
An Agent Architecture for Simultaneous
Bilateral Negotiations?

Angela Fabregues and Carles Sierra

IIIA - Institut d’Investigació en Intel·ligència Artificial
CSIC - Spanish Scientific Research Council,

UAB, 08193 Bellaterra, Catalonia, Spain

Abstract. In this paper we introduce an agent architecture for joint action nego-
tiation among several agents in complex environments and with negotiation time
bounds. The architecture is based on a graded BDI model and on an information-
based negotiation model. It is being tested using DipGame (http://www.
dipgame.org).

1 Introduction

A lot of research on automated negotiations has been made in recent years but very lit-
tle on negotiations with humans. Most of the papers on automated negotiation focus on
bilateral negotiations where software agents compete using utility maximisation strate-
gies. These strategies may work well when negotiating with software agents but not
necessarily against humans that in many cases will not behave according to a construc-
tivist rationality principle [2]. For instance, human agents’ decisions depend a lot on e.g.
the relationships with the other agents and on emotions. In this work we deal with si-
multaneous, repeated and bilateral negotiations in competitive environments. The other
agents can be human or software. And they are able to co-operate performing joint plans
to get a better outcome. Here, as we will see, good does not exclusively mean obtaining
high utility but also to obtain other desired features.

We assume that agents are negotiating over large spaces of potential joint plans,
in a limited amount of time and with limited resources. These are the usual settings
that humans are faced with in their everyday life. Humans do not attempt to find the
optimal solution before starting negotiating with others. People deal with uncertain en-
vironments and do not hesitate to negotiate plans that are not optimal but simply good
enough. Usually, it is not possible to get the optimal one because of time constraints
and because of the competitive simultaneous negotiation setting: if you don’t close a
deal quickly, you may not be able to close any deal at all.

The architecture proposed in this paper is specially designed for environments where
several self-interested agents compete periodically performing actions in specific time
instants. All the agents perform the actions at the same time. Actions change the state
of the world but not all the actions are successfully executed, i.e. there is uncertainty on
whether an action will be successful. Actions of all the agents are executed concurrently,
therefore conflicts arise among actions and some of them may fail.
? Paper already published: [1].

Before selecting what actions to perform, agents interact with the aim of deciding
joint plans, that is, to co-operate. Agents are assumed to be competitive but they are
also interested in increasing their confidence on the other agents’ next actions. This is
because knowing what the other agents are going to do allows us to choose actions that
avoid undesired conflicts. Getting from others this information and deciding joint plans
is possible thanks to negotiation. In the environments we envisage an agent negotiates
trying to convince the others to perform the set of actions that it desires them to perform.
There would be few actions to execute but a lot of negotiation to decide them.

This paper presents ongoing work and there are not experimental results yet. We
plan to test the architecture using the DipGame testbed (http://www.dipgame.
org) against human and software players. DipGame provides an environment that is
complex enough for testing our negotiation model.

In this work we first shortly introduce, as background material, the g-BDI and
LOGIC (Section 2) models that we incorporate as components of our architecture. We
then describe the architecture (Section 3), the action planning (Section 4), and the ne-
gotiation (Section 5) components. The paper ends with a discussion on future work
(Section 6).

2 g-BDI and LOGIC

Taking a look into the literature we see that one of the most popular agent models is
the BDI model [3–5]. BDI architectures have Believes, Desires and Intentions as their
principal components. The BDI model has been used to cope with complex, dynamic
and uncertain environments.

We use a graded BDI model, g-BDI [6], in order to describe the mental state of
the agent. We want to build agents capable of interacting with humans. And human
agents are really good working in uncertain environments. We argue that this graded
BDI model is very useful when dealing with complex environments where the world is
not perfectly observable as these we are considering here (e.g. the outcome of an action
is uncertain).

