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Abstract. In this paper we extend the notion of multi-unit combinabreverse

auction by adding a new dimension to the goods at auctiorudh a new type of
combinatorial auction a buyer can express transformgbiitationships among
goods: some goods can be transformed into others at a trarafon cost. Trans-
formability relationships allow a buyer to introduce hifonmation as to whether
it is more convenient to buy some goods or others. We intredwch informa-

tion in the winner determination problem (WDP) so that ndi/atoes the auc-
tion help allocate the optimal set of offers —taking into@aat transformability

relationships—, but also assesses the transformabilagioaships that apply. In
this way, the buyer finds out what goods to buy, to whom, and whasforma-

tions to apply to the acquired goods in order to obtain theired ones.

1 Introduction

Since many reverse (or direct) auctions involve the buyargsélling) of a variety of
different assets, combinatorial auctions [3, 7] (CA) haeently deserved much atten-
tion in the literature. In particular, a significant amouftwrk has been devoted to
the problem of selecting the winning set of bids [12,2]. Nibedess, to the best of
our knowledge, while the literature has considered theipititg to express relation-
ships among goods on the bidder side —such as complemgratadttransformability
(e.g. [4],[13])—, the impact of the eventual relationsh@msong the different assets to
sell/buy on the bid-taker side has not been convenientlyesded so far.

Consider that a company devoted to the assembly and repafrprersonal comput-
ers (PCs) requires to assembly new PCs in order to fulfil hisashel. Figure 1 graphi-
cally represents the way a PC is assembled. Our graphicatipésn largely borrows
from the representation of Place/Transition Nets (PTN) &jparticular type of Petri
Net. Each circle (corresponding to a PTlace represents a good. Horizontal bars
connecting goods represent assembly/disassembly apesalikewisetransitionsin a
PTN. Assembly and disassembly operations are labelled avitmdexed, and shall



be referred to agansformability relationshipsin particulart; and¢, represent disas-
sembly operations whereagsandt, stand for assembly operations. An arc connecting
a good to a transformation indicates that the good isngnt to the transformation,
whereas an arc connecting a transformation to a good iredi¢hat the good is avut-

put from the transformation. In our example, a motherboard isngat goodto o,
whereas CPU, RAM, USB and empty motherboard argput goodof ¢5. Thus,ts
represents the way a motherboard is taken into pieces ¢eisdded). The labels on the
arcs connectingput gooddo transitions, and the labels on the arcs connedtirtgut
goodsto transitions indicate the units required of eagbut goodto perform a transfor-
mation and the units generated pertput goodrespectively. In figure 1, the labels on
the arcs connected tg indicate that 1 motherboard is assembled from 1 CPU, 4 RAM
units, 3 USBs and 1 empty motherboard at a cost of 8 EUR. Eankfrmation has an
associated cost every time it is carried out. In our exangsdsembling a motherboard
viats costs 8 EUR, while taking a motherboard into piecesyieosts 7 EUR.

Fig. 1. Graphical representation of an RFQ with t-relationships.

Say that the company’s warehouse contains most of the coamg®icomposing
each PC. However, there are no components to assemble inogings. Therefore, the
company would have to start a sourcing [5] process to acguich components. For
this purpose, it may opt for running a combinatorial revensetion [13] with qualified
providers. But before that, a professional buyer may reasit he faces a decision
problem: shall he buy the required components to asseméie th house into moth-
erboards, or buy already-assembled motherboards, or oatrioced purchasand buy
some components to assemble them and some already-assenatlerboards? This
concernis reasonable since the cost of components plsdramation (assembly) costs



may eventually be higher than the cost of already-assenmbtglderboards. Hence, the
buyer requires a combinatorial reverse auction mechariabptovides: (a) a language
to express required goods along with the relationshipshtbiatamong them; and (b) a
winner determination solver that not only assesses whatgjmobuy and to whom, but
also the transformations to apply to such goods in order taiolhe initially required
ones. In this paper we try to provide solutions to both issues

Firstly, since commercial e-sourcing tools [11] only allbwyers to express fixed
number of units per required good as part of the so-c&leguest for QuotatiofRFQ),
we have extended this notion to allow for the introductionrafisformation relation-
ships (-relationshipshenceforth) among goods. Thus, we introduce a formal digfinit
of aTransformability Network Structuf@NS) that largely borrows from Place/Transition
Nets [6], where transitions stand for t-relationships aladgs stand for goods.

