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Abstract

The aim of this paper is to develop an algebraic and logical study of
certain paraconsistent systems, from the family of the Logics of Formal
Inconsistency (LFIs), that are definable from the degree-preserving com-
panions of logics of distributive involutive residuated lattices (dIRLs) with
a consistency operator, the latter including as particular cases, Nelson
logic (NL), involutive monoidal t-norm based logic (IMTL) or Nilpotent
Minimum logic (NM). To this end, we first algebraically study enriched
distributive involutive residuated lattices with suitable consistency oper-
ators. In fact, we consider three classes of consistency operators, leading
respectively to three subquasivarieties of such expanded residuated lat-
tices. We characterise the simple and subdirectly irreducible members
of these quasivarieties, and we extend Sendlewski’s representation results
for the case of Nelson lattices with consistency operators. Finally we de-
fine and axiomatise the logics of three quasivarieties of dIRLs and their
corresponding degree-preserving companions, that belong to the family of
LFIs.

Keywords. Logics of formal inconsistency; paraconsistent logics; degree-
preserving logics; distributive involutive residuated lattices; Nelson lattices.

1 Introduction

The aim of this paper is to develop an algebraic and logical study of para-
consistent systems definable from the degree-preserving companions of logics
of distributive involutive residuated lattices with a consistency operator. The
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initial motivation comes from different considerations relating paraconsistency
and Nelson’s Constructive logic with strong negation.

In the 1950’s, Constructive logic with strong negation, nowadays commonly
known under the name of Nelson logic (even also called N3), was formulated
by Nelson and Markov as a result of certain philosophical objections to the
intuitionistic negation pointed out by Rasiowa [46], see also her celebrated book
[47, Ch. XII]. The criticism concerned its disadvantageous non-constructive
property, namely that the derivability of the formula ¬(α∧β) in an intuitionistic
propositional calculus does not imply that at least one of the formulas ¬α, ¬β
is derivable.

Although Nelson algebras, the algebraic semantics of Nelson logic developed
by Rasiowa [46, 47], were not originally presented as a subclass of residuated
lattices, in 2008 Spinks and Veroff [50, 51] have shown that Nelson logic is
indeed a substructural logic. More precisely, they show that Nelson algebras are
termwise equivalent to certain involutive, bounded, commutative and integral
residuated lattices, called Nelson (residuated) lattices. Busaniche and Cignoli
[7] have further contributed to the algebraic study of Nelson lattices.

A paraconsistent version of Nelson logic was first introduced in [1], where the
authors observe that the weaker system obtained from Nelson logic by deleting
the axiom schema ϕ→ (∼ϕ→ ψ) could be used to reason under inconsistency
without incurring in a trivial logic. Semantics for this paraconsistent version
of Nelson logic have been studied by Odintsov in [41, 42], who calls the logic
N4, in terms of what is known in the literature as Fidel structures [26] and
twist-structures [25, 54]. Later on, Busaniche and Cignoli [8] provided another
algebraic semantics under the umbrella of non-integral commutative residuated
lattices with involution. More recently, Carnielli and Rodrigues [15] show that
N4 is in fact equivalent to a paraconsistent logic of evidence, called BLE (for
Basic Logic of Evidence), for which they provide a semantics based on non
truth-functional evaluations.

Our initial interest also was on paraconsistent variants of Nelson logic, but
taking a different road. Indeed, our idea was to consider paraconsistent logics
from the family of Logics of Formal Inconsistecy (LFIs), introduced by Carnielli
and Marcos in 2000 (see e.g. [13]), and also studied e.g. by Avron [2, 3].
LFIs constitute a generalization of da Costa’s C-systems [21, 22]. The main
characteristic of these logics is that they internalize in the object language a
notion of consistency by means of a specific connective ◦ (primitive or definable)
in the following sense: although LFI’s are not explosive in general, meaning
that for at least a formula ϕ the theory {ϕ,∼ϕ} is consistent, the connective
◦ allows to recover the explosion property from a formula ψ and its negation
∼ψ whenever they are retained to be consistent, that is to say, whenever ψ
falls under the scope of ◦. In other words, even if {ϕ,∼ϕ} is not explosive,
{ϕ,∼ϕ, ◦ϕ} trivialises because ◦ϕ states that ϕ is consistent. It is worth noticing
that, in fact, Carnielli and Rodrigues have already introduced in [15] a LFI
based on paraconsistent Nelson logic N4, called LETJ (for Logic of Evidence
and Truth), by adding a consistency-like operation to BLE, their paraconsistent
and paracomplete Basic Logic of Evidence.

2



There is however another approach to define LFIs based on Nelson logic,
and more generally, on logics of involutive residuated lattices. In general, given
a quasivariety of bounded residuated lattices Q, its corresponding logic is given
by the usual (non-paraconsistent) truth-preserving notion of logical consequence
|=Q, that is, a formula ϕ follows from a set of formulas Γ, written Γ |=Q ϕ, if
e(ϕ) = 1 whenever e(ψ) = 1 for all ψ ∈ Γ and for all evaluations e on every alge-
bra A in the quasivariety Q. A weaker notion of consequence companion of |= is
the one called degree-preserving logical consequence, where a formula ϕ follows
from a set of formulas Γ, written Γ |=≤Q ϕ if e(ϕ) ≥ a whenever e(ψ) ≥ a for all
ψ ∈ Γ and for all evaluations e on every algebra A ∈ Q and every element a ∈ A.
This weaker notion of logical consequence, firstly introduced by [55], has been
further investigated in e.g. [28, 6, 27]. The point is that, as observed in [23] and
unlike the truth-preserving logics, the degree-preserving companions of a large
class of fuzzy logics (i.e. logics of varieties of prelinear residuated lattices), in
particular those with an involutive negation, are paraconsistent. Interestingly,
this is also the case of Nelson logic and, more generally, the logics of varieties
of involutive residuated lattices. However, although the degree-preserving com-
panions of these logics are paraconsistent, they are not expressive enough to
define a consistency connective ◦ in its own language (see [23, Corollary 2 and
Example 2] and Remark 3.6 below), and hence they are not LFIs. A further
step was made in [20] where the authors introduce a wide class of LFIs by first
expanding (non pseudo-complemented) fuzzy logics with a consistency opera-
tor while preserving the semi-linearity of the logics, and then considering their
corresponding degree-preserving companions.

Given all these antecedents, our initial aim was to follow a similar approach
to [20] to expand the language of Nelson logic by a primitive consistency con-
nective ◦, and to add axioms and rules encoding suitable postulates in such a
way that the corresponding degree-preserving companion of the logic arising in
this way be a LFI. However, in doing so, we realised that, essentially, all the
definitions and results we got for Nelson logic and lattices, as underlying log-
ical and algebraic framework, remain valid for the more general framework of
involutive, distributive (bounded, commutative and integral) residuated lattices
and their logics. Therefore, in this paper we have finally chosen to present our
algebraic and logical results in this more general setting and only particularise
to Nelson logic when necessary.

The organization of this paper is as follows. In Section 2, the basic notions
about varieties of involutive residuated lattices and their logics are recalled.
Section 3 contains the main algebraic results and it is divided into three sub-
sections, in each of which we will introduce a specific type of consistency op-
erator and we will present results concerning the so arising quasivarieties. In
Section 4 we consider the particular case of Nelson lattices with a consistency
operator, for which we prove structural results and their relation to Heyting
algebras with dual pseudocomplement. In particular, in Subsection 4.2 we also
present additional results on subdirectly irreducible and simple Nelson lattices
with a consistency operator. Section 5 considers the logical counterparts of the
classes of algebras studied in Section 3 and their associated Logics of Formal
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Inconsistency over the degree-preserving companions of the former. In the last
subsection of Section 5, we will point out that, besides being LFIs, our logics
are Logics of Formal Undeterminedness1 (LFUs) as well, and we analyze the
relationships between these two notions. We conclude in Section 6 collecting
some final remarks and our future work on the topics of this paper.

2 Preliminary notions

Recall that a commutative, integral, bounded residuated lattice, that we will
simply call residuated lattice, is an algebra A = 〈A,∧,∨, ∗,→, 0, 1〉 of type
(2, 2, 2, 2, 0, 0) such that 〈A, ∗, 1〉 is a commutative monoid, 〈A,∧,∨, 0, 1〉 is a
bounded lattice with least element 0 and greatest element 1, and such that the
following residuation condition holds: x ∗ y ≤ z iff x ≤ y → z, where x, y, z
denote arbitrary elements of A and ≤ is the order given by the lattice structure.
Since we assume the neutral element of the monoid reduct coincides with the
greatest element of its lattice reduct, we have that: x ≤ y iff x→ y = 1.

It is well-known that the class RL of residuated lattices forms a variety,
which is related to different and well-known varieties studied in substructural
and fuzzy logics literature. In particular, RL coincides with the variety of FLew-
algebras of [29]. According to the denotational conventions of [29], FL refers to
the “Full Lambek calculus”, which is the base system and associated algebras,
and subindices indicate several axiomatic extensions with properties such as
exchange (e) or weakening (w).

A residuated lattice is called distributive if its lattice reduct is a distributive
lattice, that is to say, if it satisfies the distributivity equations:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (Dist)

The variety of distributive residuated lattices will be denoted by dRL
A residuated lattice is called involutive if it satisfies the double negation

equation:

∼∼x = x, (Inv)

where ∼x is x→ 0. In every involutive residuated lattice, it is possible to prove
that x ∗ y = ∼(x→ ∼y) and x→ y = ∼(x ∗ ∼y). Clearly involutive residuated
lattices form a variety that will be denoted by IRL.2

The variety of distributive and involutive residuated lattices (dIRL-algebras
for short) will be henceforth denoted by dIRL.

In this paper we will also consider some proper subvarieties of dIRL, in
particular:

1A logic of Formal Undeterminedness is a paracomplete logic with a unary determinedness
operator that controls the law of the Excluded Middle, it is a sort of dual notion of a LFI [38].

2In the literature, involutive residuated lattices have been called Involutive FLew-algebras
(IFLew-algebras), see e.g. [33], and they are also known as the algebras of the affine Linear
Logic without exponentials, see e.g. [5]. In this paper we shall adopt the notation IRL-algebras
to denote them without danger of confusion.
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- The variety NL of Nelson residuated lattices, defined within IRL by the
so called Nelson equation:

(((x ∗ x)→ y) ∧ ((∼y ∗ ∼y)→ ∼x))→ (x→ y) = 1. (Nel)

- The variety IMTL of involutive monoidal t-norm based algebras (or IMTL-
algebras for short), which can be defined as the proper subvariety of IRL
(and of dIRL) of those algebras satisfying the prelinearity equation:

(x→ y) ∨ (y → x) = 1. (Prel)

- The variety NM of nilpotent minimum algebras (or NM-algebras for short),
which is identified as proper subvariety of IMTL by the following equation:

(x ∗ y → 0) ∨ (x ∧ y → x ∗ y) = 1, (NM)

or equivalently, as shown in [7], the subvariety of NL of those algebras
satisfying the prelinearity equation.

Notice that Nelson, IMTL and NM-algebras can be axiomatized directly within
IRL without explicitly requiring the distributivity equations to hold.

In Figure 1 we represent the graph of the above considered subvarieties of
RL together with their characteristic axioms.

2.1 Truth-preserving and degree-preserving logics of
residuated lattices

The substructural logic which is complete with respect to the variety of
(bounded, commutative, integral) residuated lattices is the so-called Full Lam-
bek calculus extended with exchange (commutativity) and weakening (inte-
grality), FLew, see e.g. [29].3 The language of FLew consists of denumerably
many propositional variables p1, p2, · · · , binary connectives ∧,∨,&,→, and the
truth constant ⊥. Formulas, which will be denoted by lower case greek letters
φ, ψ, · · · , are defined by induction as usual. Further connectives and constants
are definable; in particular, ¬φ stands for φ→ ⊥, > stands for ¬⊥, and ψ ↔ φ
stands for (ψ → φ)∧(φ→ ψ). A Hilbert-style calculus for FLew has the following
set of axioms:

Ax1. (φ→ ψ)→ ((ψ → γ)→ (φ→ γ)),

Ax2. (γ → φ)→ ((γ → ψ)→ (γ → (φ ∧ ψ))),

Ax3. (ψ ∧ φ)→ ψ, and Ax4. (ψ ∧ φ)→ φ,

Ax5. ψ → (ψ ∨ φ), and Ax6. φ→ (ψ ∨ φ),

3An equivalent system, called Monoidal logic, was previously defined and studied by Höhle
in [31].
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Figure 1: Diagram of main varieties of algebras in this paper and their relation-
ships.

Ax7. (ψ → γ)→ ((φ→ γ)→ ((ψ ∨ φ)→ γ)),

Ax8. (ψ&φ)→ (φ&ψ),

Ax9. (ψ&φ)→ ψ,

Ax10. (ψ → (φ→ γ))→ ((ψ&φ)→ γ),

Ax11. ((ψ&φ)→ (ψ → (φ→ γ)),

Ax12. ⊥ → ψ, and Ax13. ψ → >.

The only inference rule of FLew is modus ponens:

(MP)
ψ,ψ → φ

φ

The logic IRL of involutive residuated lattices is the axiomatic extension of
FLew with the double negation axiom

Ax14. ¬¬φ→ φ,

and the logic dIRL of distributive and involutive residuated lattices is the ax-
iomatic extension of IRL with the following axiom
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Ax15. ϕ ∧ (ψ ∨ χ)→ (ϕ ∧ ψ) ∨ (ϕ ∧ χ).

This paper will be mainly concerned with the logic dIRL and some of its
axiomatic extensions. Hence, distributivity will always be assumed to hold. In
particular we will consider Nelson logic NL obtained by extending dIRL by the
Nelson axiom:

Ax16. (((ψ&ψ)→ φ) ∧ ((¬φ&¬φ)→ ¬ψ))→ (ψ → φ).

The logic IMTL introduced in [24] is the axiomatic extension of the logic MTL
(the logic of the variety of prelinear residuated lattices) with the axiom (Ax14)
or, equivalently, obtained by extending IRL by the prelinearity axiom:

Ax17. (φ→ ψ) ∨ (φ→ ψ).

Finally, the nilpotent minimum logic NM, introduced also in [24], is the
axiomatic extension of IMTL by the axiom

Ax18. (φ&ψ → ⊥) ∨ (φ ∧ ψ → φ&ψ).

Equivalently, NM can be obtained as the axiomatic extension of Nelson logic NL
by the prelinearity axiom.

We will denote by `L the notion of proof for each logic L ∈
{IRL, dIRL, IMTL,NL,NM} defined as usual from the corresponding sets of ax-
ioms described above and the inference rule of Modus Ponens (MP).