The other model that we base our work on is the LOGIC negotiation model [7]. This
work structures the information that we need in order to be able to negotiate with hu-
mans in repeated encounter scenarios. Information is organised along five dimensions:
Legitimacy, that is, the relevant information that might be useful to the other agent in
the negotiation, Options, that is, the deals that are acceptable, Goals, that is, the objec-
tives of the negotiation, Independence, that is, the outside options1 and Commitments,
that is, previously signed agreements.

We use this model but not exactly as it is described in [7]. The LOGIC dimensions
are assumed to be prepared before every single negotiation with an agent starts. Then,
the negotiating agents exchange several proposals until a deal is accepted or someone
withdraws. We do this differently. We do not select the negotiation partner beforehand.
We maintain the information on the five dimensions updated on real time and negotiate
with one or another agent depending only on the varying information content along the

1 What can we do if the negotiation fails.

five dimensions. In this way, the partnership selection is intermingled with the selection
of the next option to negotiate. We do so as our architecture needs to allow for mul-
tiple bilateral negotiations. We are also interested in the way that LOGIC proposes to
evaluate the relationships between the different agents.

3 Architecture

In our architecture the environment, the world and the agents, are perceived via an
interface module, see Figure 3. The messages that the agents send to us, the actions that
they try to perform and the state of the world are observed through it. These perceptions
are stored in a database (History) that updates the beliefs of the agents and provides data
for decision making.

Action planning

Negotiation

Cognitive model

Interface

World Agents

MessagesActions

History

World state

Beliefs

DesiresIntentions

L

O

G

I

C

Strategy

Joint
plans

Heuristic search

Utility

Confidence

Bulding relationships

balance intimacy

Summary
measures:

trust, ...

Fig. 1. Agent architecture. White boxes represent data or concepts, boxes with round corners
represent processes and arrows represent data flows.

Beliefs are updated via an interpreter that is a mechanism capable of inferring facts
based on the information that is stored in the history. These facts with their correspond-
ing degree are the beliefs of the agent. The interpretation of the environment observa-
tions (i.e. the perception) depends mostly on the agent itself. We assume that an agent
has a set of local rules to interpret the dialogical actions. The rules determine updates in
the beliefs model of the agent. The schema of those rules is: State(σ) AND Message(µ)
THEN Update(B(ϕ)) and the intended meaning of a rule is: from the current environ-
ment and internal states (σ) and a perceived message (µ) then update the beliefs model

B(ϕ). Every agent will then possess a theory consisting of a number of such rules that
will update, for instance, the agent’s model of the behaviour of other agents. Beliefs
are one of the components of the agent’s cognitive model together with desires and in-
tentions as our architecture is based on a graded BDI model [6]. The agent’s cognitive
model provides data for the planning of actions and for the negotiation module. The
behaviour of the agent depends on the dynamics of beliefs and desires.

In order to be able to decide what to do next the agent must look for action alterna-
tives and build plans where, either the agent alone or with the help of others, the agent
can get a good enough outcome in a particular world state. This action planning is done
in our architecture with a heuristic search that is explained in section 4 and that provides
a set of joint plans.

Any joint plan includes actions to be performed by other agents. Our certainty on the
selection of that particular action by the other agent may be low. To increase it, agents
negotiate proposing joint plans that may make the selection of those particular actions
more attractive to the other agent. To select attractive proposals, the negotiation module
organises the information into five different dimensions as described by the LOGIC
negotiation model [7]. The legitimacy dimension retrieves from the beliefs the relevant
information for the currently open negotiation. The options are the deals that can be
built from the joint plans. The goals are the desires of the agents and the independence
is a measure of the options that are currently available. Finally, the commitments are the
previous promises to act still active. They are retrieved from the previous signed deals
contained in the History. The negotiation strategy cares about building relationships for
future negotiations and uses the model of the other agents behaviour to select the next
message. See section 5 for further details.