Secondly, we extend the formalisation of multi-unit condtarial reverse auction
(MUCRA), departing from the model in [12], to introduce tedmrmability by applying
the expressiveness power of multi-set theory. Additignale provide a mapping of our
formal model to integer programming that takes into accauatationships to assess
the winning set of bids along with the transformations tolgp order to obtain the
buyer’s initial requirements.

Finally, we empirically analyse how the introduction ofetationships affects scal-
ability with respect to a classical multi-unit combinatdrieverse auction.

The paper is organised as follows. In section 2 we providesdomekground knowl-
edge on place/transition nets and multi-sets. In sectioe present a formal model of
multi-unit combinatorial reverse auctions with t-relaiships among goods, along with
its winner determination problem and its mapping to intggegramming. Section 4
is devoted to illustrate some preliminary, experimentaltes. Finally, section 5 draws
some conclusions and outlines directions for future retear

2 Background

In this section we introduce some background knowledge oriti-sets and
place/transition nets.

A multi-setis an extension to the notion of set, considering the pdigibif mul-
tiple appearancesf the same element. Aulti-set M x over a setX is a function
Mx : X — IN mappingX to the cardinal numbers. For anye X, Mx(z) € IN
is called themultiplicity of 2. An elementz € X belongsto the multi-setM x if
Mx (z) # 0 and we writexr € M x. We denote the set of multi-sets ovErby X ;s.
Given the multi-sets\g, M’s € Suss, their union is defined asmMs U M'g(z) =
Mg(x) + M'g(x).

Following [6], aPlace/Transition Net Structuf®TNS) isa tupléV = (G, T, A, E)
such that: (1)G is a set ofplaces (2) T is a finite set oftransitionssuch thatP N
T =0;,B3)AC (GxT)U(T x@G)isasetofarcs (4) F : A — INT is an
arc expressiorfunction. A markingof a PTNS is a multi-set ovet. A PTNS with a
given initial markingM, € G s is denoted byPTN = (N, M,) and it is called
a Place/Transition Ne{PTN). The graphical representation of a PTNS is composed
of the following graphical elements: places are represeatecircles, transitions are



represented as bars, arcs connect places to transitionsnaitions to places, an
labels arcs with values (see figure 1).

A stepis a non-empty and finite multi-set ovér A stepS € Ty s is enabledin a
markingM € G s if the following property is satisfiedlg € G ), s E(g,1)S(t) <
M(g).

Let stepS be enabled in a marking1,. Then,S may occur, changing theM;
marking to anotheM, € G s marking. SettingZ(g,t) = E(t,g9) — E(g,t) Mz is
expressed a¥lg € G Ma(g) = Mi(g) + D5 Z(9,1)S(t). Moreover, we say that
marking M- is directly reachabldrom markingM; by the occurrence of step, and
we denote it byM; [S > M.

A finite occurrence sequencea finite sequence of steps and markings{S; >
Ma ... My[S, > My 41 suchthatn € N andM;[S; > M1 Vi € {1,...,n}. M,
is called thestart marking while M,,, is called theend marking The firing count
multi-set/C € T),s associated to a finite occurrence sequence is the union i all
stepsK = Uic(12,....ny Si-

A marking M” is reachablefrom a marking M’ iff there exists a finite occur-
rence sequence havinyt’ as start marking and1” as end marking. We denote it
asM'[S; ... S, > M”, wheren € IN. Furthermore the start and end markings are
related by the following equation:

Yge G M'(g) = +ZZg, 2)

tekl

The set of all possible markings reachable from a marltigis called itsreacha-
bility set and is denoted aB(N, M').

In [10], Murata shows that in aacyclicPetri Net a marking\” is reachablefrom
a markingM’ iff there exists a multi-setC € T);s such that expression 1 holds (which
is equivalent to say that the state equation associated TdNaaBmits an integer solu-
tion). As a consequence, when a Petri Net is acyclic, thehadaility setR(N, M') is
represented by

R(N,M') = {M" | 3K € Tuys : Vg € GM"(g) = M'(9)+>_ Z(g,)K(1)}. (2)

tell

3 MUCRA with t-Relationships

3.1 Transformability Network Structures

A Transformability Network Structure describes the diffierways in which our busi-
ness is allowed to transform goods and at which cost. Moradtly, atransformability
network structurgTNS) is a pairS = (N, Cr), whereN = (G, T, A, E) is a Place-
Transition Net Structure and’r : T — R™ is a cost function. The cost function
associates iansformation costo eacht-relationship In this context we associate: (1)
theplacesin G to a set of goods to negotiate upon; (2) transitionsin 7" to a set ot-
relationshipsamong goods; (3) theirected arcdn A along with their weightd to the
specification of the number of units of each good that areeeitbhnsumed or produced
by a transformation.



