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Abstract. During this decade, it has been observed that many real-
world graphs, like the web and some social and metabolic networks, have
a scale-free structure. These graphs are characterized by a big variability
in the arity of nodes, that seems to follow a power-law distribution. This
came as a big surprise to researchers steeped in the tradition of classical
random networks.

SAT instances can also be seen as (bi-partite) graphs. In this paper
we study many families of industrial SAT instances used in SAT compe-
titions, and show that most of them also present this scale-free structure.
On the contrary, random SAT instances, viewed as graphs, are closer to
the classical random graph model, where arity of nodes follows a Pois-
son distribution with small variability. This would explain their distinct
nature.

We also analyze what happens when we instantiate a fraction of the
variables, at random or using some heuristics, and how the scale-free
structure is modified by these instantiations. Finally, we study how the
structure is modified during the execution of a SAT solver, concluding
that the scale-free structure is preserved.

1 Introduction

The Satisfiability problem (SAT) is central in Computer Science. It was the first
problem to be proven NP-Complete, and it is used extensively to encode many
other problems into it. Therefore, finding good algorithms to solve SAT is of
practical use in many areas of Computer Science. Even though the general SAT
problem is NP-Complete, many very large industrial instances can be solved
efficiently by modern solvers. The aim of this work is to study the body of
industrial instances to detect general properties that are shared by the majority
of instances. We focus on the structure of the instances viewed as bi-partite
graphs, where nodes represent variables and clauses, and edges represent the
presence of a variable in a clause. In particular, we try to detect the distribution
on the frequencies of the variables and of the sizes of the clauses, in SAT instances
used in the latest SAT Competitions and SAT Races. Our work was inspired
by [BDIS05], where they suggest that industrial instances, as many other real-
world graphs could have a scale-free structure.
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The classical random graph model [ER59] was one of the best studied during
the last century, and set the basis of graph theory. In [WS98], a new model of
random graphs is proposed, called small-world to describe the structure of some
social collectivities. In [AJB99], they show that the world wide web, viewed
as a graph, has a structure than cannot be described by the classical random
graph model. They propose a new model called scale-free. The name comes
from the fact that, in this new model, the arity of nodes follows a power-law
distribution p(k) ∼ k−α, and these distributions are scale-free. However, the
name also suggests that these graphs present some kind of self-similarity. In
recent years it has been observed that many other real-world graphs, like some
social and metabolic networks, also have a scale-free structure.

Power-law (zeta and Pareto) distributions are characterized by a big vari-
ability, consequence of a polynomially decreasing tail. A small fraction of the
individuals is responsible for most of the average, in what is popularly known
as the 80:20 rule (i.e. 80% of the land is owned by the 20% of the population).
Many other heterogeneous distribution are also called power-law or heavy-tailed
when their tail decreases polynomially, in contrast with other classical distri-
butions, like normal, Poisson, or binomial that have a exponentially decreasing
tail. Experience tells us that power-law distributions are as frequent in nature,
if not more frequent, as exponentially decreasing distributions. For instance, the
CPU time of the different executions (with different random variable selection)
of a solver on a formula follow a power-law distribution [GFSB04].

The topology of graphs have a major impact on the cost of solving search
problems on these graphs. Gent et al. [GHPW99] analyze the impact of a small-
world topology on the cost of coloring graphs, and Walsh [Wal01] does the same
in the case of scale-free graphs. Therefore, we can expect that SAT solving,
viewed as a search process of on a graph (the formula), will be affected by the
topology of this graph.

It is well-known in the SAT community that classical random k-CNF formulas
and industrial (or real-world) formulas have a distinct nature. This makes SAT
solvers to specialize in one or the other kind of formulas. In the SAT competition
there is a special track for each kind of formulas, whereas in the SAT Race
competition, only industrial formulas are used to test the solvers. Random k-
CNF formulas, as graphs, follow the Erdös-Rényi model. In the phase transition
point for k = 3, for instance, most of the variables have a number of occurrences
very close to 12.75.1 In this paper, we show that most industrial instances are
better modeled as scale-free graphs.

