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Abstract: Over the last decade, hundreds of thousands of volunteers have contributed to science by
collecting or analyzing data. This public participation in science, also known as citizen science, has
contributed to significant discoveries and led to publications in major scientific journals. However,
little attention has been paid to data quality issues. In this work we argue that being able to determine
the accuracy of data obtained by crowdsourcing is a fundamental question and we point out that,
for many real-life scenarios, mathematical tools and processes for the evaluation of data quality are
missing. We propose a probabilistic methodology for the evaluation of the accuracy of labeling data
obtained by crowdsourcing in citizen science. The methodology builds on an abstract probabilistic
graphical model formalism, which is shown to generalize some already existing label aggregation
models. We show how to make practical use of the methodology through a comparison of data
obtained from different citizen science communities analyzing the earthquake that took place in
Albania in 2019.

Keywords: data quality; citizen science; consensus models

1. Introduction

Citizen science (CS) is scientific research conducted, in whole or in part, by amateur
(or nonprofessional) scientists [1]. Haklay [2] offers an overview of the typologies of
the level of citizen participation in citizen science, which range from “crowdsourcing”
(level 1), where the citizen acts as a sensor, to “distributed intelligence” (level 2), where
the citizen acts as a basic interpreter, to “participatory science”, where citizens contribute
to problem definition and data collection (level 3), to “extreme citizen science”, which
involves collaboration between the citizen and scientists in problem definition, collection
and data analysis. In this work we focus on distributed intelligence citizen science tasks
where the citizen provides basic interpretations of data. Examples of tasks under the scope
would be (i) citizens classifying images of living species in a taxonomy or (ii) citizens
determining whether a tweet contains relevant information for the evaluation of a specific
natural disaster.

The current practice tackles distributed intelligence citizen science tasks by (i) deter-
mining a set of tasks that need to be solved/annotated/interpreted; then (ii) distributing
each of those tasks to a set of citizens who solve them; and finally (iii) aggregating the
solutions from the citizens to obtain a consensus solution for each task. Steps (i) and (ii) are
usually guided by tools such as Pybossa [3]. In this work we focus mainly on stage (iii),
that is, how to perform the aggregation of different citizens’ annotations for a specific task.
However, we will see that models used to aggregate citizens’ annotations can also be used
to influence stage (ii) in the decision of how many citizens, and more specifically, which
citizens, should be requested to solve a specific task.
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Data fusion in citizen science is a very wide topic [4–6]. For the specific subtopic
of interest in this paper, that of label aggregation, the state-of-the-art citizen science ap-
plications aggregate the annotations of different citizen scientists on a specific task by
using majority voting [7]. That is, the option that gets the larger number of votes is the
option considered as correct, with each citizen’s opinion having the very same weight.
However, the problem of aggregating different annotations has received a lot of attention
from the statistics and machine learning communities, where more complex aggregation
procedures have been introduced. The contributions of our work are (i) the introduction
of a probabilistic model-based approach to aggregate annotations with citizen science
applications in mind, and (ii) providing a case study that shows the added value in a
citizen science scenario: the comparison of the data quality that can be obtained from
different communities, where a gold set for measuring quality is unavailable. Furthermore,
we approach the problem from an epistemic probabilistic perspective [8], relying as much
as possible on information-theoretic concepts [9,10].

We start by reviewing related work in Section 2. After that, we provide an abstract
probabilistic model for the annotation problem in Section 3. Later, in Section 4 we par-
ticularize our abstract model into two different models (multinomial and Dawid–Skene)
when annotations are selected out of a discrete set of possible labels. In Section 5 we show
how our mathematical model can be used in a specific application scenario to evaluate the
data quality of different communities performing the annotation. In addition, we conduct
predictive inference about the quality of data in hypothetical scenarios within these very
same communities. Finally, Section 6 concludes and discusses future work.

2. Related Work

The problem of label aggregation in crowdsourcing has received a lot of attention
from the statistics and machine learning communities, starting from classical latent class
models [11]. A succinct review of latent class analysis can be found in [12]. A well-known
specific application of latent class analysis to label aggregation is the seminal work of
Dawid and Skene [13]. Another one is the simpler multinomial model presented in [14].
Passonneau and Carpenter [15] highlight the relevance of relying on an annotation model
for the analysis of crowdsourcing data. Paun et al. [14] provide a comparison of different
probabilistic annotation models for the task, and conclude that using partially pooled
models, such as the hierarchical Dawid–Skene model, results in very good performance
among different datasets and applications.