The values of”' and the values oF label respectively transitions (between paren-
thesis) and arcs in figure 1.

In the following example, we formally specify the Transfaility Network Struc-
ture S = (N, Cr), graphically represented in figure 1: (& = {PC, Motherboard,
Case, Screen, Kb&Mouse, CPU, RAM, Empty Board, YSR) T' = {t1,t2,t3,t4};
3) A = {(PC,t1),(t1, motherboard), (t1, case), (t1, screen), (t1, kb&mouse),
(motherboard, ta), (ta, CPU), (t2, RAM), (t2, EmptyBoard), (t2,USB),...}; (4)
E(PC,t;) = 1,E(t1, motherboard) = 1,E(t1,case) = 1,E(ty,screen) = 1,
E(t1, kb&mouse) = 1, E(motherboard,ts) = 1, E(te, CPU) = 1, E(ts, RAM) =
47 E(ﬁg, EmptyBoard) =1, E(tQ, USB) =3,... (5) CT(tl) =5 EUR,CT(tQ) =7
EUR,Cr(t3) = 8 EUR,Cr(t4) = 7T EUR.

Given a Place/Transition n&®T'N = (N, M,), if we considerM, as a good
configuration,PT'N defines the space of good configuratiseachableby applying
tranformations taM,,. The application of tranformations is obtained by firingisa
tions on PT'N. Hereafter, we consider the conceptsminsformation stepenabling
of a transformation stepccurrence of a transformation stegmdtransformation se-
quenceas the counterparts to, respectivediep enabling of a stepoccurrence of a
step andfinite occurrence sequenoa aPT N.

We also need to define the concept of transformation coshgakto account the
cost of transforming good configuratioht into another good configuratiahM; €
R(N, M) by means of some transformation sequefice (Si,...,S,). The fir-
ing count multi-set associated foaccounts for the number of times a transition in the
sequence is fired. Thus, the cost of transforming good carafligun M into good con-
figuration M amounts to adding the transformation cost of each trangitithe firing
count multi-setC associated td'. We assess the transformation cost associatdda®
Crs(J) = > ses 2oes CT(t)S(t) = D ,cxc Cr(t)K(t). Notice that the transforma-
tion cost of a transformation sequence only depends oniitg flount multi-set.

3.2 Winner Determination Problem (WDP) for MUCRA with t-rel ationships

In a classic MUCRA scenario, an RFQ can be expressed as asetlfi € Gps
whose multiplicity indicates the number of units requiredt good. In the example of
figure 1, ifd (motherboard) = 1,U(CPU) = 1,U(RAM) = 4,U(EmptyBoard) =
1,U(USB) = 3, U would be representing a buyer’s need for 1 motherboard (M), 1
CPU (C), 1 empty board (E), 4 RAM units (R), and 3 USB (U) corioex Nonethe-
less, since t-relationships hold among goods, the buyerhmaag different alternatives
depending on the bids he receives. If we represent each @drasti-set5 € Gy;g,
whose multiplicity indicates the number of units offered geod, the buyer might, for
example, have the following alternatives:

1. My={M,C,R,R,R,R,E,U,U,U}. Buy all items as requested.

2. My = {M, M}. Buy 2 motherboards, and then disassemble 1 motherboard int
1 CPU, 4 RAM units, 1 Empty Board, and 3 USB connectors at €astts) =
TEUR. The overall cost of the purchase results from the costefcquired units
plus the additional transformation cost.



Notice that both alternatives allow the buyer to obtain higdl requirement, though
each one at a different cost. The goal of the WDP is to asseatalbrnative to select.