Each of these logics L is algebraizable (as all of them are axiomatiac
extensions of FLew), and thus it has an equivalent algebraic semantics given
by the corresponding variety of L-algebras introduced before, and which brings
the same name. This means that the truth-preserving (finitary) consequence
relation |=L induced by the variety of L-algebras, defined as:

Γ |=L ϕ iff for every L-algebra A and every A-evaluation e,
if e(ψ) = 1 for every ψ ∈ Γ, then e(ϕ) = 1,

is such that `L is sound and complete w.r.t. |=L.
Moreover, for each such a logic L, in [28, 6] the authors introduce a

companion logic denoted L≤ , whose associated consequence relation, that will
be denoted as |=≤L , has the following semantics: for every set of formulas Γ∪{ϕ},

Γ |=≤L ϕ iff for every L-algebra A, every a ∈ A, and every A-evaluation e,
if a ≤ e(ψ) for every ψ ∈ Γ, then a ≤ e(ϕ).

By obvious reasons, L≤ is known as the companion logic of L preserving degrees
of truth, or the degree-preserving companion of L. It is not difficult to show that
L and L≤ have the same valid formulas (i.e. |=L ϕ iff |=≤L ϕ), and that, for every
finite set of formulas Γ ∪ {ϕ}, the following property holds:

Γ |=≤L ϕ iff |=L Γ∧ → ϕ,

where Γ∧ means γ1 ∧ . . . ∧ γk if Γ = {γ1, . . . , γk} (when Γ is empty then Γ∧ is
taken as >).
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As it regards to axiomatization, if L is an axiomatic extension of FLew, then
the logic L≤ admits a Hilbert-style axiomatization having the same axioms as
L and the following deduction rules [6]:

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ

(MP-r) if `L ϕ→ ψ, then from ϕ and ϕ→ ψ, derive ψ

Note that (MP-r) is a restricted form of the Modus Ponens rule, as it is only
applicable when ϕ → ψ is a theorem of L. Thus, although L and L≤ share the
same theorems, L≤ is in fact a weaker logic than L.

If the set of theorems of L is decidable, then the above systems of axioms
and rules provides a recursive Hilbert-style axiomatization of L≤.

In the more general case of L being not an axiomatic extension but a finitary
Rasiowa-implicative expansion of FLew (i.e. L may have new inference rules and
hence its algebraic semantics may be a sub-quasivariety of RL), the definition of
the degree-preserving companion L≤ keeps being the same as above. However,
the axiomatisation needs to be tuned. Assume the new inference rules of L are:

(Ri) from Γi derive ϕi,

for i ∈ I. Then, following the same idea of [6, Th. 2.12], one can show the
following generalised result about the axiomatisation of L≤.

Proposition 2.1. Let L be an expansion of FLew, with the above set of new
inference rules {(Ri)}}i∈I . Then L≤ is axiomatized by the axioms of L, the
inference rules (Adj-∧) and (MP-r), and the following restricted inference rules:

(Ri-r) If `L Γi, then from Γi derive ϕi

for each i ∈ I.

The proof is completely analogous to the one in [6] in the context of expansions
of MTL and it is omitted.

3 Distributive involutive residuated lattices ex-
panded by a consistency operator

Paraconsistency is the study of logics having a negation operator ∼ that are
not explosive with respect to that negation; that is to say, logics for which there
exists at least a formula φ such that the theory {φ,∼φ} does not entail any
other formula. Therefore, a paraconsistent logic is a logic having at least a
contradictory but non-trivial theory.

Among the plethora of paraconsistent logics proposed in the literature, the
Logics of Formal Inconsistency (LFIs) (see, for instance, [13, 12]), play an im-
portant role, since they internalize in the object language the very notion of
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consistency4 by means of a specific connective, primitive or not. This general-
izes the strategy of da Costa, who introduced in [22] the well-known hierarchy
of systems Cn , for n > 0. Briefly said, LFIs have a non-explosive negation
∼, as well as a (primitive or derived) consistency connective ◦ which allows to
recover the explosion law in a controlled way.

Let Σ be a propositional signature which contains a negation ∼ and a prim-
itive or defined unary connective ◦, let V = {p1, p2, . . .} be a denumerable set of
propositional variables, and let L = 〈Σ,`〉 be a Tarskian, finitary and structural
logic defined over Σ and V. Then, according to e.g. [12], we have the following
definition.

Definition 3.1. L is said to be a Logic of Formal Inconsistency with respect
to ∼ and ◦ if the following holds:

(i) ϕ,∼ϕ 0 ψ for some ϕ and ψ;

(ii) there are two formulas α and β such that

(ii.a) ◦α, α 0 β;

(ii.b) ◦α,∼α 0 β;

(iii) ◦ϕ,ϕ,∼ϕ ` ψ for every ϕ and ψ.

Moreover, in [12] the authors also consider the following stronger notion of
LFIs.

Definition 3.2. L is said to be a strong Logic of Formal Inconsistency with
respect to ∼ and ◦ if the following holds:

(i) if p and q are two different propositional variables then

(i.a) p,∼p 6` q
(i.b) ◦p, p 6` q
(i.c) ◦p,∼p 6` q

(ii) ◦ϕ,ϕ,∼ϕ ` ψ for every ϕ and ψ.

Our aim is to consider different possibilities of defining (strong) LFIs over
the degree-preserving logic companion of the logic dIRL. To this end, we will
first study suitable expansions of dIRL-algebras by a new consistency operator
◦ in such a way that their degree-preserving companions are LFIs. Actually, we
will consider three different axiomatic definitions of varying strength. Similar
ideas of having LFIs over a degree-preserving logic companion of other class of
algebras can be seen in [20] and [11].

Let A be an involutive residuated lattice and let ◦ : A → A be a unary
operation on A. With the above goal in mind, we consider different properties
we may ask to the ◦ operation in order to be a suitable consistency operator.

4A formula φ is named consistent in a paraconsistent logic when {φ,∼φ} is an explosive
theory.
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It is clear that the minimal properties to require to ◦ to be a consistency
operator are:

(◦0) ◦(1) = ◦(0) = 1

(◦1) x ∧ ∼x ∧ ◦(x) = 0

However, these properties turn out to be a weak specification in the sense that,
for a given distributive involutive residuated lattice A, one can define many
operations satisfying the above sets of properties, in particular, one can always
define a minimal operation by letting ◦(x) = 0 for all x ∈ A \ {0, 1}. A natural
way out is to require that ◦ provides the maximum value in A such that (◦1) is
satisfied and hence we can define ◦(x) to be the max{z ∈ A | x∧∼x∧z = 0}. In a
sense, such an operator, if it exists, can be considered as the least committed one
satisfying (◦1). This is formally achieved by considering the following additional
requirement:

(◦2) if x ∧ ∼x ∧ y = 0 then y ≤ ◦(x)

Since Boolean elements are the prototypical examples of consistent and
explosive elements, another reasonable property one can further require to ◦
is to be a Boolean operator, that is to say, that for each x ∈ A to require
◦(x) ∨ ∼◦(x) = 1. This can be achieved in at least two ways.

A first possibility is to define ◦(x) as the maximum, among the set B(A) =
{x ∈ A | x ∧ ∼x = 0} of Boolean elements of A, satisfying the condition (◦1)
above. In other words, to take ◦(x) = max{z ∈ B(A) | x ∧ ∼x ∧ z = 0}. This
amounts to replace (◦2) by the following two new conditions:

(◦3) if x ∧ ∼x ∧ y = 0 and y ∧ ∼y = 0 then y ≤ ◦(x)

(◦4) ◦(x) ∨ ∼◦(x) = 1

A second possibility is to consider an operator ◦ such that ◦(x) is, at the
same time, both the max{z ∈ A | x ∧ ∼x ∧ z = 0} and a Boolean element. In
fact this latter requirement differs from max{z ∈ B(A) | x ∧∼x ∧ z = 0}. This
is achieved by asking ◦ to satisfy the above conditions (◦0), (◦1), (◦2) and (◦4).

Actually, in this paper, we will study expansions of involutive residuated
lattices with these three types of consistency operators ◦. Namely, besides
satisfying (◦0) and (◦1), we will consider operators:

(i) additionally satisfying (◦2), that we will call maximal consistency opera-
tors (max-consistency operators for short), in Subsection 3.1;

(ii) additionally satisfying (◦3) and (◦4), that we will call maximal Boolean
consistency operators (maxB-consistency operators for short), in Subsec-
tion 3.2; and

(iii) additionally satisfying (◦2) and (◦4), that we will call Boolean and maxi-
mal consistency operators (Bmax-consistency operators, for short), in Sub-
section 3.3.
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As one can already anticipate, Bmax-consistency operators are those operators
that are both max- and maxB-consistency operators. We will formally show this
in Subsection 3.3.

The following observations on congruences, filters and subdirect product
decompositions will be useful in the rest of the paper.

As is well-known, an implicative filter of a (bounded) residuated lattice A is
a subset F ⊆ A such that 1 ∈ F and it is closed under modus ponens: x ∈ F
and x→ y ∈ F imply y ∈ F .5 For each implicative filter F , the binary relation
θ(F ) defined by (x, y) ∈ θ(F ) if and only if x → y, y → x ∈ F is a congruence
of the residuated lattice A, and F = {z ∈ A : (z, 1) ∈ θ(F )}. This is actually
a one-one correspondence between the lattice of congruences and the lattice of
implicative filters for the variety of bounded residuated lattices.

Moreover, since the classes of expansions of distributive involutive residuated
lattices with the above types of consistency operators involve not only equations
but also quasi-equations, we will also deal with quasivarieties. In a quasivari-
ety, congruences that allow for the decomposition of an algebra as a sudirect
product of subdirectly irreducible components are required to satisfy an addi-
tional condition: the quotient of an algebra by a congruence has to belong to
the quasivariety, see e.g. [45]. This condition is automatically satisfied in vari-
eties but not in quasivarieties. Congruences satisfying this condition are usually
called Q-congruences. Similarly, filters that are in a one-one correspondence be-
tween Q-congruences are implicative filters ‘closed’ by the quasiequations of the
quasivariety, and are called Q-filters.

3.1 Distributive involutive residuated lattices with max-
consistency operators

We start by formally defining the first class of distributive involutive residuated
lattices with a consistency operator, namely with a max-consistency operator.

Definition 3.3. A distributive involutive residuated lattice with a max-
consistency operator (an dIRLc-algebra for short) is a pair (A, ◦) where A is
a distributive involutive residuated lattice and ◦ : A→ A satisfies the following
two conditions: for all x, y, z ∈ A,

(◦1) x ∧ ∼x ∧ ◦(x) = 0

(◦2) if x ∧ ∼x ∧ y = 0 then y ≤ ◦(x)

From the definition, it is clear that the class of dIRLc-algebras is a quasiva-
riety.

It is easy to check that conditions (◦1) and (◦2) faithfully capture the ex-
pected behavior max-consistency operators as described above.

5Recall that an implicative filter of a residuated lattice A can be equivalently defined as
a subset F ⊆ A such that 1 ∈ F and is closed by the monoidal operation ∗ of the residuated
lattice.
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Lemma 3.4. Let A be a dIRL-algebra, and let ◦ be a unary operation on
A. Then (A, ◦) is a dIRLc-algebra iff, for any x ∈ A, ◦(x) = max{z ∈ A |
x ∧ ∼x ∧ z = 0}.

Proof. Clearly, for a given x ∈ A, the set {z ∈ A | x ∧ ∼x ∧ z = 0} is closed by
∨, it has ◦(x) as an upper bound by (◦2), and moreover ◦(x) belongs to that
set by (◦1).

Conditions (◦1) and (◦2) are also enough to ensure that condition (◦0) also
holds in a dIRLc-algebra. This and other easy properties of dIRLc-algebras are
displayed in the next lemma.

Lemma 3.5. The following properties hold in a dIRLc-algebra (A, ◦):

(i) ◦(x) = ◦(∼x) = ◦(x ∧ ∼x) = ◦(x ∨ ∼x)

(ii) ◦(x) = 1 iff x is Boolean, in particular ◦(1) = ◦(0) = 1

Proof. (i) follows from Lemma 3.4 just noticing that ∼∼x = x, and ◦(1) = 1
follows from (◦2) by taking x = y = 1. (ii) also follows from Lemma 3.4 by
noticing that x ∧ ∼x = 0 for any Boolean element x.

As an example of a finite dIRLc-algebra, let L = {0, a, b, c, d, e, f, 1} and
consider the lattice (L,∧,∨) represented in the upper part of Fig. 2. Then the
algebra L = (L,∧,∨, ∗,→,∼, 0, 1), where ∗ and ∼ are those specified in the
tables of Fig. 2 and where x → y = ∼(x ∗ ∼y), is a distributive involutive
residuated lattice (it is indeed a finite Nilpotent Minimum algebra) and (L, ◦)
is a dIRLc-algebra.

Remark 3.6. It follows from Lemma 3.4 that if a max-consistency operator is
definable in an involutive residuated lattice it is uniquely determined. More-
over, it also follows that the max-consistency operator is always definable in
every finite involutive residuated lattice. However it is not always the case in
infinite involutive residuated lattices. Actually, also according to Lemma 3.4
above, such an operator is definable if and only if all elements of the involtive
residuated lattice of the form x∧∼x admit a pseudo-complement. The following
are examples of infinite distributive involutive residuated lattices in which the
consistency operator cannot be defined.

(1) Let A be the an algebra over [0, 1] \ { 1
2} with the Nilpotent Minimum

operations: x ∗ y = min(x, y) if x + y > 1 and x ∗ y = 0 otherwise; and
∼x = 1 − x. Let A+ = {x ∈ A | x > 1/2} and A− = {x ∈ A | x < 1/2}
be the sets of positive and negative elements of A respectively. Further, let
B be the Nilpotent Minimum subalgebra of A × A defined on the sublattice
B = (A+ × A+) ∪ (A− × A−). Take an element (x, 1) ∈ B such that x ∈ A+.
An easy computation shows that ◦((x, 1)) does not exist.

(2) Let A be the 1-generated free MV-algebra [18], i.e., up to isomorphism,
the algebra of continuous piecewise linear functions with integer coefficients form

12
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d 0 0 0 0 d e d d
e 0 a 0 a e e d e
f 0 0 b e d d a f
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∼x
1
f
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c
b
a
1

◦x
1
b
a
0
0
a
b
1

Figure 2: A finite lattice of eight elements together with three operations ∗,∼
and ◦.

[0, 1] to [0, 1] and with operations defined as follows: for all f, g ∈ A and for all
x ∈ [0, 1],

(f ⊕ g)(x) = min{1, f(x) + g(x)} and ∼f(x) = 1− f(x).