This architecture has been built to be used in complex and very competitive envi-
ronments. In those environments, agents are not able to wait until the optimal solution
is found. They have to interact with other agents from the very beginning, and make
proposals of deals on joint plans while they decide which plans are the best ones. Thus,
the execution of an agent consists on several concurrent processes for: the interface (to
receive messages, observe the performed actions and the world state and store them in
the history), the interpreter that updates the agent model from the changes in the history,
action planning and for the negotiation module (selecting proposals to make and actions
to perform). The data in the boxes is constantly being updated by these processes. But
the negotiation process gets idle regularly when a proposal is sent to another agent as
we want to have only one proposal open at anytime. This simplifying restriction will be
removed in future versions of the agent implementation. The idle time gets over when
an answer from the appropriate agent is received or too much time has passed without
any answer. See Algorithm 1 for a multithreaded version of the agent. The meaning of
the different variables will become clear when reading the subsequent sections.

The algorithm consists on initially spawning all the processes except for the nego-
tiation one. And then, repeat a sequence of: a number of negotiation rounds (modelled
as function negotiation()) up to the time limit, a selection of actions from the set of
agreed upon joint plans and their execution. The negotiation function starts waiting. The
action planning execution needs some time to get enough plans to feed with options the
negotiation process and time must be also given to other agents to analyse our proposals

Algorithm 1 function init(tmax)
Require: shared P t {current plans}
Require: shared δ = ⊥ {current proposed deal}
Require: shared response = ⊥ {received response to δ}
Require: shared patience = default {patience}

spawn pr1...prn {processes associated to the architecture}
while > do
tlimit ← tnow + tmax
while tnow < tlimit do
negotiation()

end while
Actions← selectActions(P t)
perform(Actions)

end while
return

Algorithm 2 function negotiation()
waituntil(tnow = patience or response 6= ⊥)
if δ 6= ⊥ then

if response = ⊥ then
sendWithdraw(δ)
δ ← ⊥

else
if response = accept(δ) then
Commitments← Commitments ∪ {δ}
response, δ ← ⊥

end if
end if

end if
Proposals′ ← Proposals
Proposals← Proposals \ Proposals′

Deals← getProposalsToAccept(Proposals ′)
for δ′ ∈ Deals do
sendAccept(δ′)

end for
for δ′ ∈ Proposals′ \Deals do
sendReject(δ′)

end for
if Deals = ∅ then
δ ← selectNextDeal(Plans)
if δ 6= ⊥ then
sendProposal(δ)

patience← tnow + t
β(δ)
max

end if
end if
return

after sending them. When new messages arrive, we check if it is a proposal. If it is, the
message is stored in the set of proposals. This set is shared with the negotiating func-
tion that periodically checks this set to select a subset of proposals that can be jointly
acceptable. The rest of proposals are rejected. If none of the proposals is good enough,
a new deal is selected and the negotiation round is finished. Every proposal is stored
in δ until an answer is received or a timeout fires. The negotiation function, Algorithm
2, waits for this answer. When it arrives, it stores it in the variable response and the
negotiation function resumes its execution by processing the answer.

Agents interact with the environment (performing actions) and also with other agents
(sending and receiving messages). The communication module provides a language
useful for formulating actions and also proposing deals. We assume that a common
language is shared. We use the L1 language that is the first level of the language tower
proposed in [8]. It allows agents to interact via exchanging, accepting and rejecting pro-
posals, or to withdraw the negotiation, as defined in figures 2 and 3. In the subsequent
sections we explain the components of the architecture and provide the equations for
the functions that appear in the already introduced algorithms.

L1 ::= propose(α, β, deal) | accept(α, β, deal) |
reject(α, β, deal) | withdraw(α, β)
deal ::= Commit(α, β, ϕ)+ | Agree(β, ϕ)
ϕ ::= predicate | Do(α, action) | ϕ ∧ ϕ | ¬ϕ
β ::= α+

α ::= agent

Fig. 2. L1 language definition. Note that: expression+ denotes a non-empty sequence of
expression, non terminal symbols are written in italic, and undefined symbols (referring to
terms in the ontology) appear in underlined italics.