From the methodological perspective, perhaps a more mature alternative is the
CrowdTruth framework [16,17]. The conceptual departure point for this framework is
the paper by Aroyo and Welty [18], which provides a good overview of the usual mis-
conceptions in label aggregation. Their arguments are aligned with those in this paper,
in particular with respect to the myths that there is “only one truth” and that “one ex-
pert is enough”. Dumitrache et al. [19] provide specifics on the quality metrics used in
CrowdTruth, which incorporate the ambiguities and the inter-dependency of the crowd,
input data and annotations. However, although intuitive and useful, these specifics lack a
strong probabilistic and information theoretic background, which is the approach taken in
this work.

Bu et al. [20] propose a graph model to handle both single- and multiple-step classifi-
cation tasks and try to “infer the correct label path”. They present an “adapted aggregation
method” for three existing inference algorithms, namely ‘majority voting’, ‘expectation-
maximization’ [21] and ‘message-passing’ [22].

Recently, Nguyen et al. [23] have presented the CLARA framework, which is in
production at Facebook and relies on a Bayesian probabilistic model. In their work, they
show that the consensus achieved by CLARA is clearly better than that obtained by majority
voting. However, the application scenario is restricted to a binary labeling problem, whilst
in citizen science scenarios many-valued labeling is frequently found.
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Given the fact that even the subject-matter experts can disagree for a given task (e.g.,
the diagnosis of a patient), the quality of the data generated by crowdsourcing needs to be
ensured, or at least soundly measured. Some of the obvious reasons for this need are that
the participating citizens are not necessarily experts in the field, and that the protocol itself
that they are asked to follow in processing the task may lead to mistakes. Accordingly, the
citizen science community has put considerable effort into defining the dimensions of data
quality (e.g., [24]) and building effective strategies to improve the quality (e.g., [25,26]).
This is still a hot research topic and new methods are continuously being suggested.

Since the skills of each participating citizen may vary, efficient methods of task assig-
nation have also been studied to minimize the cost and/or maximize the accuracy of a
crowdsourcing project (e.g., [22,27]).

3. Modeling the Domain

In this section we provide our conceptual and mathematical model of the citizen
science crowdsourcing domain. The conceptual modeling presented in Section 3.1 is deeply
influenced by the CrowdTruth framework [16]. We start by using an example to help
capture the three most relevant concepts. After the conceptual model has been presented,
we turn it into a probabilistic model in Section 3.2.

3.1. Participating Concepts: Tasks, Workers and Annotations

We start with an example in the disaster management area to help us make concrete
the intervening concepts. Timely and accurate management when a natural disaster occurs
is of fundamental importance to diminish the humanitarian impact of the disaster. How-
ever, timely and accurate disaster management requires the presence of an information
system reporting the places that have been more damaged and the specifics of the support
required. Information is usually scarce when a disaster occurs and social networks have
been shown to provide a wealth of images and videos describing details of the disaster.
Hence, structuring that information is of foremost importance for adequate disaster man-
agement. Software is already available for selecting tweets with images that potentially
contain valuable information (e.g., [28]). Although computer vision advances in the last
decade are astonishing, it is still the case that even the best AI-based software for the
task is still far from resulting in high-quality selection and classification of the images.
Fortunately, citizen scientists can help in this endeavor. Each of the images obtained from
the social network by the AI can be distributed to a set of citizen scientists that can help
labeling that image either as irrelevant for the task at hand or with the degree of damage
observed, measuring the degree of damage as either no-damage, minimal, moderate or
severe. After this annotation process takes place, we need to reconcile different labels
from citizen scientists for each image and use that information to report to the disaster
relief organization.

The main concepts in our model are as follows.

Worker A worker is any of the participants in the annotation process. In our
example, each of the volunteer citizen scientists involved in labeling images
is a worker.

Task A task can be understood as the minimal piece of work that can be assigned
to a worker. In our example, labeling each of the images obtained from
Twitter is a task.