Consider the function f : [0, 1] → [0, 1] defined by the stipulation f(x) = 0
for all x ∈ [0, 1/3) ∪ (2/3, 1], while f(x) = min{3x − 1,−3x + 2} on [1/3, 2/3].
A direct computation shows that ∼f(x) = 1 for all x ∈ [0, 1/3) ∪ (2/3, 1] and
f(x) = max{3x−1,−3x+2} on [1/3, 2/3] so that f ≤ ∼f and hence f∧∼f = f .
Therefore the set {g ∈ A | f ∧ ∼f ∧ g = 0} = {g ∈ A | f ∧ g = 0}. However,
notice that sup{g ∈ A | f ∧ g = 0} is a function h : [0, 1] → [0, 1] such that
h(x) = 0 for all x ∈ [0, 1/3) ∪ (2/3, 1] and h(x) = 1 for all x ∈ [1/3, 2/3] and
hence it is not continuous and hence it does not belong to A. As a consequence
◦(f) is not definable.

Taking into account the observation above on filters in quasivarities, a Q-
filter F of a dIRLc-algebra (A, ◦), besides being implicative, has to additionally
satisfy the following two conditions:

(F1) if x→ y, y → x ∈ F then ◦x→ ◦y, ◦y → ◦x ∈ F ,

(F2) if x ∨ ∼x ∨ ∼y ∈ F then y → ◦x ∈ F .

We shall call such a filter a ◦-filter. Note that from (F1) it follows in particular
that ◦-filters are closed by ◦: if x ∈ F then ◦x ∈ F as well. Since in every
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dIRLc-algebra (A, ◦), ◦-filters bijectively correspond to Q-congruences by the
maps

F 7→ ΘF = {(a, b) ∈ A×A | (a→ b) ∧ (b→ a) ∈ F}

and
Θ 7→ FΘ = {a ∈ A | aΘ1},

we will henceforth say that an dIRLc-algebra (A, ◦) is simple if it only has
two Q-congruences, and hence if it only has two (trivial) ◦-filters: {1} and A.
Furthermore, a quasivariety of dIRLc-algebras will be said to be semisimple
provided that all its subdirectly irreducible elements are simple in the above
sense.

Lemma 3.7. Let A be a subdirectly irreducible distributive involutive residuated
lattice and define ◦ : A → A as ◦(1) = ◦(0) = 1 and ◦(x) = 0 otherwise. Then
(A, ◦) is a simple dIRLc-algebra.

Proof. Let us start showing that ◦ defined as in the statement is a max-
consistency operator. First of all it is immediate to see that (◦1) holds, then let
us hence show (◦2). To this end assume that x ∧ ∼x ∧ y = 0, or equivalently
that ∼(x ∧ ∼x ∧ y) = ∼x ∨ x ∨ ∼y = 1. Since A is subdirectly irreducible,
by [44, Theorem 4.1] one has that (∼x ∨ x) ∨ ∼y = 1 if either x ∨ ∼x = 1, or
∼y = 1. If the former is the case, then x is Boolean. Since A is subdirectly
irreducible, it is hence directly indecomposable. Therefore, [36, Proposition 1.5]
implies x ∈ {0, 1}. Then, by definition ◦(x) = 1, whence necessarily ◦(x) ≥ y.
Conversely, if ∼y = 1, then y = 0 ≤ ◦(x).

Finally assume, without loss of generality, that A contains at least an element
x distinct from 0 and 1, for otherwise A would be the two element Boolean
algebra and (A, ◦) would be obviously simple. Furthermore, let F 6= {1} be
a ◦-filter of (A, ◦). Then F must contain x and since F is closed under ◦, by
definition of ◦, ◦(x) = 0 ∈ F . Thus, F = A and (A, ◦) is simple.

The next result provides a generalization to the case of dIRLc-algebras of the
well-known result showing that a residuated lattice A is directly indecomposable
iff B(A) = {0, 1}, see [36, Proposition 1.5].

Theorem 3.8. Let (A, ◦) be a dIRLc-algebra. Then (A, ◦) is directly indecom-
posable iff B(A) = {0, 1}.

Proof. The right-to-left direction is clear. Indeed, if (A, ◦) were product of two
(or more) dIRLc-algebras, say (A1, ◦) and (A2, ◦), denoting by 11, 01 the top
and the bottom elements of the first and by 12, 02 the top and the bottom
elements of the second, then (11, 12), (01, 02), (11, 02) and (01, 12) would be four
distinct Boolean elements of A contradicting the fact that B(A) = {0, 1}.

Hence, let us prove the left-to-right direction. First of all observe that if
z ∈ B(A), for all x ∈ A x ∧ z = x ∗ z. The proof is again by reduction ad
absurdum. Assume there is z ∈ B(A) \ {0, 1}, and let us see that [z) is a ◦-
filter. It is clear that it is an implicative filter. Let us check that [z) satisfies
the conditions of a ◦-filter:
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• First we prove that z ≤ (x → y), (y → x) implies z ≤ (◦x → ◦y), (◦y →
◦x).

Since z ≤ (x → y) we have x ∧ z = x ∗ z ≤ y since z is Boolean. Hence
∼y ≤ ∼(x ∧ z) = ∼x ∨ ∼z. Also, since z ≤ y → x, we have y ≤ z → x.
Then we have the following inequalities:

y ∧ ∼y ∧ (z ∧ ◦x) ≤ y ∧ (∼x ∨ ∼z) ∧ z ∧ ◦x =
(y ∧ ∼x ∧ z ∧ ◦x) ∨ (y ∧ ∼z ∧ z ∧ ◦x) ≤
((z → x)∧∼x∧ z ∧◦x)∨ 0 = ((z ∗ (z → x))∧∼x∧◦x) ≤ x∧∼x∧◦x = 0

Therefore, we have z ∧ ◦x ≤ ◦y, that is, z ≤ ◦x → ◦y. Analogously, one
can prove z ≤ ◦y → ◦x.

• Second, we prove that z ≤ x ∨ ∼x ∨ ∼y implies z ≤ y → ◦x.

Note that x ∨ ∼x ∨ ∼y = ∼(x ∧ ∼x ∧ y). Then we have:

x ∧ ∼x ∧ (z ∧ y) = (x ∧ ∼x ∧ y) ∧ z = (x ∧ ∼x ∧ y) ∗ z ≤
(x ∧ ∼x ∧ y) ∗ ∼(x ∧ ∼x ∧ y) = 0.

Therefore, z ∗ y = z ∧ y ≤ ◦x, hence, z ≤ y → ◦x.

Analogously we can prove that [∼z) is a ◦-filter. Then if B(A) \ {0, 1} is
non-empty, there exists z ∈ B(A) \ {0, 1} and the ◦-filters [z) and [∼z) are
such that [z) ∩ [∼z) = {1}, while the filter generated by [z) ∪ [∼z) contains
z, contains ∼z and hence it contains z ∧ ∼z = 0. Thus it coincides with the
entire A. Clearly their associated Q-congruences, say Θz and Θ∼z, permute:
Θ∼z(Θz) = Θz(Θ∼z). Indeed (a, b) ∈ Θ∼z(Θz) iff there exists c ∈ A such that
(a→ c) ∧ (c→ a) ≥ z and (c→ b) ∧ (b→ c) ≥ ∼z iff, by the commutativity of
∧ and the reflexive property of congruences, (b, a) = (a, b) ∈ Θz(Θ∼z). Thus,
they form a nontrivial pair of complementary factor congruences and (A, ◦) is
not directly indecomposable.

Thus, since every subdirectly irreducible algebra is also directly indecom-
posable, we also have the following result.

Corollary 3.9. Let (A, ◦) be a subdirectly irreducible dIRLc-algebra. Then
B(A) = {0, 1}.

When the algebra A is finite or is a connected or disconnected rotation of a
residuated lattice, we can prove more. Connected and disconnected rotations of
residuated lattices were studied by Jenei in [32]. The paper [10] (see also [53])
studies varieties of algebras obtained as connected or disconnected rotations
of residuated lattices from a purely algebraic perspective. There, the authors
introduce a variety of algebras, denoted by IMVR3, whose directly indecom-
posable elements are obtained as generalized 3-rotations (in the terminology of
[10]) of residuated lattices. Within directly indecomposable IMVR3-algebras we
can hence identify structures with a negation fixpoint (corresponding to Jenei’s
connected rotations) and structures without a negation fixpoint (corresponding
to Jenei’s disconnected rotations). As for distributivity, in [10, Remark 3.9] it
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is observed that any IMVR3-algebra obtained as a generalized 3-rotation of a
residuated lattice R is distributive iff so is R. We will henceforth say that an
algebra is a dIMVR3-algebra if it is a distributive IMVR3-algebra and the corre-
sponding variety will be denoted by dIMVR3. Thus, every algebra of dIMVR3 is
a commutative, integral, bounded, involutive and distributive residuated lattice,
i.e., dIMVR3 as a subvariety of dIRL.

By [10, Theorem 4.6], the domain of every directly indecomposable IMVR3-
algebra A can be partitioned in two sets,

A+ = {x : x ≥ ∼x} and A− = {x : x ≤ ∼x}.

Furthermore, every directly indecomposable IMVR3-algebra satisfies the follow-
ing conditions: if x ∈ A+ and y ∈ A−, then (1) x ≥ y and (2) y2 = y ∗ y = 0.

In what follows, dIRLc-algebras (A, ◦) where A ∈ dIMVR3 will be called a
dIMVR3c-algebra.

The next theorem characterizes, in particular, those subdirectly irreducible
dIRLc-algebras (A, ◦) in which A is either a finite or a dIMVR3c-algebra. It is
worth pointing out that the following characterization does not hold in general
for infinite structures. In Subsection 4.2, we will give an example of an infinite
dIRLc-algebra which is subdirectly irreducible but not simple.

Theorem 3.10. Let (A, ◦) be a finite dIRLc-algebra or an arbitrary dIMVR3c-
algebra. Then the following conditions are equivalent:

(i) B(A) = {0, 1},

(ii) (A, ◦) is a directly indecomposable dIRLc-algebra,

(iii) (A, ◦) is a subdirectly irreducible dIRLc-algebra,

(iv) (A, ◦) is a simple dIRLc-algebra.

As a consequence, the quasivariety of dIMVR3c-algebras is semisimple.

Proof. Due to Theorem 3.8 and Corollary 3.9, we are left to prove only that
(iii) implies (iv), since (iv) implies (iii) in general.

In the case of A being finite, towards a contradiction, assume (A, ◦) is not
simple. Hence, there is a ◦-filter F such that F 6= A and F 6= {1}. Since A is
finite, there is 0 < a ∈ A \ {1} such that F = [a). Since F is a ◦-filter, ◦(a) ∈ F
and thus it must be a ≤ ◦(a). But then we have 0 = a∧∼a∧◦(a) = a∧∼a, that
is, a is Boolean, and hence B(A) 6= {0, 1} and hence (A, ◦) is not subdirectly
irreducible by Corollary 3.9.

Assume now (A, ◦) is a subdirectly irreducible, and hence a directly inde-
composable, dIMVR3c-algebra. We have to show that (A, ◦) is simple. By The-
orem 3.8, (A, ◦) is directly indecomposable iff B(A) = {0, 1}. Therefore, by [36,
Proposition 1.5], A is directly indecomposable as a dIMVR3-algebra. Moreover,
[10, Theorems 4.6] shows that if a dIMVR3-algebra A is directly indecompos-
able, its domain, as mentioned above, can be expressed as A = A+ ∪A−, where
A+ = {x : x ≥ ∼x} and A− = {x : x ≤ ∼x}, and satisfying x ≥ y whenever
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x ∈ A+ and y ∈ A−, and y2 = 0 for every y ∈ A−. Now, if x ∈ A+ then
∼x ∈ A− and thus, 0 = x ∧ ∼x ∧ ◦(x) = ∼x ∧ ◦(x), from which it follows that
◦(x) ∈ A− as well, and hence (◦(x))2 = 0. Since any ◦-filter F of (A, ◦) con-
taining an element x 6= 1 has to contain ◦(x) as well, it has to contain (◦(x))2

as well, i.e. F must be such that 0 ∈ F . Therefore F must be the whole algebra
domain A. Thus we have shown that (A, ◦) is a simple dIRLc-algebra.

In the light of the Theorem 3.10 above, it is clear that the lattice of Figure
2 together with the operations of the table of Figure 2 is an example of a finite
dIRLc-algebra whose Boolean elements are 0 and 1, and hence it is directly
indecomposable, subdirectly irreducible and simple.

3.2 Distributive involutive residuated lattices with a
maxB-consistency operator

We now start considering consistency operators that map the elements of an
dIRL-algebra into Boolean elements of the same. The next definition introduces
distributive involutive residuated lattices with a maxB-consistency operator.

Definition 3.11. A distributive involutive residuated lattice with a maxB-
consistency operator (or dIRLmB

c -algebra for short) is a pair (A, ◦) where A
is a dIRL-algebra and ◦ : A → A satisfies the following conditions: for all
x, y, z ∈ A,

(◦1) x ∧ ∼x ∧ ◦(x) = 0

(◦3) if x ∧ ∼x ∧ y = 0 and y ∧ ∼y = 0, then y ≤ ◦(x)

(◦4) ◦(x) ∧ ∼◦(x) = 0

Again, from this definition it follows that the class of dIRLmB
c -algebras is a

quasivariety. Moreover, and similarly to the case of max-consistency operators,
also now the conditions (◦1), (◦3) and (◦4) capture the expected behavior of
maxB-consistency operators as described at the beginning of this Section 3.

Lemma 3.12. Let A be a distributive involutive residuated lattice, and let ◦ be
unary operation on A. Then (A, ◦) is an dIRLmB

c -algebra iff, for any x ∈ A,

◦(x) = max{z ∈ B(A) | x ∧ ∼x ∧ z = 0}.

Proof. Clearly, for a given x ∈ A, the set {z ∈ B(A) | x ∧∼x ∧ z = 0} is closed
by ∨, it has ◦(x) as an upper bound by (◦3), and moreover ◦(x) belongs to that
set by (◦1) and (◦4).

From the definition it is easy to prove the following properties of maxB-
consistency operators.

Proposition 3.13. The following properties hold in a dIRLmB
c -algebra (A, ◦):

(i) ◦(x) = max{z ∈ B(A) | z ≤ x ∨ ∼x}
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x �x ◦x
0 1 1
a 0 b
b 0 a
c 0 0
d 0 0
e 0 a
f 0 b
1 1 1

Table 1: Two operators for the Nelson lattice of Figure 2.

(ii) ◦(x) = ◦(∼x) = ◦(x ∧ ∼x) = ◦(x ∨ ∼x)

(iii) ◦(x) = 1 iff x ∈ B(A), in particular ◦(1) = ◦(0) = 1

(iv) ◦◦(x) = 1.