4 Action Planning

The module of action planning, see Figure 3, provides a set of joint plans that can
include actions to be performed by other agents. Those plans that involve actions for
several agents require the collaboration among them and thus may trigger a negotiation
process.

A basic plan is a tuple 〈α, a, t〉 where α is an agent, a is an action and t is a time
instant. The intuitive meaning is that agent α performs action a at time t. A plan is a
set of such basic plans.The set of basic plans is denoted as B and the space of possible
plans is P = 2B . The empty set meaning inaction.

A plan is unfeasible if it has two or more incompatible actions. The incompatibility
of actions depends on the application domain, e.g. in the Diplomacy game we cannot
move the same unit to two different regions at the same time. Two feasible plans p, p′ ∈
P are incompatible if p ∪ p′ is an unfeasible plan.

s1s0

s2

propose(α, β, deal)

accept(α, β, deal), reject(α, β, deal)

withdraw(α, β), [tmax]withdraw(α, β), [tmax]

Fig. 3. L1 language protocol. Agents can offer, accept and reject proposals, or withdraw the
negotiation. After some time tmax without communication the negotiation is assumed to finish.
Note that the labels of the arrows are related to the sentences that can be formulated by the
language defined in Figure 2.

We evaluate single plans based on their utility. We assume that there is a utility
function U : P ×W → [0, 1] for plans and world states, and a confidence measuring
the probability that a plan would be executed, C : P → [0, 1]. Note that as some actions
may depend on other agents we may be uncertain about them being actually performed.

Definition 1. Given a plan p ∈ P and a world state w, the value of plan p in world
state w, V(p, w), is defined as the expected utility of the plan given the probability
(confidence) of the plan being executed:

V(p, w) = E[U(p, w)] = U(p, w) · C(p) (1)

The evaluation of the confidence and the utility depend a lot on the application
domain and on the beliefs of the agent. We measure the confidence as the probability
that we have on all agents involved in the plan performing the actions that the plan
requires them to perform. That is, as our degree of belief on it (see [6] for details on the
modelling of beliefs). If an agent thinks that it is not possible for a plan to be performed
because the other agents are not going to do what we want to, then it will not take it
into consideration and will not engage in negotiations over it, the agent will just look
for another option.

The confidence level of a plan is usually in line with the trust on other agents and
on the time horizon set by the latest basic plan in the plan. The more agents the plan
depends upon, the lower the probability of success and the latter the lattest basic plan
to be completed the more improbable the plan is as the probability of the environment
changing (and thus making the actions unfeasible) in the meantime will be higher.

The utility of a plan is calculated based on the utility of the states of the world that
we can get executing it and the probability, P, on each of those states being reached.

Definition 2. Given a plan p ∈ P and a world state w, the utility of plan p in w,
U(p, w), is defined as the expected utility of the world states that we can reach per-
forming p:

U(p, w) =
∑

wj∈W

P(wj |p, w)× U(wj) (2)

Both, the utility and the probability of reaching a world state (U(wj) and P(wj |p, w))
depend on the application domain. In domains where the world is not perfectly observ-
able and thus we are not sure about the current state nor about the state transition prob-
abilities, we could use Partially Observable Markov Decision Processes (POMDPs).
However, a wealth of data would be necessary to model it accurately. Even when the
world is perfectly observable, we have to deal with uncertainty because we do not know
what the other agents are going to do. And their actions will affect the world as well.
The utility takes into account the uncertainty on the world. Contrarily, the confidence
measures to what extend we are sure that the plan will be executed.

Definition 3. Given a plan p ∈ P , the confidence of executing it, C(p), is defined as
the degree of belief, rb, on all its basic plans b ∈ p being executed:

C(p) =
∏
b∈p

B(b,rb)

rb (3)

Before starting a negotiation process, our belief on a basic plan being executed can
be low. An agent can negotiate to increase its confidence on it. This is done by signing
deals that provide commitments on other agents actions. When an agent commits to the
execution of a basic plan, this commitment is added to the set of current commitments,
C and our belief on this basic plan being executed is the trust that we have on the agent
[9]. But to decide whether to negotiate or not a deal on a basic plan, we can estimate
the confidence that we would obtain after negotiating it.