We begin by defining the set of possible auction outcomeserGivset of bidd3,
a possible auction outcome is a péi/, J), whereW C B, andJ = (Sy,...,S,)
is a transformation sequence, such that the applicatiohtof PTN = (N, Ugew B)
allows a buyer to obtain a good configuration that fulfils guirements id{. More
formally, the set of possible auction outcomes is definéd as

Q={W,J),W CB|3XeGus (|J BIJ>x.x2u} 3)
BeW

To each auction outcon{@V, J) we associate aauction outcome costs follows:

Co(W,.J) =Y Cp(B)+ Crs(J) (4)
Bew

whereCp : B — R* stands for the bid cost function.

Definition 1 (Winner Determination Problem). Given a set of bid#3, an RFQU €
Gus, and a transformability network structur® = (N, Cr), the winner determi-
nation problem for a MUCRA with t-relationships amounts 8s@ssing the auction
outcomeWert  jort) ¢ (2 that minimises the auction outcome cost functitn For-
mally,

opt opty _ :
(WePt) JoPt) arg(Wlfljl)IéQCo(VV, J) (5)

3.3 Mapping to Integer Programming

In section 2, we defined the reachibility set according toatign 2 for the case of
acyclic Petri nets. Thus, if we restrict to the case of acy€NS, a finite occurrence
sequence/ is completely specified by its firing count vectr Then, we can rewrite
expressions 3 and 4 respectively as follows:

2 ={(W,K),W C B,K€Tys|3IXcGus (| J BIKL>X,X2U}. (6)
Bew

Co(W,K) = > Cg(B) + Crs(K) (7
Bew
whereCrs(K) = >, . Cr(t)K(t). Hence, the WDP when considering acyclic TNSs
can be restated, from equation 5, to assess:

opt opty _ :
(WP ) = arg min | Co(W,K) (8)

We can model the problem of assess{fij°r?, K°Pt) as an Integer Programming
problem. For this purpose, we need to associate integexhlas to the elements in: (1)
a generic subset of bid$i{ C B); and (2) a generic firing count multi-seg).

3 Assuming free disposal.



In order to represei’ we assign a binary decision variahig to each bid3 € B,
standing for whetheB is selected{s = 1) or not ez = 0) in W. A multi-set is
uniquely determined by its mapping functitih: 7 — IN. Hence, we represent a multi-
setKC € Ty s by considering an integer decision variablefor eacht € T'. Eachg,
represents the multiplicity of elementn the IC multi-set. Thus, the translation into
integer programming of expression (8) becomes:

min[y_ xpp(B)+ ) qie(t)] 9)

BeB teT

subject tor € {0,1}. Notice that leaving the;(t € T") decision variables unbounded
is utterly unrealistic because it is equivalent to say thattuyer has got the capability
of applying as many transformations as required to fudfiln practice, a buyer’s pro-
duction capacities are constrained, and therefore it Istigato assume that the number
of in-house transformations that he can apply are constaidence, we add the fol-
lowing constraints to equation 9t € T ¢; € {0, 1, ..., max; }, wheremax; € IN.

Besides, we capture the side constraints enforcing thaleeted bids, along with
the transformations applied to them, fulfilby translating expression 6 into linear pro-
gramming. We consider a set of PTNs such tR&tN = (N, £), whereL = Upcw B.
Moreover, we consider all the finite occurrence sequenceBToN = (N, L) that
transformZ into a configuration that at least fulfilé. Under the hypothesis of being
acyclic we can express the reachability setas follows:

Vg e G M(g) = L(g) + Y Z(g,)K(t). (10)

tell

Next, we select the elements in the reachability et that at least fulfil/:

Vg€ G L(g)+ Y Z(g,)K(t) > U(g) (11)

tell

Hence, substituting marking by > ;. ; x58(g) we finally obtain the following side
constraints:
Vge G Y wsBlg)+ > Z(g.t)a > Ulg).

BeB teT

4 Experiments

The main purpose of our preliminary experiments is to eroglly evaluate the benefits
and drawbacks of introducing transformability relatioipsh With this aim we com-
pared the scalability of the MUCRATR solver with respect ttraditional MUCRA
solver on large instances.

The solvers for the MUCRATR WDP and MUCRA WDP have been dgwedb
with the aid of ILOG's[1] CPLEX 9.0. The benchmark has beeneayated with the
aid of MATLAB 7.0 [9]. The solver for MUCRA's WDP uses a staté-the-art Integer
Programming formulation, that exploits the analogy of atirunhit combinatorial auc-
tion WDP with a well known optimisation problem: the Multi @ensional Knapsack
Problem (MDKP). For a complete explanation refer to [3].