We think that the present study provides a step towards a theoretical ex-
planation of why some SAT solvers perform better on industrial instances, and
others on random SAT instances. Moreover, the better understanding of real-
world instances could lead to the improvement of existing SAT solvers.

The paper can also serve as basis for new random SAT generation models that
produce instances closer to real-world ones. This problem is distinguished as one

1 The number 12.75 comes from multiplying the size of the clauses k = 3 by the
clause/variable ratio m/n = 4.25 at the phase transition point.
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of the 10 challenge problems in SAT [SKM97, Sel00, KS03, KS07]. Recently, in
[ABL09], we have proposed some random SAT instance generators that produce
formulas with variable frequencies following a power-law distribution. We show
that solvers specialized on industrial instances perform better in these random
industrial-like instances than solvers specialized on random formulas.

Another application of the study could be to evaluate which is the best family
of solvers to use on a particular instance, by analyzing the distribution of variable
frequencies or clause sizes. In particular, this could be use as one more selection
criteria in a portfolio approach [XHHLB08].

The paper proceeds as follows. In Section 2, we present the study of the dis-
tributions that best represent the frequencies of variable occurrences and clause
sizes. Also we describe the statistical techniques we use in our work. In Section 3,
we study whether the scale-free nature is preserved under partial instantiations
of variables. In Section 4, we analyze the structure of the formulas during the
execution of complete SAT solver of different nature. We conclude in Section 5.

2 Analysis of Industrial SAT Instances

2.1 Methodological Background

Every SAT instance can be seen as a bi-partite graph, with a set of nodes V ∪C,
where V represents the variables and C represents the clauses. The edges are
the pairs (v, c) ∈ V ×C such that variable v appears in clause c. In what follows,
n = |V | and m = |C|. In order to analyze if a bi-partite graph is scale-free, we
have to study the arity of the nodes. Notice that the arity of a node v ∈ V is
the number of occurrences of the variable v, and the arity of c ∈ C is the size of
the clause c.

For every bi-partite graph we can compute f real
v (k) as the number of vari-

ables that have a number of occurrences equal to k, divided by n, and similarly,
f real

c (k) is the number of clauses of size k divided by m. We add the label real
to emphasize that these functions come from empirical data. We can also define
the accumulative versions of these functions as F real

v (k) =
∑

i≥k f real
v (i) and

F real
c (k) =

∑
i≥k f real

c (i). Notice that, assuming that there are no empty clauses
and all variables occur somewhere, F real

v (1) = F real
c (1) = 1.

In the scale-free model, the arity of nodes is characterized by a random vari-
able K that follows a power-law distribution fpow(k) = P (K=k) = c k−α.
The exponent α has typically values inside [2, 3]. This distribution diverges at
zero, and there is a lower bound kmin for the values of k from where we get
the power-law behavior or heavy tail. In the discrete case (the one that con-
cerns us), the normalizing constant is c = 1/ζ(α, kmin) = 1/

∑∞
i=0(i + kmin)−α,

where ζ is the Hurwitz zeta function. For big values of kmin we can approxi-
mate this distribution using the continuous version. In this case the probability

density function is fpow(k) = α−1
kmin

(
k

kmin

)−α

, and the cumulative function is

F pow(k) =
(

k
kmin

)−α+1

.
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There is not a proper (formal) definition of what a scale-free graph is, but
one of their basic properties –usually taken as a definition– is that the arity of
nodes seems to follow a power-law distribution. Therefore, we must check if, for
some values of αv and αc, we have f real

v (k) ≈ c k−αv and f real
c (k) ≈ c k−αc .

Notice that, applying logarithms to both sides, we get log f(k) = log c−α log k.
Therefore, if f real

v (k) and f real
c (k) are power-law, representing them as a function

of k with double-logarithmic axes, we should get closed to a straight line with
slope −α.