Notice that if (A, ◦) is a dIRLc-algebra and (A, �) is dIRLmB
c -algebra, then

from Lemmas 3.4 and 3.12 it is clear that �(x) ≤ ◦(x) for all x ∈ A.
In the Nilpotent Minimum algebra of Figure 2, the corresponding mB-

consistency operator � comes defined as �(0) = �(1) = 1 and �(x) = 0 otherwise.
Since this is a different operation from the operation ◦ in the table of Figure
2, it readily follows that the classes of dIRLc-algebras and dIRLmB

c -algebras are
different. Indeed, consider again the two unary operations in Table 1. It turns
out that (L, ◦) is a dIRLc-algebra but not a dIRLmB

c -algebra, while (L, �) is a
dIRLmB

c -algebra but not a dIRLc-algebra.

Remark 3.14. Like in the case of a max-consistency operator over a dIRL-
algebra, a maxB-consistency operator, if it exists, is unique. Actually, according
to Lemma 3.12, the maxB-consistency operator ◦ is definable on a distributive
involutive residuated lattice if and only if all the elements of the form x ∧ ∼x
have a minimum Boolean element above them. Since the value of ◦(x) is a max-
imum of Boolean elements, ◦ is always definable in any distributive involutive
residuated lattice A such that B(A) is finite. However, the definability of the
◦ operator is not guaranteed when B(A) is infinite.

In the quasivariety of dIRLmB
c -algebras, the corresponding notion of Q-filter

is that of an implicative filter F further satisfying the following two conditions:

(F1) if x→ y, y → x ∈ F then ◦x→ ◦y, ◦y → ◦x ∈ F

(F3) if x ∨ ∼x ∨ ∼y ∈ F and y ∨ ∼y ∈ F then y → ◦x ∈ F

We will call them ◦b-filters.
From this we can provide a characterization of subdirectly irreducible dIRLc-

algebras. To begin with, we can observe that the same proof of Lemma 3.7 also
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applies to the case of dIRLmB
c -algebras with a unique atom and hence to all

finite and subdirectly irreducible dIRL-algebras with a mB-consistency operator
as well.

Lemma 3.15. Let A be a subdirectly irreducible distributive involutive residu-
ated lattice with a unique atom and define ◦ : A → A as ◦(1) = ◦(0) = 1 and
◦(x) = 0 otherwise. Then (A, ◦) is a simple dIRLmB

c -algebra.

Moving from max- to maxB-consistency operators allows us to improve the
results shown in Theorem 3.8 and Theorem 3.10 and, as anticipated, to charac-
terize all subdirectly irreducible dIRLmB

c -algebras.

Theorem 3.16. Let (A, ◦) be a dIRLmB
c -algebra, then the following conditions

are equivalent:

(i) B(A) = {0, 1}

(ii) (A, ◦) is a directly indecomposable dIRLmB
c -algebra

(iii) (A, ◦) is a subdirectly irreducible dIRLmB
c -algebra

(iv) (A, ◦) is a simple dIRLmB
c -algebra

Proof. That (iv) implies (iii) and (iii) implies (ii) is clear. It is hence left to
show that (ii) implies (i) and (i) implies (iv).

(ii) implies (i). The same proof of Theorem 3.8 applies.

(i) implies (iv). If B(A) = {0, 1} then a simple computation shows that
◦(0) = ◦(1) = 1 and ◦(x) = 0 otherwise since for all x ∈ A \ {0, 1}, x ∧ ∼x 6= 0.
Then every ◦b-filter F containing an element x /∈ {0, 1} is equal to A and thus
A is simple.

As a direct consequence of this result we have the following corollary.

Corollary 3.17. The quasi-variety of dIRLmB
c -algebras is semisimple.

3.3 Distributive involutive residuated lattices with a
Bmax-consistency operator

Finally, in this subsection, we consider distributive involutive residuated lattices
expanded with a Bmax-consistency operator.

Definition 3.18. A distributive involutive residuated lattice with a Bmax-
consistency operator (or dIRLBm

c -algebra for short) is a dIRLc-algebra (A, ◦)
satisfying the additional condition: for all x ∈ A,

(◦4) ◦(x) ∨ ∼◦(x) = 1.

From the very definition, it is clear that the class of dIRLBm
c -algebras con-

stitutes a subquasivariety of the quasivariety of dIRLc-algebras.
We also have a characterisation of Bmax-consistency operators similar to the

case of max-consistency operators with the obvious modification.
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Lemma 3.19. Let A a distributive involutive residuated lattice, and let ◦ be a
unary operation on A. Then (A, ◦) is a dIRLBm

c -algebra iff, for any x ∈ A,

◦(x) = max{z ∈ A | x ∧ ∼x ∧ z = 0} and ◦(x) ∧ ∼◦(x) = 0.

Actually, as anticipated, Bmax-consistency operators are just max-
consistency operators that are maxB-consistency operators as well.

Lemma 3.20. The quasivariety of dIRLBm
c -algebras is the intersection of the

quasivariety of dIRLc-algebras and the quasivariety of dIRLmB
c -algebras.

Proof. Let (A, ◦) be a dIRLBm
c -algebra. We have to show that ◦ is a maxB-

consistency operator as well. Since ◦(x) is Boolean, ◦(x) ∈ {z ∈ B(A) | x ∧
∼x ∧ z = 0}, that is, we also have ◦(x) = max{z ∈ B(A) | x ∧ ∼x ∧ z = 0}.
Conversely, if ◦ is both a max- and maxB-consistency operator, then it is clear
that ◦(x) = max{z ∈ A | x∧∼x∧ z = 0} and that ◦(x) is Boolean, that is, ◦ is
a Bmax-consistency operator.

The following proposition collects basic properties of dIRLBm
c -algebras.

Proposition 3.21. For a given dIRLBm
c -algebra (A, ◦) and x ∈ A, we have:

(i) ◦◦(x) = 1.

(ii) ◦(x) = 1 iff x ∧ ∼x = 0 iff x is a Boolean element.

Again, an analogous result to Lemma 3.7 and Lemma 3.15 for dIRLc-algebras
and dIRLmB

c -algebras resp. also holds for dIRLBm
c .

Lemma 3.22. Let A be a subdirectly irreducible dIRL-algebra with a unique
atom and let ◦ the unary operation on A defined as: ◦(1) = ◦(0) = 1 and
◦(x) = 0 otherwise. Then (A, ◦) is a simple dIRLBm

c -algebra.

Since dIRLBm
c -algebras are dIRLc-algebras fulfilling the additional equation

(◦4), the corresponding notions of Q-filters and Q-congruences are the same, and
we can obtain similar results as those obtained for dIRLc-algebras and dIRLmB

c -
algebras. In particular, the following result characterizes subdirectly irreducible
dIRLBm

c -algebras.

Theorem 3.23. Let (A, ◦) be a dIRLBm
c -algebra, then the following conditions

are equivalent:

(i) B(A) = {0, 1}

(ii) (A, ◦) is a directly indecomposable dIRLBm
c -algebra

(iii) (A, ◦) is a subdirectly irreducible dIRLBm
c -algebra

(iv) (A, ◦) is a simple dIRLBm
c -algebra

Proof. The same proof of Theorem 3.16 applies.
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3.4 The prelinear case: IMTL-algebras

We now turn the attention to the particular case of prelinear dIRL-algebras
with a consistency operator ◦. As shown in [24], involutive residuated lattices
satisfying the prelinearity equation

(x→ y) ∨ (y → x) = 1

are precisely the so-called involutive MTL-algebras (or IMTL-algebras for short).
Let us start showing a first result concerning IMTL-algebras expanded by a
Bmax-consistency operator.

Lemma 3.24. Let A be a IMTL-algebra that is not a chain. Then there are
two elements x, y 6= 1 such that x ∨ y = 1.

Proof. If A is not a chain, let a, b two uncomparable elements. Then x = a→ b
and y = b → a must be different from 1, and by prelinearity, x ∨ y = (a →
b) ∨ (b→ a) = 1.

Let us call IMTLBm
c -algebras those dIRLBm

c -algebras (A, ◦) such that A is a
IMTL-algebra.

Proposition 3.25. Let (A, ◦) be a IMTLBm
c -algebra. Then the following state-

ments are equivalent:

(i) B(A) = {0, 1}

(ii) A is an IMTL-chain

(iii) (A, ◦) is a directly indecomposable IMTLBm
c -algebra

(iv) (A, ◦) is a subdirectly irreducible IMTLBm
c -algebra

(v) (A, ◦) is a simple IMTLBm
c -algebra

Proof. Thanks to Theorem 3.23 it is sufficient to prove the equivalence between
(i) and (ii).

(i) implies (ii). By Theorem 3.23, B(A) = {0, 1}. By Lemma 3.24 if A is not
a chain there exist elements x, y 6= 1 such that x∨ y = 1. Moreover x∧∼x 6= 0,
since if x∧∼x = 0 then x would be a Boolean element, a contradiction with the
assumption that x 6= 1, 0. Moreover x ∧ ∼x ∧ ∼y ≤ ∼x ∧ ∼y = ∼(x ∨ y) = 0,
and thus ◦(x) ≥ ∼y. Since B(A) = {0, 1} and ∼y 6= 0, it follows that ◦(x) = 1,
which contradicts the definition of ◦.

In order to prove that (ii) implies (i), let us show that (ii) implies (v) whence
the result will follow from Theorem 3.23. If A is an IMTL-chain, then (v)
obviously follows because, over a chain, ◦ is defined as ◦(0) = ◦(1) = 1 and
◦(x) = 0 otherwise, and thus, a ◦-filter F that contains an element x 6= 1, 0
must contain ◦(x) = 0, hence F = A, whence (A, ◦) is a simple.
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Let us remark that Proposition 3.25 above does not apply to IMTL-algebras
expanded by max and maxB-consistency operators. Indeed, consider the IMTL-
algebra A of Figure 2 expanded by either its (unique) max or maxB-consistency
operator ◦. By Theorem 3.10 and Theorem 3.16, (A, ◦) is directly indecom-
posable, subdirectly irreducible, simple and B(A) = {0, 1}, however its lattice
reduct is not totally ordered. Moreover, it is clear that the same finite algebra
A does not admit a Bmax-consistency operator, while on the other hand, it is
always definable on a chain.

It is worth pointing out that Theorem 3.10 applies to this peculiar case and,
in particular, to those IMTLc-algebra whose underlying IMTL-algebra is either
finite or is obtained as rotation of a prelinear semihoop. The latter class of
structures have been largely studied in [40].

Now, we turn our attention to the variety of IMTL>-algebras that was de-
fined in [20] and let us analyze analogies and differences between them and
IMTL-algebras with a consistency operator ◦. Indeed, in [20] the authors con-
sider expansions of IMTL-algebras with a consistency operator that, to avoid a
notational clash, we will denote here by >. The equations for > are stronger
than the ones we introduced in this paper and in fact they allow us to prove
that the variety of IMTL> is semilinear, that is to say, it is generated by its
totally ordered members.

More precisely, a pair (A,>) is a IMTL>-algebra if A is an IMTL-algebra
and the following equations for > hold:

(B1) x ∧ ¬x ∧>(x) = 0

(B2) >(x↔ y) ≤ (>x↔ >y)

(B3) >(x ∨ y) ≤ >(x) ∨ y

(B4) >(0) = >(1) = 1

The variety of IMTL>-algebras is shown in [20] to be semisimple, and the
simple IMTL>-algebras are those defined over IMTL-chains, i.e. all IMTL>-
algebras are subdirect products of chains, and chains are simple. As also shown
in [20], if A is a IMTL-chain, the unique > operator that makes (A,>) a
IMTL>-algebra is the one defined as >(0) = >(1) = 1 and >(x) = 0 otherwise.
Hence IMTL>-, dIRLc-, dIRLmB

c - and dIRLBm
c -algebras over IMTL-chains share

the same consistency operators.
The following is a consequence of Proposition 3.25.

Corollary 3.26. The class of IMTLBm
c -algebras is a variety that coincides with

the variety of IMTL>-algebras. Thus, both are semilinear and semisimple.

Proof. Let us start showing that the quasivariety of IMTLBm
c -algebras is indeed

a variety. To this end notice that by Proposition 3.25, the class of IMTLBm
c -

algebras is generated by its totally ordered members. Moreover, following [20],
for every IMTLBm

c -algebra (A, ◦), the unary operation ∆ : A → A defined
by ∆(x) = x ∧ ◦(x) coincides with the Baaz-Monteiro projection operator
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[4, 39]. These facts show that the algebraic logic of IMTLBm
c -algebras is a

∆-core fuzzy logic in the sense of [19] and hence, for every finite set of for-
mulas {ψ1, . . . , ψk, φ}, it holds {ψ1, . . . , ψk} ` φ iff ` (∆ψ1 ∧ . . . ∧ ∆ψk) → φ
(see [30, Theorem 2.4.14]). Algebraically, this means that every quasi-equation
describing IMTLBm

c -algebras can be written equationally, whence it is indeed a
variety.

Finally, the claim follows from Proposition 3.25 above. Indeed, both the
variety of IMTLBm

c -algebras and the variety of IMTL>-algebras are generated
by its totally ordered members. We already observed that, on IMTL-chains,
the unique Bmax-consistency operator ◦ coincides with the >-operator: it maps
all non-Boolean elements to 0, and 0 and 1 to 1. Thus the two varieties are
generated by the same structures and hence they coincide.

In fact the previous result can be proved in a slightly more general setting.
To this end consider the semilinear extension of the quasi-varieties of dIRLc,
dIRLmB

c and dIRLBm
c -algebras. That is to say the quasi-varieties obtained from

the above ones by replacing (◦2) in Definition 3.3 by the quasi-equation

if (x ∧ ∼x ∧ y) ∨ z = 0 implies (y → ◦(x)) ∨ z = 1

and (◦3) in Definition 3.11 by

if (x ∧ ∼x ∧ y) ∨ z = 0 and (y ∧ ∼y) ∨ z = 0 implies (y → ◦(x)) ∨ z = 1.

By general results it follows that every algebra in the semilinear extension of
the quasi-varieties of dIRLc, dIRLmB

c and dIRLBm
c -algebras can be represented

as a subdirect product of totally ordered structures in the same classes [17].
Thus, the following corollary easily holds.

Corollary 3.27. The semilinear extensions of dIRLc, dIRLmB
c and dIRLBm

c -
algebras form varieties and they all coincide with the variety of IMTL>-algebras.

Proof. Over a dIRL-chain, max, Bmax and maxB consistency operators coincide
and therefore the sub-quasivariety generated by them are the same and coincide
with the variety of IMTL>-algebras.

