT

ABT+lies

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16

m
s
g

p

Solving <n = 15, s = 40, c = 3, m = 3>

RR
SCBJ
ABT

ABT+lies

1447.5

1448

1448.5

1449

1449.5

1450

1450.5

1451

0 2 4 6 8 10 12 14

G
l
o
b
a
l

E
n
t
r
o
p
y

o
f

S
o
l
u
t
i
o
n

p

Solving <n = 15, s = 40, c = 3, m = 3>

RR
SCBJ
ABT

ABT+lies

96.5

96.55

96.6

96.65

96.7

96.75

96.8

96.85

96.9

96.95

97

0 2 4 6 8 10 12 14

L
o
c
a
l

E
n
t
r
o
p
y

o
f

S
o
l
u
t
i
o
n

p

Solving <n = 15, s = 40, c = 3, m = 3>

RR
SCBJ
ABT

ABT+lies

1300

1350

1400

1450

1500

1550

1600

1650

0 2 4 6 8 10 12 14

G
l
o
b
a
l

E
n
t
r
o
p
y

p

Solving <n = 15, s = 40, c = 3, m = 3>

RR
SCBJ
ABT

ABT+lies

75

80

85

90

95

100

105

110

115

0 2 4 6 8 10 12 14

L
o
c
a
l

E
n
t
r
o
p
y

p

Solving <n = 15, s = 40, c = 3, m = 3>

RR
SCBJ
ABT

ABT+lies

Figure 1. Experimental results of RR, SCBJ, ABT and ABTlies on random DisMS instances. Top row: non–
concurrent constraint checks and number of exchanged messages. Middle row: global and local entropy of sol
state. Bottom row: global and local entropy of end state.

5. Experimental Results

We evaluate RR, SCBJ, ABT and ABT lies (the ABT version where lies are allowed), on
random meeting scheduling instances. We compare these algorithms using three mea-
sures: computation effort, communication cost and privacy loss. We measure computa-
tion effort using the number of non concurrent constraint checks (nccc) [8], communi-
cation cost as the number of messages exchanged (msg) and privacy loss in terms of
entropy in sol and end states (entropy of the init state depends on the instance only).

In SCBJ and ABT, lower priority agents tend to work more than higher priority ones,
which causes them to reveal more information. This generates an uneven distribution of
privacy loss among agents as search progresses. Because of this, we provide values of
global and local entropy for each algorithm. The global entropy, H , is the sum of agents’
individual entropies. The local entropy is the minimum of agents’ entropies, and it aims

at assessing the amount of information that the best informed agent infers from others’
calendars. In both cases, higher values of entropy mean higher privacy.

The experimental setting considers DisMS instances with three meetings to sched-
ule. Each instance is composed of 15 people, 5 days with 8 time slots per day and 3 meet-
ing places. This gives 5 · 8 · 3 = 120 possible values in each variable’s domain. Meetings
and time slots are both one hour long. The time required for travel among the three cities
is 1 hour, 1 hour and 2 hours. DisMS instances are generated by randomly establishing p
predefined meetings in each agent’s calendar. Parameter p varies from 0 to 14.

In RR, we count one constraint check each time that an agent checks if a meeting
can occur at a certain time/place. In all algorithms, each time an agent has to make a
proposal, it chooses a time/place at random. Agents in ABT process messages by packets
instead of processing one by one and implement the strategy of selecting the best nogood
[1]. In ABT lies, when an agent searches for a new consistent value, it randomly decides
if it chooses a true or false value, so sending a truth value or a lie is equally probable.

Figure 1 shows the average results of 20 DisMS instances for each value of p. Re-
garding computation effort (nccc), we observe that the synchronous algorithms need
fewer nccc than asynchronous ones, with RR showing the best performance. This phe-
nomenon can be explained by analyzing how agents reject proposals. In RR the propos-
ing agent broadcasts its meeting proposal to all agents sharing a constraint with it. When
those agents receive the proposal, they determine if it is valid or not according to their
own calendars. The proposal checking process can be concurrently executed by informed
agents. In terms of nccc, this means that the total cost of all checking processes executed
by informed agents is equal to the cost of one checking process (1 nccc). In SBCJ the
checking process for a proposal involves more agents because a proposal made by agent
ai will reach aj passing through intermediate agents (the number of intermediate agents
depends on the ordering among agents) and further includes other proposals made by
these intermediate agents. Finally, if the proposal made by ai is found inconsistent by
aj , this will represent a substantial number of nccc. Contrary to the previous algorithms,
ABT agents send proposals asynchronously, while knowing the proposals of higher pri-
ority agents. Since consistency among constraining proposals occurs when they have the
same value, and values for the proposals are randomly selected, consistency occurs only
after several trials. When considering lies, ABT lies exhibits worse performance than pure
ABT as expected - with lies performance deteriorates. Regarding communication cost
(msg), the same ordering among algorithms occurs, for similar reasons.