In some papers, the value α is calculated by linear regression of log f(k) as a
function of log k. In [LADW05, section 2.1.3] there is a discussion of why it is
better to plot the cumulative logarithm log F (k), instead of log f(k), to compute
the regression. But, in this case, the slope is −α + 1. Following this argument,
in Figure 1 we represent Fv(k) and Fc(k) versus k with double-logarithmic axes,
for some families of industrial formulas.

We will follow the maximum likelihood method for computing an estimation of
α, as described in [CSN07]. To estimate the value of α for a collection of empirical
data k1, . . . , kn, we compute the value of α that maximizes the probability that
the data were drawn from the model:

P (k1, . . . , kn |α) =
n∏

i=1

α − 1
kmin

(
ki

kmin

)−α

We take logarithms, since the maximum will be in the same place, then we take
derivatives and make the function equal to zero:

∂

∂α
log P (x1, . . . , xn |α) =

=
∂

∂α

(

n log
α − 1
kmin

− α

n∑

i=1

log
ki

kmin

)

=

=
n

α − 1
−

n∑

i=1

log
ki

kmin
= 0

we get
α̂ = 1 +

n
∑n

i=1 log(ki/kmin)
For the discrete case, a good approximation for big values of kmin is

α̂ = 1 +
n

∑n
i=1 log ki

kmin−1/2

Notice that the estimated α depends on kmin. To compute the value of ˆkmin,
we try to minimize the distance between the (experimental) cumulative distri-
bution function F real(x) and the (theoretical) cumulative distribution function
F pow(x; α, kmin). The distance between both distributions is calculated as the
maximal difference between both functions. Then, we compute the value of kmin

that minimizes this distance:

d = min
kmin≥1

{

max
k≥kmin

{∣
∣
∣
∣

F real(k)
F real(kmin)

− F pow(k; α̂, kmin)
∣
∣
∣
∣

}}
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We get so the value of kmin and of d. The value of this distance d is an indicator
of the fitness of the estimation.

When we say that arity of nodes seems to follow a power-law distribution,
we emphasize the seems because it is obvious that SAT formulas, as well as the
WWW and other scale-free graphs, are not randomly generated. Therefore, we
do not expect the arity of nodes to follow exactly any distribution. However, we
want to check if some distribution fits the data better than others. In partic-
ular, we have tried to fit, apart from a power-law distribution, an exponential
distribution.

The probability density function for an exponential distribution has the form
c e−β x. Calculating the constant, for the discrete case, we get fexp(k; β, kmin) =
(1−e−β) e−β (k−kmin) and its cumulative function F exp(k) = e−β(k−kmin). In this
case the estimation of the β parameter by the method of maximum likelihood
gives:

∂

∂β
log P (k1, . . . , kn |β) =

=
∂

∂β

(

n log(1 − e−β) − β
n∑

i=1

(ki − kmin)

)

=

=
n e−β

1 − e−β
−

n∑

i=1

(ki − kmin) = 0

Hence,

β̂ = log
(

n
∑n

i=1(ki − kmin)
+ 1

)

The value of kmin is calculated as in the case of the power-law distribution.
For distinct families of industrial formulas, we have calculated f real

v (k)and
f real

c (k), as well as their cumulative functions. First, we have studied instances
independently in each family, observing that they all have the same nature.
Thus, we decide to group them by families, assuming that all formulas of the
same family follow the same probability distribution. Therefore, for a family,
f real

v (k) is the sum for every formula of the number of variables that have k
occurrences, and similarly for f real

c (k). Notice that, under this assumption, the
arity of a variable, independently of in which formula of the family it occurs,
is an independent realization of the same random variable. Therefore, we can
do this addition. Later, we have fitted a power-law distribution and an expo-
nential distribution, and we have calculated the distance dpow between F real

v (k)
and the estimated F pow

v (k; α, kmin), and the distance dexp between F real
v (k) and

the estimated F exp
v (k; β, kmin). When dpow < dexp, we say that the power-law

distribution fits better than the exponential distribution. We use this criteria to
state that a family of formulas has a scale-free structure. It is also important to
compare the value of kmin obtained in each estimation, noted kpow