Nevertheless there are IMTLc-algebras that are not subdirect product of
chains as the one in Figure 2 that is simple, hence subdirectly irreducible, but
it is not totally ordered. Therefore the quasi-varieties of IMTLc- and IMTLmb

c -
algebras are not semilinear.

Of course the quasivarietiy of IMTLmB
c -algebras is semisimple but it is an

open problem whether the quasivarietiy of IMTLc-algebras is semisimple or
whether there exist subdirectly irreducible algebras that are not simple, as in
the general case of dIRL or NL algebras.

As a sort of summary, Figure 3 provides a graphical representation of the
main quasivarieties of algebras expanded with a consistency operator that we
have considered in this section, where dashed arrows stand for expansions and
solid arrows denote extensions.
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Figure 3: Diagram of main classes of algebras with a consistency operator we
consider in this paper and their relationships as expansions of dIRL.

4 The particular case of Nelson lattices with a
max-consistency operator

In this section we will focus on expansions of Nelson lattices by means of a
max-consistency operator. In particular we will take advantage of well devel-
oped structural properties for these algebras in terms of twist-products to both
investigate more in details subdirectly irreducible structures and also to show
that Theorem 3.10 does not hold in the general setting of infinite structures.6

Nelson lattices can be represented by means of Heyting algebras and their
Boolean filters, that is to say, filters F of a Heyting algebra H such that the
quotient H/F is a Boolean algebra. This relation has been investigated by
several authors and main contributions in this sense have been provided by
Fidel [25], Vakarelov [54] and Sendlewski [49].

In the following two subsections, after some needed brief preliminaries, we
are going to prove similar representations for Nelson lattices expanded by con-
sistency operators (Subsection 4.1) and, as anticipated in Subsection 3.1, we
will also show more results on subdirectly irreducible algebras (Subsection 4.2).

6Twist-product have been developed also for, in general unbounded, involutive residuated
lattices (see [9]). However these results, although being more general, does not lead to a
complete representation of all (distributive) involutive residuated lattices. Thus, here we
preferred to restrict to Nelson lattices since in this setting we can obtain stronger results.
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It is worth to notice that prelinear Nelson lattices precisely correspond to
NM-algebras and moreover the twist-product preserves prelinearity. In other
words, each NM-algebra A can be uniquely represented by a prelinear Heyting
algebra G (aka a Gödel algebra) and a Boolean filter of G [7, Theorem 6.19].
As a consequence, all the results of this section (with the clear exception of
the counterexample we show in Subsection 4.2) apply to NM-algebras with a
consistency operator.

Conforming to the previous notation, we will call NLc-, NLmB
c - and NLBm

c -
algebras to the Nelson lattices expanded, respectively, with max-, maxB- and
Bmax-consistency operators.

To start with, let us recall the following result, whose formulation is taken
from [8].

Theorem 4.1 ([49]). Given a Heyting algebra H = (H,∧,∨,→H , 0, 1) and a
Boolean filter F of H let

N(H, F ) := {(x, y) ∈ H ×H : x ∧ y = 0 and x ∨ y ∈ F}.

Then we have:

(i) N(H, F ) = (N(H, F ),∨,∧, ∗,→,∼, 0, 1) is a Nelson lattice, where opera-
tions are defined as follows:

(x, y) ∨ (s, t) = (x ∨ s, y ∧ t),
(x, y) ∧ (s, t) = (x ∧ s, y ∨ t),

(x, y) ∗ (s, t) = (x ∧ s, (x→H t) ∧ (s→H y)),

(x, y)→ (s, t) = ((x→H s) ∧ (t→H y), x ∧ t),
∼(x, y) = (y, x),

1 = (1, 0),

0 = (0, 1).

(ii) If F1, F2 are Boolean filters of H, then N(H, F1) is a subalgebra of
N(H, F2) if and only if F1 ⊆ F2.

Following the tradition (see [8] for instance), we will include, for every Heyt-
ing algebra H, the improper filter H among the Boolean filters of H. In what
follows, the Nelson lattice N(H, H) will be simply denoted by N(H).

The following result, independently proved by Fidel in [25] and by Vakarelov
in [54], can hence be stated as a corollary of Theorem 4.1 above.

Corollary 4.2. For every Nelson lattice A there is a Heyting algebra H such
that A is isomorphic to a subalgebra of N(H).

In what follows we will need a further requirement for the Boolean filter
of a Heyting algebra in order to extend the previous representation to Nelson
lattices with consistency operators. Let us hence recall from [48] that a unary
operation � on a Heyting algebra H is called a dual pseudocomplement, if the
following equations are satisfied:
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(D1) x ∨ �(x ∨ y) = x ∨ �y,

(D2) x ∨ �1 = x,

(D3) ��1 = 1.

In any Heyting algebra H, if the dual pseudocomplement of x ∈ H exists, then
it is defined as

�x = min{z ∈ H | z ∨ x = 1}. (1)

Recall from [48] that in every Heyting algebra with dual pseudocomplement,
congruences bijectively correspond to normal filters, that is to say, implicative
filters that satisfy the following further requirement: if x ∈ F , then ¬�x ∈ F
as well.

We will make use of the following easy result that is known in the literature
but we provide the proof for the sake of self-containedness.

Lemma 4.3. A filter F of a Heyting algebra H is Boolean iff every a ∈ H,
a ∨ ¬a ∈ F .

Proof. Assume that F is Boolean, and hence H/F is a Boolean algebra. Thus
for all [a]F ∈ H/F , [a]F ∨ ¬[a]F = [1]F , that is, [a ∨ ¬a]F = [1]F and hence
a ∨ ¬a ∈ F . Conversely, if a ∨ ¬a ∈ F for all a ∈ H, the quotient H/F satisfies
[1]F = [a ∨ ¬a]F = [a]F ∨ ¬[a]F for all a ∈ H. Therefore H/F is a Boolean
algebra whence F is Boolean.

4.1 Representation of Nelson lattices with consistency op-
erators

Thanks to the representation of Nelson lattices in terms of Heyting algebras and
Boolean filters, if A = N(H, F ) is a Nelson lattice and ◦ : A → A is a max-
consistency operator, by virtue of Lemma 3.4, ◦ can be equivalently reformulated
in the following way: for all (a, b) ∈ A,

◦(a, b) = max{(z, z′) ∈ A | a ∨ b ∨ z′ = 1}. (2)

Indeed, taking into account how the operations are defined in N(H, F ) and that
a ∧ b = 0, we have the following chain of equalities:

◦(a, b) = max{(z, z′) ∈ A | (a, b) ∧ ¬(a, b) ∧ (z, z′) = (0, 1)}
= max{(z, z′) ∈ A | (a, b) ∧ (b, a) ∧ (z, z′) = (0, 1)}
= max{(z, z′) ∈ A | (a ∧ b ∧ z, b ∨ a ∨ z′) = (0, 1)}
= max{(z, z′) ∈ A | (0, a ∨ b ∨ z′) = (0, 1)}
= max{(z, z′) ∈ A | a ∨ b ∨ z′ = 1}.

We are now going to show a representation for NLc-algebras in terms of
Heyting algebras, Boolean filters and the dual-pseudocomplement. First, we
need to prove the following.
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Lemma 4.4. Let H be a Heyting algebra, F Boolean filter of H. If the dual
pseudo-complement of a ∨ b, �(a ∨ b), exists for all those a, b in H such that
a ∧ b = 0 and a ∨ b ∈ F , then the max-consistency operator ◦(a, b) exists in the
Nelson lattice N(H, F ) and ◦(a, b) = (¬d, d), where d = �(a ∨ b).

Proof. Recalling the above equation (2), consider the set D = {(z, z′) ∈
N(H,F ) | a ∨ b ∨ z′ = 1}. It is clear that, by definition, if maxD exists,
then ◦(a, b) = maxD. Besides, we can write D = {(z, z′) ∈ H × H | z ∧ z′ =
0, z ∨ z′ ∈ F, a ∨ b ∨ z′ = 1}.

Now, for each z′ ∈ H such that a ∨ b ∨ z′ = 1, let us define Dz′ = {(z, z′) |
z ∈ H, z ∧ z′ = 0, z ∨ z′ ∈ F}. Hence, it is clear that

D =
⋃
{Dz′ | z′ ∈ H, a ∨ b ∨ z′ = 1}

and Dz′ 6= ∅ for each z′ ∈ H such that a ∨ b ∨ z′ = 1. Moreover, it is possible
to prove that maxDz′ exists and maxDz′ = (¬z′, z′). Indeed, if (z, z′) ∈ Dz′

then (z, z′) ≤ (¬z′, z′) because, if (z, z′) ∈ Dz′ then z ∧ z′ = 0 and then,
z ≤ ¬z′. Therefore, maxDz′ = (¬z′, z′). On the other hand, we can see that
max{maxDz′ | z′ ∈ H, a∨ b∨ z′ = 1} exists and equals (¬d, d), where, recalling
Equation (1), d = �(a ∨ b). Indeed, max{maxDz′ | z′ ∈ H, a ∨ b ∨ z′ = 1} =
max{(¬z′, z′) | z′ ∈ H, a ∨ b ∨ z′ = 1} = (¬min{z′ | a ∨ b ∨ z′ = 1},min{z′ |
a ∨ b ∨ z′ = 1}) = (¬d, d), where d = �(a ∨ b).

Finally, we are going to show that maxD exists and in fact maxD = (¬d, d).
We have to prove the following two conditions:

(I) (¬d, d) ∈ D and
(II) (f, g) ≤ (¬d, d) for any (f, g) ∈ D.

As for condition (I), we have to check that (i) ¬d∧ d = 0, which is obvious, (ii)
¬d∨d ∈ F , that follows from Lemma 4.3, and (iii) a∨b∨d = 1, that also follows
because d = �(a∨ b). As for condition (II), assume (f, g) ∈ D. Then f ∧ g = 0,
f ∨ g ∈ F and a ∨ b ∨ g = 1. From f ∧ g = 0 it follows that f ≤ ¬g, and from
a ∨ b ∨ g = 1 and (1) it follows that g ≥ �(a ∨ b) and f ≤ ¬g ≤ ¬(�(a ∨ b)).
Therefore, (f, g) ≤ (¬(�(a ∨ b)),�(a ∨ b)).

Therefore, every NLc-algebra can be represented as follows.

Theorem 4.5. Every NLc-algebra is of the form (N(H, F ), ◦) where H is a
Heyting algebra and F is a Boolean filter of H such that the dual pseudo-
complement exists in H for all the elements of F , and for all (a, b) ∈ N(H,F ),
◦(a, b) = (¬�(a ∨ b),�(a ∨ b)).

Proof. Let us define G = {a∨ b | a, b ∈ H, (a, b) ∈ A} = {a∨ b | a, b ∈ H, a∧ b =
0, a ∨ b ∈ F} and let us prove that G = F . It is clear that, by definition of G,
G ⊆ F . Now, let y ∈ F and write it as y = y ∨ 0. Then, y ∧ 0 = 0 and that
y ∨ 0 = y ∈ F , hence y ∈ G. Hence, F ⊆ G.

Therefore, by Lemma 4.4, if the dual pseudocomplement � exists for all
x ∈ F , the max-consistency operator ◦ exists in N(H, F ) and it is in the form
◦(a, b) = (¬�(a∨ b),�(a∨ b)). Conversely, if ◦ exists in N(H, F ), then � exists
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for all a ∨ b ∈ G and hence it exists for all the elements of the Boolean filter F
by the previous argument.

The last theorem shows under which conditions a Heyting algebra H and a
Boolean filter F of H induces an NLc-algebra over the Nelson lattice N(H, F ).
It is clear that in every finite Heyting algebra all the elements have a dual
pseudocomplement, whence all the elements of each of its Boolean filters also
have. However, this might not be the case for infinite algebras. In order to see
an example, consider the infinite Heyting algebra H depicted in Figure 4. It
is clear that the element x1 does not have a dual pseudocomplement, while all
other elements do have.Then, take the implicative filter F = {yi : i ∈ N} \ {0}.
It is easy to see that F is Boolean since the quotient algebra H/F is the Boolean
algebra {0, 1}. Thus, although the dual pseudocomplenet is not defined on the
whole domain H, Theorem 4.5 ensures that (N(H, F ), ◦) is a NLc-algebra.
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Figure 4: A Heyting algebra that is not dually pseudo-complemented.

The final result of this subsection is a direct consequence of Theorem 4.5
above and it extends Sendewski’s Theorem (see Theorem 4.1 (ii)) to Nelson
lattices expanded by a consistency operators.

Theorem 4.6. Let H be a Heyting algebra and let F1, F2 be two Boolean filters
of H. Then (N(H, F1), ◦) is a NLc- subalgebra of (N(H, F2), ◦) iff F1 ⊆ F2.

Proof. It is an immediate consequence of Theorem 4.5 and of the fact that the
value of ◦(a, b) only depends on a and b.
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Let us close this subsection with a brief comment aimed at clarifying what
is the situation for the two remaining cases: NLmB

c - and NLBm
c -algebras.

(1) As for NLmB
c -algebras, it is easy to see that the Boolean range of the

maxB-consistency operator is characterized, in terms of twist-product, by re-
quiring in Theorem 4.5 that the dual pseudocomplement � exists for all the
elements of the Boolean filter F and, in addition, it maps all elements of F into
a Boolean element of H.

(2) As for NLBm
c -algebras, on the other hand, we need to define a new unary

operator on a Heyting algebra H, that we denote by �b, called a Boolean dual
pseudocomplement, defined by the following condition: for all x ∈ H,

�bx = min{z ∈ B(H) | x ∨ z = 1}.

Notice that, similarly to a dual pseudocomplement which assigns a Boolean
value to an element of a Heyting algebra, �b also ranges on the Boolean subal-
gebra B(H) of H. But notice that the operator �b need not always exist since,
for a fixed x in a Heyting algebra H, the set {z ∈ B(H) | x ∨ z = 1} might not
have a minimum in B(H). Again, a variant of Theorem 4.5 holds for NLBm

c -
algebras stating that if H is a Heyting algebra and is F a Boolean filter of H,
�bx exists for all x ∈ F iff the maxB-consistency operator ◦ exists in N(H, F ).
In case it exists, the Bmax-consistency operator ◦ is definable in N(H, F ) as
follows: for every (a, b), ◦(a, b) = (¬�b(a ∨ b),�b(a ∨ b)).