Annotation An annotation is the result of the processing of the task by the worker.
An example of annotation in the above described disaster management
example conveys the following information: Task 22 has been labeled by
worker 12 as moderate.

3.2. Abstract Mathematical Model

Next, we present a mathematical model of the problem. We start with a finite set
of w workers W = [1..w], a finite set of t tasks T = [1..t] and a finite set of a annotations
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A = [1..a]. We assume that two different workers can have different features. So, to
characterize each worker we introduce a setW , which we refer to as worker feature space,
and a feature mapping fW : W → W . Thus, for each worker w ∈ W, fW(w) provides a
description of the worker capabilities and characteristics. Following the same pattern, we
assume that two different tasks can also each have distinctive features, and introduce a
set T (the task feature space) and a mapping fT : T → T so that for each task t ∈ T, fT(t)
provides a description of the task characteristics.

Each annotation is the result of the processing of a task by a worker. Function wA :
A→W maps each annotation to its worker and function tA : A→ T maps each annotation
to its task. Finally, we also introduce a set A, which we refer to as annotation feature
space and mapping fA : A → A so that for each a ∈ A, fA(a) describes the annotation
characteristics. The spaces and mappings introduced above and represented in Figure 1
provide a backbone on which we can build.

W A T

W A T

fW

wA

fA

tA

fT

Figure 1. Spaces and mappings in our mathematical model.

The main reason for requesting the annotation of tasks by workers is that we are
interested in determining a specific characteristic (or a set of characteristics) of the task
that is (are) unknown to us. We assume that we can factor the task feature space T
as T = TO × TC × TH , where TO contains the observable characteristics, TC contains
those unobservable characteristics in which we are interested and TH contains those
characteristics of the tasks that are unobservable and in which we are not interested in the
consensus. Epistemologically, we model our lack of knowledge by means of a probability
distribution, and hence we are interested in determining a probability distribution over
TC × t. . .× TC. We call such a distribution a joint consensus. In its most general form, a joint
consensus allows dependencies between the consensuses of different tasks. In this paper
we will restrict our interest to individual task consensuses; that is, the marginal distribution
of the joint consensus for each task.

Similarly, we can split the worker feature spaceW asW = WO ×WH , whereWO
contains the observable characteristics andWH contains the unobservable characteristics.

We also assume the existence of some general characteristics that are relevant for the
annotation. Here, the word ‘general’ is used in the sense of not directly related to a specific
task or a specific annotator. We represent the domain characteristics by an element d ∈ D,
where we refer to D as the domain space.

3.3. The Consensus Problem

The conceptual framework introduced above allows us to properly define what a
consensus problem is. It takes as inputs the following:

• The number of workers w, tasks t and annotations a
• For each worker w ∈W, its observable characteristics, namely ww

O
• For each task t ∈ T, its observable characteristics, namely tt

O
• For each annotation a ∈ A, the task being annotated (tA(a)), the worker that did the

annotation (wA(a)) and the annotated characteristics (aa = fA(a))
• A probabilistic model of annotation, consisting of the following:

– An emission model p(a|ww, tt, d), returning the probability that in a domain
of characteristics d, a worker with characteristics ww annotates a task with
characteristics tt with label a.
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– A joint prior over every unobservable characteristic

p(w1
H , . . . , ww

H , d, t1
C, . . . , ttC, t1

H , . . . , ttH).

Provided with the input of a consensus problem, our probability distribution factorizes
as shown in Figure 2 and we can write

p(w1
H , . . . , ww

H , d, t1
C, . . . , ttC, t1

H , . . . , ttH , a1, . . . , aa) =

p(w1
H , . . . , ww

H , d, t1
C, . . . , ttC, t1

H , . . . , ttH)
a

∏
a=1

p(aa|wwA(a), ttA(a), d).