min and kexp
min. A

big value of kmin means that we need to discard a lot of values of F real(k) to fit
the distribution, and it must be taken as a point against the fitted distribution.
Also a value of α far away from the interval [2, 3] must be read as a point against
the scale-free structure.
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Table 1. Most likelihood values of α and β estimated for a power-low and an expo-
nential distribution. In bold we remark the smallest distance between the real and the
fitted distributions. We also report the total number of variable occurrences n, mean
E[V ] and variance Var[V ], and the respective values for clause sizes.

Variables (V)

Power-law Exponential

Family #inst n E [V ] Var [V ] α kpow
min dpow β kexp

min dexp

cmu 3 16678 7.95 12.11 3.49 5 0.072 0.224 4 0.176

een 12 739744 7.60 13.26 2.67 10 0.043 0.054 15 0.136

fuhs 2 73486 9.05 14.56 2.79 62 0.075 0.181 4 0.158

goldb 11 114038 21.02 88.71 2.05 21 0.042 0.003 100 0.204

grieu 9 6914 364.21 42.23 1.77 100 0.577 0.004 100 0.538

ibm 38 4985723 10.75 23.97 2.63 7 0.027 0.017 45 0.083

manol 59 7827736 6.93 16.24 2.95 57 0.059 0.017 76 0.033

mizh 13 725644 12.49 148.12 4.09 15 0.172 0.034 22 0.247

narai 6 9642548 9.72 16.38 3.85 5 0.152 0.109 1 0.347

palac 2 298266 10.82 60.55 1.84 20 0.087 0.003 100 0.074

post 10 12906872 7.90 44.15 2.57 12 0.132 0.135 1 0.334

schup 7 2196731 8.09 12.40 2.59 41 0.120 0.063 9 0.182

simon 12 798804 7.78 11.96 2.53 14 0.028 0.022 50 0.065

uts 10 1420464 13.01 74.70 1.76 69 0.111 0.003 75 0.088

velev 60 8442829 88.31 379.04 1.82 13 0.030 0.003 87 0.287

random 40 400000 12.75 3.57 18.65 24 0.019 0.777 25 0.008

SAT’08 100 27964721 13.30 113.48 2.29 12 0.051 0.003 73 0.254

Clauses (C)

Power-law Exponential

Family #inst m E [C] Var [C] α kpow
min dpow β kexp

min dexp

cmu 3 53769 2.46 1.21 5.35 3 0.126 1.778 3 0.048

een 12 2278059 2.47 0.69 3.80 4 0.044 2.420 3 0.046

fuhs 2 256742 2.59 0.82 4.89 5 0.041 2.182 3 0.020

goldb 11 710559 3.37 1.46 10.48 5 0.158 4.803 5 0.008

grieu 9 961030 2.62 0.76 8.54 26 0.108 3.878 3 0.020

ibm 38 21084555 2.54 1.57 3.77 6 0.023 0.375 4 0.032

manol 59 23244626 2.33 0.47

mizh 13 3036234 2.98 0.91 1.58 1 0.328 0.408 1 0.334

narai 6 37639556 2.49 2.05 3.33 2 0.088 1.113 2 0.090

palac 2 1274356 2.53 9.33 1.71 4 0.116 1.055 2 0.116

post 10 42441234 2.40 1.39 3.33 2 0.143 2.884 33 0.053

schup 7 6947242 2.56 1.36 4.30 4 0.093 2.585 3 0.046

simon 12 2675233 2.32 0.90 3.76 4 0.033 0.498 5 0.026

uts 10 7101806 2.60 11.56 3.63 2 0.114 0.004 35 0.116

velev 60 253221473 2.94 9.01 3.35 72 0.042 0.021 28 0.040

random 40 1700000 3.00 0.00

SAT’08 100 140942860 2.64 5.68 3.03 17 0.054 0.074 10 0.068
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Fig. 1. Plotting of F real
v (k) and F real

c (k), and their respective power-law (characterized
by α) and exponential (characterized by β) estimations, for some families of formulas.
In families where all clauses are small, we have avoided the representation of F real

c (k).
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SAT Race’08 random 3-CNF
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Fig. 2. Plotting of F real
v (k) and F real

c (k), and their respective power-law and expo-
nential estimation, for the formulas of the SAT’08 Race and random 3CNF