4.2 More on subdirectly irreducible and simple NLc-
algebras

In the light of the results of the previous subsection, we are now in position
to add some results on subdirectly irreducible NLc-algebras. In particular this
subsection is devoted to show that Theorem 3.10 cannot be extended to infinite
Nelson lattices with a max-consistency operator. To this end, consider a Heyting
algebra with dual pseudocomplement H = (H,∧,∨,→H ,�, 0, 1) and a normal
Boolean filter FB of H (recall how normal filters are defined at the beginning
this section). Since H has a dual pseudocomplement, also FB has it as well, and
hence the max-consistency operator ◦ can be defined on N(H, FB) as in Lemma
4.4: for all (a, b) ∈ N(H, FB), ◦(a, b) = (¬�(a ∨ b),�(a ∨ b)). Now define the
following subset of N(H, F ):

G = {(a, b) ∈ N(H, FB) | a ∈ FB}. (3)

Then the following holds.

Lemma 4.7. The set G is a ◦-filter of (N(H, FB), ◦). Furthermore if FB is
proper then so is G.

Proof. Let us start showing that G is an implicative filter, and to this end let
us prove that G is closed under ∗. If (a, b), (a′, b′) ∈ G, then a, a′ ∈ FB , whence
a ∧ a′ ∈ FB as well. Therefore, (a, b) ∗ (a′, b′) = (a ∧ a′, (a →H b′) ∧ (a′ →H

b)) ∈ G.

29



Second, let us prove that G satisfies conditions (F1) and (F2). As for the
former, assume that (a, b) → (a′, b′), (a′, b′) → (a, b) ∈ G and let us show that
◦((a, b) → (a′, b′)), ◦((a′, b′) → (a, b)) ∈ G. For all (x, y), (z, k) ∈ N(H, FB),
(x, y)→ (z, k) ∈ G iff (x→H x′), (y′ →H y) ∈ FB , therefore

a→H a′, b′ →H b, a′ →H b, b→H b′ ∈ FB .

In addition a∨ b, a′∨ b′ ∈ FB because (a, b), (a′, b′) ∈ N(H, FB), whence ¬�(a∨
b),¬�(a′ ∨ b′) ∈ FB since FB is normal. Therefore one immediately has (i)
¬�(a ∨ b) →H ¬�(a′ ∨ b′) ∈ FB and (ii) ¬�(a′ ∨ b′) →H ¬�(a ∨ b) ∈ FB .
Furthermore, by hypothesis a ↔H a′, b ↔H b′ ∈ FB , whence (iii) �(a ∨ b) ↔H

�(a′ ∨ b′) ∈ FB . Therefore, ◦(a, b) → ◦(a′, b′) = (¬�(a ∨ b),�(a ∨ b)) →H

(¬�(a′ ∨ b′),�(a′ ∨ b′)) = (¬�(a ∨ b)→ ¬�(a′ ∨ b′),¬�(a ∨ b) ∧ �(a′ ∨ b′)) ∈ G
by (i) and by (ii) ◦(a′, b′)→ ◦(a, b) ∈ G as well. Thus (F1) holds.

As for (F2), assume that (a, b) ∨ ¬(a, b) ∨ ¬(c, d) ∈ G, or equivalently by
definition of G, that a∨b∨d ∈ FB . Thus, in order to prove that (c, d)→ ◦(a, b) ∈
G, we need to show: (i) c →H ¬�(a ∨ b) ∈ FB and (ii) �(a ∨ b) →H d ∈ FB .
Now, since (a, b) ∈ N(H, FB), a ∨ b ∈ FB and ¬�(a ∨ b) ∈ FB because FB

is normal. Therefore, c →H ¬�(a ∨ b) ∈ FB . As to prove (ii), notice that
every Heyting algebra satisfies ¬x ∨ y ≤ x →H y, and hence �(a ∨ b) →H d ≥
¬�(a ∨ b) ∨ d ≥ ¬�(a ∨ b) ∈ FB .

Finally let us observe that if FB is proper, that is, if {1} 6= FB 6= H, then
by definition {1} 6= G 6= N(H, FB) and hence G is proper as well.

Lemma 4.8. Let H be a Heyting algebra with dual pseudocomplement and FB

a Boolean filter of H. Then, for every proper ◦-filter G of N(H, FB), the set
F (G) = {a ∈ FB | ∃b ∈ H, (a, b) ∈ G} is a proper normal filter of H.

Proof. The fact that F (G) is an implicative filter, is immediate. Thus, let us
assume that a ∈ F (G). By definition, it means that (a, b) ∈ G for some b ∈ H.
Since (a, b) ≤ (a, 0) and (a, 0) clearly belongs to N(H, FB), (a, 0) ∈ F (G) as
well. Therefore, ◦(a, 0) = (¬�a,�a) ∈ G because G is a ◦-filter, and hence
¬�a ∈ F (G) proving that F (G) is normal.

It is easy to see that if G is proper, then F (G) is proper as well.

Theorem 4.9. Let H be a Heyting algebra with dual pseudocomplement and
FB a Boolean filter of H. Then G = {(a, b) ∈ N(H, FB) | a ∈ FB} is a proper
◦-filter of (N(H, FB)) iff FB is proper and normal. Furthermore, if FB is the
minimal filter of H, then G is the minimal filter of N(H, FB).

Proof. In the light of Lemma 4.7 and Lemma 4.8, in order to prove the first
part of the claim, it is enough to observe that if G is defined as in (3) and F (G)
is as in Lemma 4.8, then indeed F (G) = FB . Therefore, let us prove the last
claim and assume that G is not minimal. Thus, let R be a ◦-filter of N(H, FB)
such that R ⊂ G. Then F (R) ⊂ F (G) = FB and FB would not be minimal. A
contradiction.
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As an application of this last result, let us now show that Theorem 3.10 fails
for general infinite structures, i.e. there exist NLc-algebras that are subdirectly
irreducible but not simple. To this end, consider the following example that we
have elaborated from an insight provided by Taylor in a personal communication
and that can be found in [52, Figure 8.1 of pag. 99].

Example 4.10. Let Z = {ω} ∪X ∪ Y being X = {xi : i ∈ N} and Y = {yi :
i ∈ N} and the following diagram of the partial order on Z:
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Let us topologize X in the following manner: U ⊆ X is open iff either ω 6∈ U ,
or ω ∈ U and X \ U is finite. Topologise Y similarly. Therefore, U is open in
Z if only if U ∩X and U ∩ Y are open in X and Y , respectively. Let H be the
set of coplen upsets of Z. A direct computation shows those are the following
subsets of Z:

Type (1): subsets U not containing ω and containing finite subsets of
elements ofX and Y and satisfying the condition that if yi ∈ U then xi, xi−1 ∈ U
(in particular if y1 ∈ U then x1 ∈ U as the particular case of i = 1).

Type (2): subsets U containing ω and containing all elements of X and
Y except, at most, a finite subset of them and satisfying the condition that if
yi ∈ U then xi, xi−1 ∈ U .

Using the standard construction for Priestley duality is possible to see that
H = (H,∩,∪,→H ,¬, ∅, Z) is a Heyting algebra in which the dual pseudocom-
plementation � is indeed definable. Moreover, let us observe the following facts:

• the pseudocomplement is defined as ¬D = D →H ∅.

• the atoms of H are the subsets {xi} for i ∈ N.

• the antiatoms of H are the subsets {ω} ∪X ∪ (Y \ {yi}) for every i ∈ N.

As proved in [48], the congruences of H are in 1-1 correspondence with
normal filters, that is, lattice filters F closed by a combination of the two pseu-
docomplementations, i.e., if U ∈ F , then ¬�(U) ∈ F .

By the result about Pristley duality we can prove that the normal filters of
H are: (i) the one containing only the maximum {Z}, (ii) the one containing
all subsets of type (2) and, (iii) the full algebra H. Then H has only three
congruences that form a three element chain and thus it is subdirectly irreducible
but not simple.

In order to be self-contained let us sketch the proof of this fact:
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(1) Compute the normal filter F generated by the antiatom D = {ω} ∪X ∪
(Y \ {y1}). Since �D = {y1, x1} and ¬�(D) = {ω} ∪X ∪ (Y \ {y1, y2}),
we deduce that {ω} ∪X ∪ (Y \ {y2}) ∈ F and, recursively, we obtain that
all antiatoms belong to F , and so F consists of all subsets of type (2)

(2) Compute the normal filter generated by any subset of type (1). It is easy
to see that it is the full Heyting algebra.

(3) Then the set of congruences of H has exactly three congruences: the
identity, the one corresponding to the normal filter F , and the full algebra.

Also notice that the normal filter F defined in (1) above is indeed Boolean,
because an easy computation shows that the quotient H/≡F is the two-element
Boolean algebra.

Then let us consider the NLc-algebra (N(H, F ), ◦). Notice that N(H, F ) =
{(D,E) ∈ H×H : D∩E = ∅, D∪E ∈ F} is indeed the set of pairs (D,E) such
that D is of type (1) and E ⊆ ¬D. By Theorem 4.9, the ◦-filters of (N(H, F ), ◦)
are the singleton {(Z, ∅)}, the set F = {(D,E) ∈ R(H,F ) : D ∈ F} and the
full Nelson lattice N(H, F ). Thus the ◦-congruences of (N(H, F ), ◦) form a
three-element chain and hence our NLc-algebra is subdirectly irreducible but
not simple.

Remark 4.11. The residuated lattice of the last example is not a IMTL algebra,
i.e. is not prelineal, it does not satisfy the equation (x → y) ∨ (y → x) = 1 as
the following example shows: Take A = {xi} and B = {xi−1}, two atoms of the
Nelson lattice. Then an easy computation shows that:

• A→ B = {w} ∪X ∪ Y \ {xi, yi, yi+1},

• A→ B = {w} ∪X ∪ Y \ {xi−1, yi, yi−1},

Therefore (A→ B)∨ (B → A) = {w}∪X ∪Y \{yi}, which is not the maximum
of the lattice, and thus the residuated lattice is not prelinear.

5 Adding consistency operators to the logic dIRL
and its paraconsistent companions

Let us recall from Section 2.1 the logic dIRL, the logic corresponding to the
variety of distributive involutive residuated lattices, that can be presented as
the axiomatic extension of FLew with the following axioms:

(Inv) φ→ ¬¬φ,

(Dist) ϕ ∧ (ψ ∨ χ)→ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

and its degree-preserving companion dIRL≤. Since the residual negation ¬ in
dIRL is involutive, and hence it does not prove the pseudo-complementation
axiom, i.e. 6`NL ϕ ∧ ¬ϕ→ ⊥, the logic dIRL≤ satisfies

ϕ,¬ϕ 6`dIRL≤ ⊥
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and hence it is paraconsitent with respect to the residual negation ¬. However,
dIRL≤ is not a logic of formal inconstency (LFI) since we cannot define, in its
language, a consistency connective ◦ satisfying

◦ϕ,ϕ,¬ϕ `dIRL≤ ψ

for every ϕ and ψ. This has been the main motivation in the previous sections
for the algebraic study of expansions of dIRL-algebras with suitable consistency
operators. With this background, in this section we will consider the logical
counterparts of those expansions, namely the expansion of the logic dIRL with
three classes of consistency operators ◦ whose degree-preserving companions will
turn out to be LFIs.

5.1 dIRL-logic with a max-consistency operator

In this section we start by defining the expansion of the logic dIRL with a new
connective ◦ whose algebraic interpretation corresponds to a max-consistency
operator.

Definition 5.1. The logic dIRLc is syntactically defined as the expansion of dIRL
in a language which incorporates a new unary connective ◦ with the following
additional axiom:

(A1) ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ)

and inference rules:

(CNG)
ϕ↔ ψ

◦ϕ↔ ◦ψ
(Max)

ϕ ∨ ¬ϕ ∨ ¬ψ
ψ → ◦ϕ .

Clearly, the axiom (A1) and the rule (Max) are the logical counterparts of
conditions (◦1) and (◦2) in dIRLc-algebras respectively, while the rule (CNG)
enforces ◦ to be congruent w.r.t. logical equivalence.

Some observations follow:

(i) Both ◦> and ◦⊥ are derivable in dIRLc, it suffices in (Max) to take ψ = >
and then ϕ = > (resp. ϕ = ⊥).

(ii) The rule of necessitation for ◦:

ϕ

◦ϕ

is also derivable. Indeed, assuming ϕ, we can derive ϕ→ > and > → ϕ in
dIRLc. As a matter of fact, ϕ → > and ϕ → (ψ → ϕ) both are theorems
of RL (and hence a theorem of dIRLc a fortiori). Thus, ϕ `dIRLc ϕ↔ >.

Now, by (CNG) with ψ = >, ϕ ↔ > `dIRLc
◦ϕ ↔ ◦> and since by the

above (i) ◦> is a theorem of dIRLc, by ◦ϕ ↔ ◦> and ◦> we get ◦ϕ by
modus ponens.
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Lemma 5.2. The following derivabilities hold in dIRLc:

(i) ϕ ∨ ¬ϕ `dIRLc ◦ϕ

(ii) `dIRLc ◦ϕ→ ¬ϕ ∨ ϕ

(iii) ϕ ∨ ¬ϕ a`dIRLc
◦ϕ

Proof. (i) It follows by using the rule (Max) with ψ = >.

(ii) Notice that in distributive involutive residuated lattices the inequality
∼x ∨ y ≤ x→ y holds true, and hence, since dIRL is sound and complete
with respect to dIRL-algebras, (¬ϕ∨ψ)→ (ϕ→ ψ) is a theorem in dIRL.
Therefore, since ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ) is logically equivalent to ¬ϕ ∨ ϕ ∨ ¬ ◦ ϕ
and, by the previous observation, in dIRLc the latter logically implies ◦ϕ→
¬ϕ ∨ ϕ. Hence dIRLc ` ◦ϕ→ ¬ϕ ∨ ϕ.

(iii) Direct from (i) and (ii).

It is easy to check that, due to the presence of the rule (CNG) for ◦, dIRLc is a
Rasiowa implicative logic, hence it is algebraizable, and its equivalent algebraic
semantics is given by the quasi-variety of dIRLc-algebras studied in Section 3.1.

Proposition 5.3. dIRLc is strongly complete w.r.t. the class of dIRLc-algebras.

Now, thanks to results on dIRLc-algebras in Section 3.1, we can prove that
dIRLc is a conservative expansion of dIRL.

Proposition 5.4. dIRLc is a conservative expansion of dIRL, that is, if Γ∪{ϕ}
is a set of formulas in the language of dIRL, i.e. without the connective ◦, then
Γ `dIRLc

ϕ iff Γ `dIRL ϕ.

Proof. The right-to-left direction is obvious. Thus, assume Γ 6`dIRL ϕ, then there
is a subdirectly irreducible dIRL-algebra A and an A-evaluation of formulas e
such that e(ψ) = 1 for all ψ ∈ Γ and e(ϕ) < 1. By Lemma 3.7, the unary
operation ◦ on A defined as ◦(1) = ◦(0) = 1 and ◦(x) = 0 otherwise, makes
(A, ◦) a simple dIRLc-algebra. Then e can be extended in the obvious way
to an (A, ◦)-evaluation e′ agreeing with e on the formulas not containing the
connective ◦. Therefore, we have e′(ψ) = 1 for all ψ ∈ Γ and e′(ϕ) < 1, that is,
Γ 6`dIRLc ϕ.