It is important to highlight that, similarly to what happens in latent class models, our
model encodes a conditional independence assumption. Our model assumes that annota-
tions are independent from one another provided that we are given all the characteristics of
the task, the domain and the worker. However, the conditional independence assumption
encoded in latent class models is much stronger. They assume that annotations are inde-
pendent provided that we know the task label. This assumption has been widely identified
as a drawback of this model (as argued for example in [29], where some approaches for
overcoming this drawback are also presented). By incorporating dependence on the avail-
able characteristics of the task and the annotator, the independence assumption included
in our framework is much milder and justifiable. That said, the simpler incarnations of our
generic model used later in the paper to analyze the Albania earthquake are in fact latent
class models and, as such, encode a strong conditional independence assumption.

ww
O ww

H

∀w ∈W

d tt
O tt

C tt
H

∀t ∈ T

prior

aa

emission

∀a ∈ A

Figure 2. Probabilistic graphical model description of the abstract consensus model.

The objective of a consensus problem is answering a probabilistic query to this prob-
ability distribution. For example, finding the joint consensus p(t1

C, . . . , ttC), which can be
done by marginalizing out every hidden variable except the consensus variables t1

C, . . . , ttC.

4. Discrete Annotation Models

The abstract probabilistic model presented above is overly general and can be particu-
larized in many different ways. Here, as in most of the cases in the literature, we assume
that workers are requested to select from a finite set of annotations (the annotation feature
space A is restricted to be a finite set). That is, when presented with a task, each annotator
will annotate it by selecting an element a ∈ A = {a1, . . . , ak}. Following the disaster
management example in Section 3.1, imagine that the problem at hand is the classification
of images into one of five different categories: irrelevant,no-damage, minimal, moderate
or severe. In that case, we will request each worker to annotate an image by selecting
a label from A = {irrelevant, no-damage, minimal, moderate, severe}. Furthermore, in
discrete annotation models, each task is considered to have an unobservable characteristic:
its “real” label. That is, TC = A. Next, we will see how different discrete annotation models
can be accommodated into our framework.
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4.1. The Multinomial Model

Perhaps the simplest model of annotation is the pooled multinomial model [14]. In
the pooled multinomial model:

1. Tasks are indistinguishable other than by their real classes. That is, the task feature
space T = TO × TC × TH with TO = TH = {∅} and TC = A.

2. The general domain characteristics store the following:

• The probability that the “real” label of a task comes from each of the classes.
Thus, the domain space D is ∆A, that is, the set of probability distributions over
A. This domain can be encoded as a stochastic vector τ of dimension k, where τi
can be understood as the probability of a task being of class ai.

• The noisy labeling model for this simple model is the same for each worker. It
has as characteristic an unobservable stochastic matrix π of dimension |A| = k.
Intuitively, element πi,j of the matrix can be understood as “the probability that
a worker labels an image of class ai with label aj.” Thus, when π is the identity
matrix, our workers are perfect reporters of the real label. The further away from
the identity, the bigger the confusion.

3. Workers are indistinguishable from one another. Hence,W = ∅
4. The emission model in this case is p(aj|w, t, d) = p(aj|d = 〈τ, π〉, tC = ai) = πi,j

5. The prior is assumed to be a Dirichlet both for τ and for each of the rows of π and
also encodes that τ is the prior for the real label of the tasks.

p(wH , d, tC) = p(d)
t

∏
t=1

p(tt
C|d) = p(τ)p(π)

t

∏
t=1

p(tt
C|τ) (1)

where p(τ) = Dirichlet(τ; 1k), p(π) = ∏k
i=1 p(πi,.) = ∏k

i=1 Dirichlet(πi,.; 1k), and
p(tC = ai|τ) = τi.

The main problem from the pooled multinomial model originates from the assumption
that workers are indistinguishable from each other. This assumption is dropped in the
model presented below.

4.2. The DS Model

Dawid and Skene [13] proposed one of the seminal models for crowdsourcing, the
Dawid–Skene (DS) model. In this section we see how to map the DS model to our abstract
framework. The DS model draws inspiration from the multinomial model, but instead
of having a single noisy labeling model, it introduces a noisy labeling model per worker.
Thus, in the DS model

1. Tasks are indistinguishable other than by their real classes.
2. The general domain characteristics store only the stochastic vector τ with the proba-

bility that the “real” label of a task comes from each of the classes.
3. Each worker w has as characteristic an unobservable stochastic k × k matrix πw.