2.2 Results of the Analysis

We have selected a set of families of formulas from the industrial category of
the 2002–2005 and 2007 SAT Competitions, and the 2006 and 2008 SAT Races.
For these families, Table 1 presents the estimations of the parameters of the
distributions power-law and exponential for variables occurrences and clause
sizes. We have also extended the study to a family of 40 random 3-CNF instances
of 104 variables in the phase transition point; and to the heterogeneous family
composed by the 100 instances used in the latest SAT Race 2008 competition.
In Table 1 we also include information about the sum of the number of variables
and clauses of all formulas of the family, and the average number of occurrences
of variables and sizes of clauses, as well as their variance. For the computation of
kmin (the value where the data starts to fit the distribution) we impose a limit
value of 100. We consider that, if the distance d between the observed data and
the distribution is smaller than 0.1, then it is plausible that the data follows
that distribution. To conclude that the family follows a power-law distribution
we also require that dpow < dexp and the value of kmin to be small. For the
families where all clauses have size at most 3, we obviate the study for the
distribution of clause size.

In Figure 1 we plot the distributions of some families, as well as the estimated
power-law and exponential distributions that best fit them. In Figure 2 we also
plot the distributions for the heterogeneous family of the SAT Race 2008, and
the random 3-CNF formulas.

We can conclude that for the families: CMU, EEN, FUHS, GOLDB, IBM,
SIMON and VELEV, the number of variable occurrences follow a power-law
distribution. In the case of clause size, only the families EEN, IBM and NARAI
seem to follow a power-law distribution. Therefore, in general, the variable oc-
currences follows a power-law distribution in more families than the clause size.
The value of α for variables is also smaller than the α for clauses, that tends to
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fall out of the interval [2, 3]. We think that the explanation for this phenomena
is that, when the formulas are encoded, people try to avoid the use of very big
clauses, since they weak the propagation power in SAT solvers. We also observe
that some families, like MANOL, do not seem to follow a particular distribution.

In the random 3-CNF formulas, the exponential distribution fits better than
the power-law, although the distance dpow is surprisingly small. If we plot the
distribution for each formula of the family, we see that it is very homogeneous,
without the typical peeks that we find in industrial data. Moreover, the value of
α = 18.65 is big enough to discard a power-law distribution.

Looking at the plot of the SAT Race’08 heterogeneous family, we see that the
data fits better the power-law distribution than other homogeneous families. In
this case, we have to take into account that the addition of so many instances,
by a kind of law of the big numbers, tends to make distributions smoother. The
values of α that we get are α = 2.29 for variable occurrence and α = 3.03 for
clause size. As in some homogeneous families, we observe that the value of α in
the case of clause size is bigger than the value of α for variable occurrence, and
falls in the limit of the interval [2, 3].

3 Instantiating Variables in Industrial Instances

Albert, Jeong & Barabási [AJB00] studied the effect of failure and attack ac-
tions in the diameter of an Erdös-Rényi graph and of a scale-free graph. The
diameter is the average minimum distance between two nodes, failure consists
in removing a certain percentage of randomly selected nodes, and attack con-
sists in removing the nodes following a certain heuristic (e.g. those nodes with
higher arity). They observed that failure and attack have the same effect on
Erdös-Rényi graphs (after removing 5% of the nodes, the diameter increases in
the same way independently of how nodes are chosen). However, while failure
almost does not change the diameter of scale-free graphs, attack increases the
diameter even more than in the case of an Erdös-Rényi graphs. Considering that
Internet is a scale-free graph, they conclude that it is robust against random
failures of the servers, but it is specially susceptible to terrorism attacks.