Now we move to the logic dIRL≤c , the degree-preserving companion of the
logic dIRLc.

Definition 5.5. The degree-preserving companion of logic dIRLc is the logic
dIRL≤c defined by the following axioms and rules:

• Axioms of dIRL≤c are those of dIRLc

• Rules of dIRL≤c are:
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(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ
(MP-r) if `dIRLc

ϕ→ ψ, then from ϕ and ϕ→ ψ, derive ψ

(CNG-r) if `dIRLc
ϕ↔ ψ, then from ϕ↔ ψ derive ◦ϕ↔ ◦ψ

(Max-r) if `dIRLc
ϕ ∨ ¬ϕ ∨ ¬ψ, then from ϕ ∨ ¬ϕ ∨ ¬ψ derive ψ → ◦ϕ

We will denote by `≤dIRLc
its corresponding notion of proof. By Proposition

2.1, this axiomatization is sound and complete w.r.t. the semantical consequence
relation |=≤dIRLc

, defined in the obvious way.
Observe that the rules (MP-r), (CNG-r) and (Max-r) are restricted in the

sense that the premises are required to satisfy an extra condition, to be theorems
of the logic.

Now we can check that dIRL≤c is in fact a strong LFI in the sense of Definition
3.2.

Proposition 5.6. The logic dIRL≤c is a strong Logic of Formal Inconsistency
w.r.t. the negation ¬ and the consistency operator ◦.

Proof. By the above mentioned completeness of dIRL≤c w.r.t. |=≤dIRLc
, it is enough

to check the conditions (i.a), (i.b), (i.c) and (ii) in Definition 3.2 for the semanti-
cal consequence relation |=≤dIRLc

. If p, q are two different propositional variables,
then we have:

(i.a) any evaluation e such that e(p) > 0 and e(q) = 0 is such that e(p∧¬p) >
e(q) and hence p,¬p 6|=≤dIRLc

q;
(i.b) any evaluation e such that e(p) = e(◦p) = 1 and e(q) = 0 is such that

e(p ∧ ◦p) > e(q), and hence p, ◦p 6|=≤dIRLc
q;

(i.c) any evaluation e such that e(¬p) = e(◦p) = 1 and e(q) = 0 is such that
e(¬p ∧ ◦p) > e(q), and hence ¬p, ◦p 6|=≤dIRLc

q; and

(ii) any evaluation e is such that e(p∧¬p∧◦p) = 0 and hence p,¬p, ◦p |=≤dIRLc

⊥.

In the context of LFIs, it is a desirable property to recover the classical
reasoning by means of the consistency connective ◦ (see [13]). Specifically, let
CPL be classical propositional logic. If L is a given LFI such that its reduct to
the language of CPL is a sublogic of CPL, then a DAT (Derivability Adjustment
Theorem) for L with respect to CPL is as follows: for every finite set of formulas
Γ ∪ {ϕ} in the language of CPL, there exists a finite set of formulas Θ in the
language of L, whose variables occur in formulas of Γ ∪ {ϕ}, such that

(DAT) Γ `CPL ϕ iff ◦(Θ) ∪ Γ `L ϕ.

When the operator ◦ enjoys the propagation property in the logic L with respect
to a set X of classical connectives, i.e. when

◦ϕ1, . . . , ◦ϕn `L ◦#(ϕ1, . . . , ϕn),

for every n-ary connective # ∈ X and formulas ϕ1, . . . , ϕn built with connectives
from X, then the DAT takes the following, simplified form: for every finite set
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of formulas Γ ∪ {ϕ} in the language of CPL,

(PDAT) Γ `CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ `L ϕ

where {p1, . . . , pm} is the set of propositional variables occurring in Γ ∪ {ϕ}.
In particular, checking whether dIRL≤c satisfies the propagation property for

the connectives X = {⊥,∧,&,→} amounts to check the following conditions:{
`dIRLc

◦⊥
`dIRLc

(◦ϕ ∧ ◦ψ)→ ◦(ϕ#ψ), for each binary # ∈ X

In Proposition 5.8 below we will show that the operator ◦ of dIRLc satisfies
the propagation property with respect to all connectives of logic dIRL.7 Our
proof is algebraic and for that we will need the claims proved in the next lemma.

Lemma 5.7. The following equations hold in the quasivariety of dIRLc-
algebras:

(i) x ∧ ∼x ∧ ∼y ∧ ◦(x ∨ (y ∧ z)) = 0

(ii) (x ∗ y) ∨ ((∼x ∨ ∼◦(x)) ∧ y) = y.

Proof. (i) By (◦1), we know that the equation (x∨y)∧∼(x∨y)∧◦(x∨y) = 0
holds, that is, we have (x∨y)∧∼x∧∼y∧◦(x∨y) = 0. But since x ≤ (x∨y)
we also have that x ∧ ∼x ∧ ∼y ∧ ◦(x ∨ y) = 0.

Now, by replacing y by y ∧ z in the former equation, we get x ∧ ∼x ∧
∼(y ∧ z) ∧ ◦(x ∨ (y ∧ z)) = 0, and since ∼(y ∧ z) ≥ ∼y, we finally get
x ∧ ∼x ∧ ∼y ∧ ◦(x ∨ (y ∧ z)) = 0.

(ii) We start from the equation x∨∼x∨∼◦ (x) = 1, we multiply by y in both
sides and get the following equations:

y ∗ (x ∨ ∼x ∨ ∼◦(x)) = y,
(x ∗ y) ∨ y ∗ (∼x ∨ ∼◦(x)) = y,
y = (x ∗ y)∨ (y ∗ (∼x∨∼◦(x))) ≤ (x ∗ y)∨ (y∧ (∼x∨∼◦(x))) ≤ y∨ y = y.

Hence (x ∗ y) ∨ (y ∧ (∼x ∨ ∼◦(x))) = y.

Proposition 5.8. The logic dIRLc satisfies the following conditions:

• `dIRLc ◦⊥, and

• `dIRLc
(◦ϕ ∧ ◦ψ)→ ◦(ϕ#ψ), for # ∈ {∧,∨,&,→},

and thus, in dIRL≤c the consistency connective ◦ satisfies the propagation prop-
erties w.r.t. all connectives of the logic dIRL.

7The proof of the propagation property for the monoidal conjunction & is in fact a re-
elaboration of a proof found by the automated theorem-prover Prover9 [37].
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Proof. The first condition is satisfied since ◦⊥ is a theorem of the logic, as ob-
served above after Def. 5.1. The proof is algebraic, so we have to prove that, for
any dIRLc-algebra (A, ◦), the following condition holds: ◦(x) ∧ ◦(y) ≤ ◦(x#y),
for all # ∈ {∧,∨, ∗}. As for the lattice operations ∧ and ∨, we have

◦(x ∧ y) = max{z | (x ∧ y) ∧ ∼(x ∧ y) ∧ z = 0}
= max(max{z | x ∧ y ∧ ∼x ∧ z = 0},max{z | x ∧ y ∧ ∼y ∧ z = 0})
≥ max(max{z | x ∧ ∼x ∧ z = 0},max{z | y ∧ ∼y ∧ z = 0})
= ◦(x) ∨ ◦(y) ≥ ◦(x) ∧ ◦(y).

◦(x ∨ y) = max{z | (x ∨ y) ∧ ∼(x ∨ y) ∧ z = 0}
= max(max{z | x ∧ ∼x ∧ ∼y ∧ z = 0},max{z | y ∧ ∼x ∧ ∼y ∧ z = 0})
≥ max(max{z | x ∧ ∼x ∧ z = 0},max{z | y ∧ ∼y ∧ z = 0})
= ◦(x) ∨ ◦(y) ≥ ◦(x) ∧ ◦(y).

Next, let us show that ◦(x) ∧ ◦(y) ≤ ◦(x ∗ y). By (◦2), it is enough to
prove that (x ∗ y) ∧ ∼(x ∗ y) ∧ ◦(x) ∧ ◦(y) = 0. To do so, by (i) of Lemma 5.7,
we can start from the equation

u ∧ ∼u ∧ ∼v ∧ ◦(u ∨ (v ∧ t)) = 0,

and make the following substitutions: replace u by x ∗ y, v by ∼(x ∧ ◦(x)) and
t by y, and get

x ∗ y ∧ ∼(x ∗ y) ∧ ∼(∼(x ∧ ◦(x))) ∧ ◦(x ∗ y ∨ (∼(x ∧ ◦(x)) ∧ y)) = 0,

that is, x∗y∧∼(x∗y)∧x∧◦(x)∧◦(x∗y∨ (∼(x∧◦(x))∧y)) = 0. But x∗y ≤ x
and by (ii) of Lemma 5.7, x ∗ y∨ (∼(x∧◦(x))∧ y) = y, and hence we finally get
x ∗ y ∧ ∼(x ∗ y) ∧ ◦(x) ∧ ◦(y) = 0, as claimed.

Finally, since by (ii) of Proposition 3.13 we have ◦(x) = ◦(∼x), and x →
y = ∼(x ∗ ∼y), the propagation property for →, i.e. ◦(x) ∧ ◦(y) ≤ ◦(x → y),
directly follows as well.

Finally, we are interested in investigating whether we can expect some form
close to (PDAT) for the logic dIRL≤c . Next theorem provides a result in this
direction showing that it is possible to recover classical logic derivations inside
the LFI logic dIRL≤c .

Theorem 5.9 (PDAT-like for dIRL≤c ). Let Γ ∪ {ϕ} be a finite set of formulas
in the language of CPL and let {p1, . . . , pm} the set of propositional variables
appearing in Γ ∪ {ϕ}. Then, there is a natural k > 0 such that:

Γ `CPL ϕ iff Γ `≤dIRLc
(

m∧
i=1

◦(pi))k → ϕ.

Proof. Assume Γ `CPL ϕ, or equivalently, `CPL Γ∧ → ϕ. First of all, observe
that we also have

{pi ∨ ¬pi : i = 1, 2, . . . ,m} `dIRL Γ∧ → ϕ,
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since the class of Boolean subalgebras of distributive involutive residuated
lattices is in fact the whole class of Boolean algebras. Then by the local
deduction-detachment theorem of dIRL, there is a natural k > 0 such that
`dIRL (

∧m
i=1(pi ∨ ¬pi))k → (Γ∧ → ϕ), and thus this theorem is also valid in

dIRLc. But this implies, by (iii) of Lemma 5.2, `dIRLc
(
∧m

i=1(◦pi))k → (Γ∧ → ϕ)
and hence Γ `

dIRL≤c
(
∧m

i=1 ◦(pi))k → ϕ as well.

Conversely, assume `dIRLc (
∧m

i=1(◦pi))k → (Γ∧ → ϕ), and let e be any
evaluation on the two-element Boolean algebra 2. Since 2 is a dIRLc-algebra
with ◦(0) = ◦(1) = 1, we have e((

∧m
i=1 ◦pi)k → (Γ∧ → ϕ)) = 1. But then we

necessarily have e(Γ∧ → ϕ) = 1, because e(
∧m

i=1 ◦pi) = 1. Therefore Γ∧ → ϕ is
a CPL-tautology and so Γ `CPL ϕ.

Note that, in the above formulation of the PDAT theorem for dIRLc, the
natural number k depends on the formulas Γ ∪ {ϕ} involved, and hence it is
not possible to fix such exponent k in advance. However, if we replace the logic
dIRLc by any of its axiomatic extensions L validating the n-potency axiom

ϕn → ϕn+1

for some n, then one can be more precise and state the PDAT theorem for L≤c :
for any set of formulas Γ ∪ {ϕ}, the following condition holds:

Γ `CPL ϕ iff Γ `≤dIRLc
(

m∧
i=1

◦(pi))n → ϕ.

In particular, when L is Nelson logic or its prelineal extension NM logic, which
are 2-potent logics, we can take n = 2 in the previous expression.

5.2 dIRL-logic with a maxB-consistency operator

In this section we consider the logic dIRLmB
c corresonding to the quasivari-

ety of dIRLmB
c -algebras and its paraconsistent degree preserving companion

(dIRLmB
c )≤. The content is mostly parallel to the previous section, only some

details change. In particular we get a simpler PDAT theorem due to the fact
that the consistency connective is Boolean in this case.

Definition 5.10. The logic dIRLmB
c is the expansion of the logic dIRL, in a

language which incorporates a new unary connective ◦, with the following ad-
ditional axioms:

(A1) ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ)
(A2) ◦ϕ ∨ ¬◦ϕ

and inference rules:

(CNG)
ϕ↔ ψ

◦ϕ↔ ◦ψ
(MaxB)

¬(ϕ ∧ ¬ϕ ∧ ψ), ψ ∨ ¬ψ
ψ → ◦ϕ
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Analogously to the case of dIRLc, thanks to Lemma 3.7, we also have that
dIRLmB

c is a conservative expansion of dIRL.
We can check now that dIRLmB

c keeps validating the same properties in
Lemma 5.2 for dIRLc, plus a new one.

Lemma 5.11. The logic dIRLmB
c enjoys the following properties:

(i) ϕ ∨ ¬ϕ `dIRLmB
c
◦ϕ

(ii) dIRLmB
c ` ◦ϕ→ ¬ϕ ∨ ϕ

(iii) ϕ ∨ ¬ϕ a`dIRLmB
c
◦ϕ

(iv) dIRLmB
c ` ◦◦ϕ.

Proof. (i), (ii) and (iii) are as in Lemma 5.2. As for (iv), using (Max) with
ψ = >, we have ¬(◦ϕ∧¬◦ϕ) ` ◦◦ϕ, but the premise is in fact Axiom (A2).

Again, as in the case of the logic dIRLc, it is easy to check that, due to
the (Cong) rule for ◦, dIRLmB

c is a Rasiowa implicative logic and hence it is
algebraizable. The equivalent algebraic semantics is now given by the quasi-
variety of dIRLmB

c -algebras.
We now introduce the degree-preserving companion of dIRLmB

c .