Intuitively, element πw
i,j of the matrix can be understood as “the probability of worker

w labeling an image of real class ai with label aj.”
4. The emission model in this case is p(aj|w, t, d) = p(aj|w, t) = p(aj|wH = πw,

tC = ai) = πw
i,j

5. The prior is assumed to be a Dirichlet both for p and for each of the rows of π. (The DS
model, as presented in [13], used maximum likelihood to estimate its parameters and
thus no prior was presented. Later, Paun et al. [14] presented the prior provided here.)

p(wH , d, tC, tH) = p(wH)p(d)p(tC|d) =
w

∏
w=1

p(πw)p(τ)
t

∏
t=1

p(tt
C|τ) (2)

where p(τ), and p(tC|τ) are the same as for the multinomial model and
p(πw) = ∏k

i=1 p(πw
i,.) = ∏k

i=1 Dirichlet(πw
i,.; 1k).
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5. Evaluating Data Quality in Highly Uncertain Scenarios

In the previous section we presented a general framework and particularized it into
two well-known specific models. Now, we provide an example of how our framework can
be actioned to help data quality analysis in citizen science projects.

Usually, three standard methods are used for ensuring the reliability of citizen
science data:

• Gold sets measure accuracy by comparing annotations to a ground truth;
• Auditing measures both accuracy and consistency by having an expert review the labels;
• Consensus, or overlap, measures consistency and agreement amongst a group.

We are particularly interested in building a methodology for quality assurance in
scenarios, such as disaster response, where gold sets would be unavailable. In such
domains, auditing may be used under the hypothesis of infallible experts (e.g., [30]).
However, in Section 5.2, we show that this hypothesis does not necessarily hold in every
domain. Thus, our approach is to rely on our probabilistic consensus model introduced
above. We describe how to do it by following an example.

In Section 5.1, we detail the process of data collection from expert, volunteer and paid
worker communities. Section 5.2 analyzes inter-expert agreement. In Section 5.3, we further
scrutinize the error rates of the experts. For this evaluation, we employ our multinomial
model to build their consensus and noisy labeling model. Sections 5.4 and 5.5 exploit the
experts’ consensus using it as the ground truth for the analysis of the quality of data collected
from the volunteer and paid worker communities. This analysis allows us to compare
the performances of these two communities, which is increasingly being discussed within
the citizen science research community (e.g., [31]). Furthermore, in Section 5.6, we show
how our probabilistic model can also be leveraged for a predictive analysis to estimate
the number of annotations required to reach the desired accuracy for each of the three
communities we worked with.

5.1. Data and Methodology

To form the set of tasks for citizen scientists, we used the social media data that
were collected right after the earthquake that struck Albania on 26 November 2019. It
was the strongest earthquake to hit the country in more than 40 years and the world’s
deadliest in 2019 (https://en.wikipedia.org/wiki/2019_Albania_earthquake, accessed on
25 February 2021).

The extraction of the disaster information from Twitter, its filtering and automatic
classification were all carried out by the AIDR image processing system [28,30], which
collected data during four consecutive days following the earthquake. Out of 9241 collected
tweets, AIDR produced a dataset of 907 images that it deemed relevant.

Since we lacked a gold set for our domain of interest, first we needed to establish a
ground truth. Hence, we contacted a group of ten experts with prior knowledge of disaster
response and crisis data. We presented the set of 907 images as tasks to the experts via
the Crowd4EMS platform [32]. Crowd4EMS combines automatic methods for gathering
information from social media and crowdsourcing techniques, in order to manage and
aggregate volunteers’ contributions. We asked our experts to assess the severity of the
damage on each image and annotate it with one of the five labels given in Section 4. To
account for the possibility that the experts may also suffer from biases, each image was
evaluated by three experts. Specifically, images were ordered and then they were presented
to the experts following a single sequence, independently of the expert who was requesting.
That is, the first image was assigned to the first image request received, the second image
was assigned to the second request and so on until the complete set of images was assigned
a label. The only constraint was that an image was not presented to the same expert more
than once. This process was repeated three times, guaranteeing that each image was labeled
at least three times by different experts.