In the case of SAT solvers, the instantiation of variables removes nodes in the
bi-partite graph representing the formula (e.g. the instantiation v = true removes
the variable-node v, and all those clause-nodes c, where c contains the literal v).
Since classical random SAT instances are similar to Erdös-Rényi graphs, we can
expect the same behavior on random formulas, when we instantiate variables
randomly, as when we use some heuristics. However, in scale-free industrial in-
stances, we expect a very different effect.

We have conducted a series of experiments where we instantiate up to 10% of
the variables of some families of formulas, and we analyze the decrease in size
of the formula. Notice that we only instantiate variables, i.e., we do not apply
any local inference like unit propagation, and we do not discard the obtained
subformula, even if it contains the empty clause. In Section 4 we perform a
similar experiment using real SAT solvers.
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Fig. 3. Percentage of the formula-size decrease as a function of the percentage of in-
stantiated variables. For the 3 lines of each family, the upper one corresponds to the
random strategy, the middle to the Jeroslow-Wang, and the lower to the most-frequent
strategy.

We experiment with the IBM and the EEN families –the ones with a more
clear scale-free structure–, with the MANOL family –that does not seem to follow
a neat distribution–, and with the random 3CNF set –that we know have an
absolutely different structure–. Apart from the random selection of variables, we
have analyzed the use of the most-frequent variable2 and of the Jeroslow-Wang
heuristics [JW90]. Results are shown in Figure 3. We observe that instantiating
randomly selected variables has the same effect in all families: after instantiating
10% of the variables, the size of the formula decreases between 16% and 19%.
The size-decrement seems to be proportional to the percentage of instantiated
variables, i.e. the slope seems to be constant and the same in all families.

For the other two heuristics (most-frequent variable and Jeroslow-Wang), the
size-decrease in random formulas is bigger, but not so much as in the indus-
trial formulas: in random formulas, after instantiating 10% of the variables, the
decrease is around 30%, whereas in industrial formulas the decrease is around
50%. Moreover, the size-decrease seems to be constant in the case of random
formulas, whereas in industrial formulas, the use of these heuristics speeds up
the size-decrease, but at a certain point, when we have instantiated around 1%
or 2% of the variables, the slope decreases substantially. Both heuristics seem
to have the same effect, although the most-frequent heuristic is always a little
better (bigger decrease) than the Jeroslow-Wang heuristic.

The natural question is now: after instantiating a significant part of the vari-
ables, is the formula still scale-free? We have studied the formulas that we
get after instantiating some variables of the IBM formulas following the three

2 The most-frequent heuristic consists in selecting the variable with a higher number
of occurrences, and the polarity with it appears more times.



On the Structure of Industrial SAT Instances 137

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000

IBM orig.
random 10%
Jeroslaw 1%

Most freq. 1%
Jeroslaw 2%

Most freq. 2%
Jeroslaw 5%

Most freq. 5%
Jeroslaw 10%

Most freq. 10%

Fig. 4. Function Fv(k) for IBM formulas where 1%, 2%, 5% and 10% of the variables
have been instantiated using the random, Jeroslow-Wang and most-frequent strategies

Table 2. Analysis of the partially instantiated IBM formulas

random Jeroslow-Wang Most freq.
Power-law Exponential Power-law Exponential Power-law Exponential

α dpow β dexp α dpow β dexp α dpow β dexp

0% 2.63 0.027 0.017 0.083 2.63 0.027 0.017 0.083 2.63 0.027 0.017 0.083
1% 2.56 0.027 0.017 0.078 2.72 0.017 0.046 0.036 2.79 0.020 0.052 0.034
2% 2.57 0.025 0.017 0.076 2.82 0.015 0.083 0.026 2.89 0.012 0.093 0.030
5% 2.59 0.020 0.018 0.075 3.27 0.029 0.218 0.019 3.39 0.029 0.250 0.014

10% 2.62 0.021 0.019 0.077 5.79 0.023 0.407 0.014 5.90 0.023 0.510 0.021

heuristics. Results are shown in Figure 4. As we can see, the random instantia-
tion of variables has almost no effect on the probability distribution of variable
occurrences fv(k). However, heuristics tend to remove variables with high num-
ber of occurrences. As a consequence, after partially instantiating around 5% of
the variables, the formula looses its scale-free property, and seems to follow an
exponential distribution (see Table 2).