A problem instance fora MUCRA is composed of a a multi-uni€RB set of multi-
unit multi-item bids, whereas a MUCRATR additionally needdNS. Thus, firstly
we built some problem instances for the MUCRATR and we solyessn with the
MUCRATR solver. Next, we solved the very same instances thighMUCRA solver
considering only bids and RFQ.

In [8], Leyton-Brown specifies an algorithm to create MUCAtisnces whose pur-
pose is to test WDP algorithms. We have adapted his algotithgenerate MUCRA
instances. Itis well known from [13] that a MUCRA is the duake to a MUCA.

The existence of a TNS has led us to change some aspects ohtBybwn's al-
gorithm. Firstly, instead of assigning an independentayerprice to each good, we
have to take into account the t-relationships connectirgigoWe assign goods’ prices
so that the sum of input good costs plus the transformatisheguals the sum of the
output good costsaapted price distribution Consider, for instance, the example de-
picted in figure 1: the default price distribution can getepoblem instances in which
a PC price is lower than its USB'’s prices, whereas our pripiolicy creates a sort of
equilibrium among prices. Next, we consider more realistiveight the average price
of each bid via a normal probability distribution insteadaofiniform one (concretely
we used a normal distribution with mean 1 and variance 0.1).

In the following we describe the parameter settings of oyreeiments. We per-
formed a single experiment in which the only parameter vayyvas the number of
bids generated, ranging from 1000 to 270000.

The number of negotiated items was set to 20, the maximum auwfhunits of
a single item that a buyer can ask for was set to 15. The maximumber of units a
bidder can offer for a single item was set to 20. The decayinbabilities employed to
generate the number of goods per bid and the number of ufidisedfper bit per item
were both set to 0.8. The number of t-relationships imposeong the goods was set
to 8.

Figure 2 depicts the results of this preliminary scalapii@st. Notice that we ob-
tained very similar results to a state-of-the-art solvet tthoes not take into account
t-relationships. Thus, we can conclude that the introdunadf t-relationships does not
suppose a significant time overload with respect to a tiauhlicombinatorial auction.

5 Conclusions and Future Work

In this paper we have presented a formalisation and an infFggramming solution
to the winner determination problem of a new type of multiteombinatorial reverse
auction that allows for expressing t-relationships on tingel side. Several advantages
derive from such a new type of auction. On the one hand, italla buyer to incor-
porate his uncertainty as to whether it is better to buy airedibundle of goods, or
alternatively buy some goods to transform them into the farones, or even opt for
a mixed purchase and buy some goods as required and soms tatertransformed.
This is achieved by introducing t-relationships among goiotb the winner determi-
nation problem. Therefore, not only does the winner deteation solver assess what
goods to buy and to whom, but also the transformations toyap@uch goods in order
to obtain the initially required ones. To the best of our kienlge, this is the first type of
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Fig. 2. Comparation of MUCRATR and MUCRA solvers for a normal distition.

auction aimed at also handling buyers’ uncertainty. As a sitkect, the introduction of
t-relationships is expected to increase competitivenessg bidders, and thus obtain
better deals since bidders that otherwise would not be ctngpare put together to
compete. Finally, our integer programming solution candaily implemented with
the aid of linear programming libraries.

We also performed some preliminary experiments comparingsolver for the
WDP for MUCRATR with a state-of-the-art MUCRA solver. We cpared the dif-
ferences in terms of solving time and auction outcome cdst. fEsults showed two
main issues: (1) there is no significant, computational loaer when solving a MU-
CRATR WDP with respect to solving a MUCRA WDP; and (2) there always sav-
ings in terms of costs when running a MUCRATR, being outsitagntbr small-medium
auction scenarios (less than 100 bids). Nonetheless enthidt the preliminary experi-
ments we have run deserve further elaboration in order totighly validate our early
hypothesis.

As future work, it is our aim to further elaborate along sevelirections. Firstly,
we aim at theoretically analysing the benefits in terms ofrgm/that our mechanism
provides with respect to multi-unit combinatorial reveasetions. Secondly, we believe
that it is important to research on the theoretical propertif our mechanism from a
mechanism design point of view. And finally, the complexitpmding in MUCRATRS
along with decision support mechanisms for bidders shadtbeied.
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