Then, we provided the same dataset to a community of fifty volunteers via
Crowd4EMS and to paid workers via the Amazon Mechanical Turk (MTurk) platform.

https://en.wikipedia.org/wiki/2019_Albania_earthquake
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MTurk is an online micro-tasking platform that allows requesters to distribute tasks that
are difficult to classify for machine intelligence, yet simple for humans, to a large group of
users termed as workers for a monetary incentive. Both crowds were asked to annotate the
images using the above-mentioned set of five labels. The same image assignment process
detailed for experts was followed for the volunteers as well so that each image was labeled
at least by three different volunteers, who made 3015 contributions in total. In MTurk,
171 paid workers participated in labeling and each image was annotated by ten different
workers, thus a total of 9070 contributions was made by this community.

5.2. Evaluating Expert Infallibility

Since the annotation data collected from the experts was destined to be used as the
ground truth, before any further analysis, we measured the inter-expert agreement of their
answers in two ways. First, we checked the percentage of full agreement (i.e., when all
annotators annotated an image with the same label). Second, we calculated the Fleiss
generalized Kappa coefficient [33], which is a well-known inter-rater reliability measure.
We saw that the experts fully agreed only 61.41% on the image labels. The Fleiss generalized
Kappa coefficient for their answers was 53.6%. According to Landis and Koch [34], this
Kappa statistic corresponds to a “moderate” agreement (for Landis and Koch [34], a Kappa
statistic has to be ≥0.81 to be considered “almost perfect”).

As a conclusion of this analysis we have to drop the expert infallibility assumption
in this domain. This raises the question about how to better evaluate the data quality of a
volunteer or paid crowd for a specific task, particularly when we cannot assume expert
infallibility. To this end, in the next section, we propose a simple methodology that is based
on the probabilistic labeling model that we introduced in Section 4.1.

5.3. Error Rates for Experts

Given the experts’ annotation data, we use the multinomial model presented in
Section 4.1 for three purposes: (1) to draw the joint consensus for the labeled tasks, i.e.,
p(t1

C, . . . , ttC) where t= 907; (2) to estimate the k× k stochastic matrix π with k= 5 that
characterizes the single noisy labeling model for all experts; and (3) to estimate the a priori
probabilities of each label (i.e., τ). This process is illustrated in the upper half of Figure 3,
where the upper box corresponds to the expectation-maximization (EM) algorithm applied
to annotation data by Dawid and Skene [13]. We particularized this EM algorithm into our
multinomial model. Specifically, the initial estimates of the joint consensus are calculated
as raw probabilities of each label for each task using the annotation data. Then, in the
Maximization step, the algorithm calculates the maximum likelihood estimates of π and
τ using the current estimate of the joint consensus (with Equations (2.3) and (2.4) in [13],
respectively). Subsequently, in the Expectation step, current estimates of π and τ are used
to calculate the new estimates of the joint consensus (with Equation (2.5) in [13]). The
algorithm alternates between these two steps until a desired convergence for the joint
consensus is achieved or a given number of iterations is reached. The final estimates of
π and τ are values that maximize the full likelihood of the annotation data, and the final
estimates of the joint consensus gives us p(t1

C, . . . , ttC).

Determine experts’ error
rates and real consensus

Expert
annotations

Experts π

τ p(tC)

Determine volunteers’
error rates

Volunteers
annotations Volunteers π

Figure 3. Flow of data for computing the error rates of the experts and volunteers.
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As detailed in Section 4.1, the consensus is essentially a t× k matrix where the (t, i)th

entry is the probability of the real label of task t (tt
C) being ai. Figure 4 presents the error

rates of experts for whom we detailed their calculation in the above paragraph. Each cell in
the figure contains the corresponding πi,j value; that is, the probability that an expert will
report label aj for an image when the real label is ai. For experts, the real label of an image
is the label with the highest probability. Although the cells include j = i pairs, which are
the correctly reported labels, this matrix is known as the error rate (a.k.a. confusion matrix)
in the literature.

Figure 4. Error rates for experts.

In Figure 4, we observe that although irrelevant and severe damage labels are more
likely to be correctly annotated, the expected accuracies for other answers are drastically
low. Each of the moderate, minimal and no-damage labels has a probability below 50% of
being correctly reported by the experts. For example, moderate damage is estimated to be
correctly labeled only with a 40% probability, and mislabeled as severe 28% of the time.
In addition, in the case of minimal damage, it is confused with moderate almost with the
same probability.