4 Formulas during SAT Solvers Search

We want to answer the question of what kind of formula a state-of-the-art SAT
solver sees during the search. The question is important because, if we implement
solvers specialized in industrial instances (assuming that they are scale-free)
during the execution of the solver, when some variables are already instantiated,
we can be dealing with a not scale-free formula anymore. This means that, when
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Fig. 5. Study of IBM formulas during the search. Left: with minisat, right: with satz.

a significant part of the variables are instantiated, the solver would do better
changing its strategy.

Any complete SAT solver will backtrack immediately once it checks the cur-
rent partial assignment is not consistent (in contrast to the setting in section 3),
and second, state-of-the-art SAT solvers specialized on industrial instances aug-
ment the formula during search by adding new clauses, due to the learning
mechanism they incorporate.

Wehavemodified two very different SATsolvers,minisat [ES03]and satz [LA97].
Apart from the different heuristics and data structures these solvers incorporate,
minisat applies a learning mechanism while satz does not.

We conducted experiments to answer the previous stated question, execut-
ing the solvers on each instance of the IBM family. We selected this family as
the representative of scale-free formulas and random formulas as non scale-free
formulas. The results reflect the average behavior of the family.

First, we study the formula under the longest partial assignment after 1000
seconds of search. Second we study, both the formula under the current partial
assignment and the complete formula (original formula plus learned clauses)
after 200000 decisions.

Figure 5 (left), shows the results of our experimentation on the IBM instances
with minisat. As we can see, the scale-free structure is preserved in all cases. At
maximal depth the distribution of frequencies is almost the same as in the origi-
nal formulas. This seems to contradict the effect of partial assignments described
in previous section but we have to remark that here the partial assignment is
consistent. Moreover, it seems that the effect of the learned clauses makes the α
exponent decrease.

We have repeated the same experiment with the same IBM formulas but after
at most one hour of execution time of satz. Recall that here apart from applying
a different heuristic we have not learned clauses. In Figure 5 (right), we can see
that at the deepest assignments the formulas are still scale-free, although the
exponent has been increased.
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Fig. 6. Study of random formulas during the search

Therefore, very different SAT solvers seem to preserve the scale-free nature of
formulas during their execution. Now the question is, what happens if we start
with a random formula? For our experiment we have generated 50 random 3-
CNF formulas of 500 variables at the phase transition point. Figure 6 shows the
results. At the deepest decisions, after 1000 seconds, we see that the formulas
still show an exponential decay with the same β as in the original formulas.
However, after 2 · 106 decisions the formulas show a clear scale-free structure
due to the addition of the learned clauses. As in the first experiment with the
IBM family, the exponent α is smaller for the uninstantiated formula. To explain
this phenomenon recall that the solvers like minisat, decide on the most active
variables in learned clauses and learn clauses that contain decided variables. This
creates an effect of rich get richer that has been proposed as a mechanism for
creation of scale-free networks [BA99].

5 Conclusions

We have shown that most of the industrial formulas have a scale-free structure
whereas random formulas have an Erdös-Rényi graph structure. This difference
makes heuristics to perform better in industrial formulas than in random formulas.

We have observed that heuristically guided partial assignments (without guar-
anteeing consistency) make frequency distributions decay faster, destroying the
power-law tail after instantiating 5% of the variables. However, if the assignments
are consistent, as during the search in a SAT solver, we can instantiate up to
70% variables preserving the power-law tail (although increasing the exponent).
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Finally, we have observed that the learning mechanism incorporated in mod-
ern SAT solvers tends to preserve the power-law distribution and even decrease
its exponent.
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