Definition 5.12. The degree-preserving companion of logic dIRLmB
c is the logic

(dIRLmB
c )≤ defined by the following axioms and rules:

• Axioms of (dIRLmB
c )≤ are those of dIRLmB

c

• Rules of (dIRLmB
c )≤ are those of dIRL≤c but replacing the rule (Max-r) by

the following rule:

(MaxB-r) if `dIRLmB
c
¬(ϕ ∧ ¬ϕ ∧ ψ) and `dIRLmB

c
ψ ∨ ¬ψ, then

from ¬(ϕ ∧ ¬ϕ ∧ ψ) and ψ ∨ ¬ψ derive ψ → ◦ϕ

We will denote by `≤
dIRLmB

c
its corresponding notion of proof. As in the pre-

vious subsection, by Proposition 2.1, this axiomatization of (dIRLmB
c )≤ is sound

and complete w.r.t. the semantical consequence relation |=≤
dIRLmB

c
, defined in the

obvious way, and moreover (dIRLmB
c )≤ is a strong LFI as well. The proof is the

same of Propostion 5.6 and it is omitted.

Proposition 5.13. The logic (dIRLmB
c )≤ is a strong Logic of Formal Inconsis-

tency w.r.t. to the negation ¬ and the consistency operator ◦.

As in the case of the logic dIRLc, the ◦ connective in the logic dIRLmB
c nicely

propagates through the rest of connectives X = {⊥,∧,∨,&,→}. This is shown
next, after a previous lemma, formally similar to Lemma 5.8, but this one much
easier to prove.
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Lemma 5.14. The following provability holds in dIRLmB
c :

ϕ ∨ ¬ϕ,ψ ∨ ¬ψ `dIRLmB
c

(ϕ#ψ) ∨ ¬(ϕ#ψ)

for every binary connective # ∈ X.

Proof. Using a semantic argument, it holds since the binary connectives
∧,∨,&,→ are closed under Boolean values in every evaluation over any dIRLmB

c -
algebra.

Proposition 5.15. dIRLmB
c satisfies the following conditions:

• `dIRLmB
c
◦⊥, and

• `dIRLmB
c

(◦ϕ ∧ ◦ψ)→ ◦(ϕ#ψ), for every # ∈ {∧,∨,&,→},

and thus, in (dIRLmB
c )≤ the consistency connective ◦ satisfies the propagation

property w.r.t. all the connectives in X = {⊥,∧,∨,&,→}.

Proof. Straightforward from the above lemma, taking into account that, by (iii)
of Lemma 5.11, ϕ ∨ ¬ϕ a`dIRLmB

c
◦ϕ.

This propagation property for ◦, together with the fact that ◦ϕ is a Boolean
formula for any ϕ, allows us to formulate the following PDAT theorem for
(dIRLmB

c )≤ in simpler terms.

Theorem 5.16 (PDAT for (NLmB
c )≤ ). Let Γ ∪ {ϕ} be a finite set of formulas

in the language of CPL and let {p1, . . . , pm} the set of propositional variables
appearing in Γ ∪ {ϕ}. Then

Γ `CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ `≤
dIRLmB

c
ϕ.

Proof. The proof is essentially the same as in Theorem 5.9 for dIRL≤c . The only
difference is that now (

∧m
i=1 ◦(pi))n turns out to be equivalent to just

∧n
i=1 ◦(pi)

since this is a Boolean formula, and this conjunction can be moved back to the
premise as the set of formulas {◦p1, . . . , ◦pm}.

5.3 dIRL-logic with a Bmax-consistency operator

Finally, we consider in this section the logic resulting from expanding the logic
of distributive involutive residuated lattices with a Bmax-consistency connective
and its paraconsistent degree-preserving companion. Both of them are very
similar to the case of maxB-consistency connective of previous section.

Definition 5.17. The logic dIRLBmc is the axiomatic extension of dIRLc with
the following additional axiom:

(A4) ◦ϕ ∨ ¬◦ϕ

It is clear that dIRLBmc is thus algebraizable, with equivalent algebraic se-
mantics given by the quasivariety of dIRLBm

c -algebras.
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Proposition 5.18. dIRLBmc is strongly complete w.r.t the class of dIRLBm
c -

algebras.

Actually, by definition, the logic dIRLBmc is an extension of dIRLc, but it is also
an extension of dIRLmB

c , as the dIRLc’s rule (Max) is stronger than the dIRLmB
c ’s

rule (MaxB), and hence the latter is derivable in dIRLBmc . As a consequence, all
the properties that have been shown for dIRLc and dIRLmB

c also hold for dIRLBmc .
This has also impact on the properties of the corresponding degree-preserving

companion of dIRLBmc .

Definition 5.19. The degree-preserving companion of logic dIRLBmc is the logic
(dIRLBmc )≤ defined as the axiomatic extension of dIRL≤c with the axiom (A4).

Of course, as in the previous cases, the logic (dIRLBmc )≤ is a strong LFI
(details are omitted). Moreover, it follows that the consistency connective ◦ in
(dIRLBmc )≤ also satisfies the same propagation properties and the same PDAT
theorem as for (dIRLmB

c )≤.

Theorem 5.20 (PDAT for (dIRLBmc )≤). Let Γ∪ {ϕ} be a finite set of formulas
in the language of CPL and let {p1, . . . , pm} be the set of propositional variables
appearing in Γ ∪ {ϕ}. Then, the following condition holds:

Γ `CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ `≤
dIRLBm

c
ϕ.

5.4 Logics of Formal Undeterminedness

In this final subsection, we would like to emphasize that the logics dIRL≤c ,
(dIRLmB

c )≤ and (dIRLBmc )≤ are not only LFIs but also Logics of Formal Un-
determinedness (LFUs), the latter being introduced in [38].

LFUs are in a sense dual to LFIs, since in the same way that a consistency
operator in a LFI controls the explosion in the presence of a contradiction, a
“determinedness” operator ◦ in a LFU controls the law of the Excluded Middle,
namely: given a paracomplete logic L, i.e. such that 6`L ϕ ∨ ∼ϕ, if ◦ is a
determinedness operator in L, then ◦ϕ `L ϕ ∨ ∼ϕ. More formally, we have the
following definition.

Definition 5.21. Let L = 〈Σ,`〉 be a Tarskian, finitary and structural logic
defined over a signature Σ with a disjunction ∨, a negation ∼ and a primi-
tive or defined unary connective ◦. Then L is said to be a Logic of Formal
Undeterminedness with respect to ∼ and ◦ if the following holds:

(i) 0 ϕ ∨ ∼ϕ, for some ϕ;

(ii) there is a formula ϕ such that

(ii.a) ◦ϕ 0 ϕ;

(ii.b) ◦ϕ 0 ∼ϕ;

(iii) ◦ϕ ` ϕ ∨ ∼ϕ, for every ϕ.
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It turns out that, as we will formally show below, the consistency operator ◦
of any of the logics logics dIRLc, dIRL

mB
c and dIRLBmc is a determinedness operator

as well, and hence all these explosive logics are LFUs. Moreover, this is also
the case for the paraconsistent logics dIRL≤c , (dIRLmB

c )≤ and (dIRLBmc )≤. This
is clear for the explosive logics dIRLc, dIRL

mB
c and dIRLBmc due to (i) of Lemma

5.2, but also for the logics (dIRLmB
c )≤ and (dIRLBmc )≤ since in these logics ◦ϕ is

a Boolean formula. It is not so obvious in the case of the logic dIRL≤c , where
checking condition (iii) above

◦ϕ `≤dIRLc
ϕ ∨ ∼ϕ,

amounts to check the validity of the inference

`dIRLc ◦ϕ→ ϕ ∨ ∼ϕ.

But this follows from observing that the formula (∼δ ∨ γ) → (δ → γ) is a
theorem in dIRL, and that ∼◦ϕ ∨ (ϕ ∨ ∼ϕ) is a theorem of dIRLc, as it is an
equivalent rewriting of the axiom (A1).

In algebraic terms, we can analyze the above observations as follows: if
a operator ◦ on a dIRL-algebra satisfies the basic equation we imposed for a
consistency operator, that is

(◦1) x ∧ ∼x ∧ ◦(x) = 0

then the following inequality is valid as well:

(◦d) ◦(x) ≤ x ∨ ∼x.

As a matter of fact, we have the following lemma.

Lemma 5.22. Let A be a dIRL-algebra and let ◦ : A→ A be a unary operation.
Then (◦1) implies (◦d).

Proof. In every residuated lattice x ∗ y ≤ x ∧ y and hence, by (◦1), one has
◦(x) ∗ (x ∧ ∼x) ≤ ◦(x) ∧ (x ∧ ∼x) = 0 and hence ◦(x) ≤ ∼(x ∧ ∼x). By the
involutive property of ∼, then, ◦(x) ≤ ∼(x ∧ ∼x) = x ∨ ∼x. Therefore, it is
clear that (◦1) implies (◦d).

This means in particular that all the three logics dIRL≤c , (dIRLmB
c )≤ and

(dIRLBmc )≤, besides being LFIs, are LFUs as well. In other words, these logics
are strict LFIUs, as coined in [14]. Therefore, in these logics, the operator ◦ is
in fact a classicality operator in the sense of Omori in his recent paper [43].

On the other hand, the other implication (◦d) implies (◦1) does not hold
in general, since (◦d) is equivalent to ◦(x) ∗ (x ∧ ∼x) = 0 which, in general, is
strictly weaker than (◦1). However, it indeed holds true if we require ◦(x) be
Boolean.

Lemma 5.23. Let A be a dIRL-algebra and let ◦ : A→ A be a unary operation
such that the following equation holds:

◦(x) ∨ ∼◦(x) = 1

Then (◦d) implies (◦1).
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Proof. It follows by easily checking that the following equations hold in any
dIRL-algebra: x → (x ∧ y → x ∗ y) = 1 and ¬x → (x ∧ y → x ∗ y) = 1, and
hence the equation (x ∨ ¬x) → (x ∧ y → x ∗ y) = 1 holds as well. Therefore
if ◦(x) ∨ ∼◦(x) = 1, then we have ◦(x) ∧ y → ◦(x) ∗ y = 1, for every y. In
particular, taking y = x ∧ ∼x, we get ◦(x) ∧ (x ∧ ∼x) → ◦(x) ∗ (x ∧ ∼x) = 1,
that is, ◦(x) ∧ (x ∧ ∼x) ≤ ◦(x) ∗ (x ∧ ∼x), as desired.

Therefore, being LFI turns out to be equivalent to being LFU if we replace
(◦1) by (◦d) in the logics (dIRLmB

c )≤ and (dIRLBmc )≤, but not in (dIRLc)
≤.

6 Concluding remarks

In this paper we have been concerned with introducing Logics of Formal In-
consistency (LFIs) upon the class of substructural logics having subvarieties of
distributive involutive residuated lattices as algebraic semantics. To do so, we
have first introduced and studied, from an algebraic point of view, distributive
involutive residuated lattices expanded with three suitable types of consistency
operators. Particular attention has been paid to the subvariety of Nelson lat-
tices. Then, the corresponding truth-preserving and degree-preserving logics
have been axiomatised, the latter being paraconsistent and falling within the
class of LFIs.

At this point there are several observations we deem interesting to discuss.
The first one concerns with our request for the involutive lattices to be dis-
tributive. In fact, although distributivity is quite often a necessary request (see
for instance the proofs of Theorem 3.8 and Theorem 5.9) it is questionable if
similar results could be obtained getting rid of that property. Besides being
more general, avoiding distributivity might frame the results of this paper in
the setting of affine Linear Logic without exponentials of which (not necessarily
distributive) involutive residuated lattices provide an algebraic semantics.

The second one is in fact an open problem. In Section 4.2 we have shown
an example of dIRLc-algebra (in fact a NLc-algebra) that is subdirectly irre-
ducible but not simple. It would be interesting to know whether there exists a
subdirectly irreducible IMTLc-algebra that is not simple as well.

The third observation concerns the status of the modus ponens rule in the
logics dIRL≤c , (dIRLmB

c )≤ and (dIRLBmc )≤. By the very definition of degree-
preserving logics, modus ponens is not a valid rule in any of them, only a
restricted version where the implication is a theorem holds. However, in the
logics (dIRLmB

c )≤ and (dIRLBmc )≤, due to the PDAT theorems for them (Theo-
rems 5.16 and 5.20 resp.), it is clear that assuming the propositions involved are
consistent guarantee the validity of the following modus ponens-like inference:

{ϕ,ϕ→ ψ, ◦ϕ, ◦ψ} ` ψ.

The situation in the logic dIRL≤c is different, as even this weaker form of modus
ponens is not valid. Indeed, take the dIRLc-algebra L in depicted in Fig. 2 and
an evaluation e on L such that e(ϕ) = e and e(ψ) = a, and hence e(◦ϕ) = ◦(e) =
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b and e(◦ψ) = ◦(a) = b. A simple computation also shows that e(ϕ → ψ) = c.
Then we have e(ϕ) ∧ e(ϕ→ ψ) ∧ e(◦ϕ) ∧ e(◦ψ) = e ∧ c ∧ b ∧ b = b 6≤ a = e(ψ).
Therefore,

{ϕ,ϕ→ ψ, ◦ϕ, ◦ψ} 6`≤dIRLc
ψ.

Nevertheless, such a ‘witnessed form’ of modus ponens holds in dIRL≤c if we
replace the residual implication ϕ→ ψ by the material implication ¬ϕ ∨ ψ. In
fact, using axiom (A1), it is not difficult to check that ϕ∧ (¬ϕ∨ψ)∧◦ϕ∧◦ψ is
logically equivalent to ϕ ∧ ψ ∧ ◦ϕ ∧ ◦ψ, that logically implies ψ. Therefore the
following pattern of inference

{ϕ,¬ϕ ∨ ψ, ◦ϕ, ◦ψ} `≤dIRLc
ψ.

is indeed valid in dIRL≤c .
We finish with two further questions for future research. We have seen that,

in the prelinear case, the quasivarieties of IMTLmB
c - and IMTLBm

c -algebras are
in fact varieties, since in these algebras the Baaz-Delta connective ∆ is defin-
able as ∆(x) = x ∧ ◦(x). Thus a first question to be investigated is whether
the quasivarieties of dIRLc-, dIRLmB

c - and dIRLBm
c -algebras are actually vari-

eties or, otherwise, proper quasivarieties. A second question is to study an
alternative way of defining LFIs related to dIRL logics without relying on the
degree-preserving companions. The idea would be to start from the work of Bu-
saniche and Cignoli [8] on the algebraic characterization of the paraconsistent
Nelson logic N4 in terms of a certain variety of non-integral involutive residu-
ated lattices with a constant, and try to generalise it to the logic dIRL, and then
adding a suitable consistency operator.
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[4] M. Baaz. Infinite-valued Gödel logics with 0-1-projections and relativiza-
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53–106. Kluwer Academic Publishers, 1995.

[32] S. Jenei, On the structure of rotation-invariant semigroups. Arch. Math.
Log. 42 (5): 489–514, 2003.

[33] Y. Katoh, T. Kowalski, M. Ueda. Almost minimal varieties related to fuzzy
logic. Reports on Marthematical Logic 41, 173-194, 2006.
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