As mentioned in Section 4.1, the ideal π would be an identity matrix whereas for our
group of experts and set of tasks, Figure 4 is far from being an identity matrix. Thus, for our
domain of interest, the experts’ π also corroborates the exclusion of the expert infallibility
assumption that we have shown in the above section. Experts do disagree.

In the following two sections, we will use experts’ consensus as the ground truth for
the evaluation of the quality of labeling made by the volunteer and paid workers. Then,
following these sections we will use the a priori probability vector τ for a prospective data
quality analysis for all three communities.

5.4. Evaluation of Volunteer Crowd

Given the experts’ joint consensus, we fit our probabilistic model to the volunteer
crowd’s labeling data, and calculated their error-rates as illustrated in the lower half of
Figure 3. The lower box corresponds to Equation (2.3) in [13], which calculates the maxi-
mum likelihood estimate of the π for volunteers by using the ground truth we achieved
from our model for the experts in the above section. The error rates for labels are given in
Figure 5.
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Figure 5. Error rates for volunteer crowd.

The figure shows that the volunteers have a lower probability of correct labeling
compared to the corresponding probabilities for experts given in Figure 4. In particular, the
probabilities of correct labels for minimal and no-damage are near zero. In both cases, the
volunteers are likely to label them as irrelevant. On the other hand, moderate damage
will be labeled correctly only with a 13% probability, while it is more likely to be regarded
as either severe or irrelevant with probabilities of 44% and 37%, respectively.

We can speculate that the apparent subjectivity in volunteer labels may be due to
the fact that each image is only annotated by 3.32 volunteers on average, and that more
annotations could be expected to yield more accuracy. This speculation is exactly what we
will be analyzing in Section 5.6.

5.5. Evaluation of Paid Crowd

In a similar way to the volunteers, given the experts’ consensus, we fit our probabilistic
model to the paid crowd’s labeling data by using this data as an input to the lower box in
Figure 3, which calculated, this time, the maximum likelihood estimate of the π for this
crowd given the ground truth we computed via experts’ annotation data in Section 5.3.
The calculated error rates of paid workers are shown in Figure 6.

In the figure, we see that paid workers do a similar ‘good’ job like volunteers for
the severe damage. They also approximate to the experts’ performance for moderate
and minimal damage, and no-damage. However, paid workers do seem to fail for the
irrelevant images, and they are even expected to label them as severe 33% of the time.

Section 5.6 will help us to speculate on the cost-effectiveness of paid workers compared
to that of the volunteers as we analyze the expected accuracies of both communities for
higher number of annotations.

Figure 6. Error rates for paid crowd.
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5.6. Prospective Comparison

In this section we aim to make a predictive analysis for the accuracy that we would
expect from our three communities when they contribute with more annotations per image.
For this purpose, we synthetically generated labeling-data for each of the expert, volunteer
and paid communities for varying numbers of annotators by using the parameters of their
probabilistic models.

Specifically, we had a separate multinomial model that we fit to each one of the data
of three communities in Sections 5.3–5.5. As we know from Section 4.1, a multinomial
model allows us to estimate the a priori probabilities of each label (i.e., τ), and the proba-
bility distribution of the error rates for an annotator (i.e., π) for the corresponding crowd.
Accordingly, we created two synthetic sets with 1000 and 10,000 tasks. The synthetic real
labels of the tasks were assigned by following the τ that we obtained from the model for
experts in Section 5.3. The τ for experts was calculated as [irrelevant : 0.3361, no-damage :
0.0271, minimal : 0.0218, moderate : 0.0469, severe : 0.5681].

Then, for each community, by following the π of the community model, we synthet-
ically generated a different set of labeling-data that corresponded to each of the given
number of annotations. Subsequently, for each item of synthetic community data, we
calculated the synthetic consensus of the community for the corresponding number of
annotations.

Finally, by using the set of synthetic real labels and synthetic consensuses, we calculated
the accuracy of all (crowd, number of annotations) pairs. The accuracy was calculated
as the percentage of correct labels, and the label attached by the crowd to an image was
selected as the label with the highest probability in the corresponding consensus.