As discussed in Section 3 , we have used entropy at sol and end states as quantitative
metrics of privacy of the four algorithms. The middle row of Figure 1 corresponds to
the global and local entropies at the sol state. In RR, we see that both metrics of entropy
are constant because they are independent as far as search effects go. They also show a
constant behavior for SCBJ because a static variable ordering has been used. The global
entropy of ABT decreases when the number of predefined meetings increases. This is be-
cause finding a solution is harder when p increases, making agents add new links and thus
decreasing privacy. The entropy of the best informed ABT agent (given by the local en-
tropy) remains practically constant with respect to p. These points corroborate what was
theoretically proven in Section 3: RR has higher entropy in sol than SCBJ and ABT. The
bottom row of Figure 1 shows the global and local entropies at the end state of the four
algorithms. Interestingly, the algorithm offering the highest global privacy is ABT lies,
while ABT is the algorithm offering the lowest global privacy. Allowing lies is a simple

way to achieve high privacy (at the extra cost of more computation and communication
costs). The entropy of the best informed agent tends to decrease as p increases, keeping
the relative order RR, SCBJ, ABT. At some point, ABT lies separates from ABT and be-
comes the most private among them. This is due to the presence of unsolvable instances
in the right part of the plot, which have the minimum contribution to the entropy of any
agent of the system.

6. Conclusions

We have analyzed privacy loss of several distributed algorithms for DisMS, a naturally
distributed problem of practical interest. We have used entropy as a quantitative measure
for privacy, considering how much information leaks form the final solution and from
initial calendars during search. We have also discussed the use of lies during resolution,
to enforce privacy. Our experimental results show that the two synchronous approaches
outperform the asynchronous ones in computation effort and communication cost. Re-
garding privacy, the picture is a bit more complex. Considering privacy of the final solu-
tion, the synchronous RR algorithm shows the best privacy. Considering privacy of initial
calendars (due to information leaked during search), ABT lies reaches the highest global
privacy. All in all, the simple RR offers a very high privacy with unbeaten performance.

References

[1] C. Bessière, A. Maestre, I. Brito, P. Meseguer. Asynchronous Backtracking without Adding Links: a
New Member to ABT Family. Artificial Intelligence, 161(1–2), 7–24, 2005.

[2] I. Brito and P. Meseguer. Distributed Forward Checking. Proc. of 8th CP, 801-806, 2003.
[3] I. Brito and P. Meseguer. Distributed Forward Checking May lie for Privacy. Recent Advances in Con-

straints, LNAI 4651, Ed. F. Azevedo, 93-107, 2007.
[4] I. Brito and A. Meisels and P. Meseguer and R. Zivan. Distributed Constraint satisfaction with Partially

Known Constraints. Constraints, accepted for publication. 2008.
[5] T. M. Cover and J. A. Thomas. Elements of Information Theory, Wiley-Interscience, 2nd edition, 2006.
[6] M. S. Franzin and F. Rossi and E. C. Freuder and R. Wallace. Multi-Agent Constraint Systems with

Preferences: Efficiency, Solution Quality, and Privacy Loss. Computational Intelligence, 20, 264–286,
2004.

[7] Freuder E.C., Minca M., Wallace R.J. Privacy/efficiency trade-offs in distributed meeting scheduling by
constraint-based agents. Proc. of DCR Workshop at IJCAI-01, 63–71, USA, 2001.

[8] Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing performance of distributed constraint pro-
cessing algorithms.Proc. of DCR Workshop at AAMAS-02, 86–93, Italy, 2002.

[9] C. E. Shanon. The Mathematical Theory of Communication, University of Illinois Press, 1963.
[10] M. C. Silaghi. Meeting Scheduling Guaranteeing n/2-Privacy and Resistant to Statistical Analysis (Ap-

plicable to any DisCSP). Proc. of the 3th Conference on Web Intelligence, 711–715, 2004.
[11] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. The Distributed Constraint Satisfaction Problem:

Formalization and Algorithms. IEEE Trans. Knowledge and Data Engineering, 10, 673–685, 1998.