Furthermore, to be able to compare the performance of the multinomial model to
the standard majority voting method, we also measured the accuracy when the synthetic
consensus was calculated by the latter method instead.

Figure 7 depicts the accuracy in the assessment of the severity of damage by the three
communities for different numbers of tasks and different numbers of annotations per task.
In all sub-figures, we observe that the probabilistic model outperforms majority voting for
the corresponding community. The performance is comparable only for the lowest number
of annotations per task—which was three—for the expert and volunteer communities in
Figure 7a–d.

The figures show that when we use the proposed probabilistic model for consensus,
the probability of mislabeling decreases as the number of annotators increases. This
observation is also true for majority voting, but this aggregation method converges to a
certain percentage after which no increase is achieved no matter how many annotations
per task are carried out. Majority voting results in less accurate data, especially for the paid
workers, as can be seen in Figure 7e,f. This is probably due to the poor performance of the
paid crowd for the irrelevant images as we examined in Section 5.5, as these images may
form an important part (expected to be 33.6%) of the synthetic real labels according to the
the experts’ a priori probability distribution of labels.

We also note that, although the average accuracy increases with the number of annota-
tions in Figure 7c, we observe that the uncertainty around the accuracy also increases as
opposed to other plots in Figure 7. This is due to the fact that the EM algorithm used to
calculate the synthetic consensus for prospective analysis is prone to getting stuck in local
maxima in the case of volunteers as a consequence of their error rates. As seen in Figure 5,
the values on the diagonal are very low for three labels, and this causes the label emitted
by our model to be frequently different from the real label for these classes. Hence, it is
very difficult for the EM algorithm not to get stuck in alternative local maxima instead
of reaching the global maximum (which ought to be close to the error-rates shown in
Figure 5).
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(a) Experts with 1000 tasks (b) Experts with 10,000 tasks

(c) Volunteers with 1000 tasks (d) Volunteers with 10,000 tasks

(e) Paid crowd with 1000 tasks (f) Paid crowd with 10,000 tasks

Figure 7. Prospective analysis for correct label rates for experts, volunteers and paid crowd with
multinomial model (MM) and majority voting (MV).

Finally, we can say that with the probabilistic model, we do not only achieve more
accurate consensus results, but we also achieve them with less annotators. Therefore, our
probabilistic model is more cost-effective than the standard majority voting scheme.

6. Conclusions and Future Work

In this work we have introduced a conceptual and formal framework for modeling
crowdsourced data obtained in citizen science projects. We have shown how this general
model can encompass different probabilistic models already presented in the literature,
such as the multinomial or the Dawid–Skene models. Finally, we have seen a use case of
application to citizen science data obtained for disaster management purposes, by modeling
the data obtained to perform damage assessment of the 2019 Albania earthquake. We have
seen that our probabilistic model helps build a methodology that

• can be applied in scenarios where the hypothesis of infallible experts does not hold;
• can be used to characterize and study the different behaviors of different communities

(in our case, experts, volunteers and paid workers);
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• can be actioned to perform prospective analysis, allowing the manager of a citizen
science experiment to make informed decisions on aspects such as the number of
annotations required for each task to reach a specific level of accuracy.

Our work is only a first step towards establishing a scientific methodology for the
analysis of crowdsourced citizen science data. In the future, we plan to fit into this
very same conceptual and formal framework the application of active learning strategies
(e.g., [35]) for coordinating to which workers each task should be sent to minimize the
number of annotations necessary.

We have started experimenting with the use of Bayesian methods with the objective
of obtaining more realistic prospective analyses. We have identified that a major problem
for the application of generic inference platforms (such as Stan [36]) is the label-switching
problem [37]. However, while crowdsourcing models can be understood as discrete mixture
models, we think that the particularities of the task can be used to build models that are free
from label switching and we are working towards proving the usefulness of those models.

In damage assessment scenarios such as the one reported in this paper, we could
also model the severity of damage as a fuzzy linguistic variable with five fuzzy labels.
It could be interesting to study whether crowdsourcing information could be used to
learn the membership function for each fuzzy label, thus modeling uncertainty through a
vague description of the concepts instead of (or in combination with) modeling the error
introduced by the workers.
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