Definition 4. Given a basic plan b = 〈α, a, t〉, the estimation of β’s belief on its future
execution B(b, rb) if β engages in a negotiation, is defined as:

rb = P(b|¬ϕ)× P(¬ϕ) + T (β, α, ϕ)× P(ϕ) (4)

where ϕ = Commit(α, β,Do(α, 〈a, t〉)), T (β, α, ϕ) is the trust that β has on α hon-
ouring the commitment, and P(ϕ) is the probability that α accepts the commitment.

As the search space for plans is exponential in the number of possible actions and
the evaluation of an action may change a lot due to changes in the environment (world
state) we have to work with good enough plans instead of looking for an optimal so-
lution. In the kind of environments we are working on, we assume optimality is never
achievable in practical terms. Therefore, the usual planning techniques do not provide
good results. What we need is an action planning engine that would provide a set of
feasible plans at any time taking into account the dynamics of our beliefs. It is impor-
tant to have a rich set of solutions instead of just one as it makes the negotiation process
more robust by providing several options for negotiation. To achieve this robustness,

we enforce by construction that the set of plans satisfy a trade-off between coherence
and diversity. We want to have at any time as many good plans as possible but also
we want coherence and diversity. Coherence means that the plans are somehow similar
among them in order to leave several plans available as options when a particular sub-
plan is successful negotiated, as incompatible options will be removed. Diversity means
that plans are somehow dissimilar in order to leave several of them available as options
when the negotiation on a particular subplan fails. We define the concept of similarity
of two plans as the proportion of basic plans that they have in common.

Definition 5. The similarity between two plans p, q ∈ P , is defined as the proportion
of common basic plans:

sim(p, q) =
|p ∩ q|
|p ∪ q|

(5)

To define a degree of trade-off between coherence and diversity we use the Gini
mean difference as a measure of dispersion that compares pairs of elements, in our case
plans, of a set.

Definition 6. Given the set of computed plans at time t, P t ⊆ P , we define the statisti-
cal dispersion of P t, ∆(P t), as the Gini measure of the plans similarity.

∆(P t) =
1

|P t|(|P t| − 1)

∑
p,q∈P t

sim(p, q) (6)

Thus the higher the gini value, the higher the dispersion and the lower the gini the
higher the coherence. The problem is that gini compares pairs of plans, not larger sets
of them. Then it could happen that a set of plans with high dispersion could have a
single basic plan appearing in all the plans of the set. This is not desirable because all
the plans would depend on that single basic plan. This is a problem that could be solved
applying a measure of dispersion not only to pairs but also to subsets of three, four or
more plans. But the complexity of the resulting measure would be too high. Instead of
this we use a measure of the popularity of the basic plans that we combine with the Gini
dispersion measure. Then, under some threshold, the lower the maximum popularity of
basic plans, the better.

Definition 7. The popularity of a basic plan b ∈ B within a set of plans P t is the
proportion of plans in P t that contain it:

pop(b, P t) =
|{p ∈ P t : b ∈ p}|

|P t|
(7)

The relevance of having a set of plans that is at the same time coherent and diverse
will be better understood when introducing the concept of deal in the next section.
In addition to looking for diversity of basic plans we could also look for diversity of
negotiation partners (the agents involved in the basic plans), of actions or of time. Or
whatever other dimension of a basic plan would like to define.

We use genetic algorithms (GA) to look for those plans. Genetic algorithms allow
to efficiently explore large spaces of solutions. They produce successive populations of

solutions that are increasingly better adapted to the environment even when it is dy-
namically changing along time. For us, each single solution, a chromosome in the GA,
represents a feasible plan. This population is updated generation after generation by the
crossover, mutation and selection operators. Crossover and mutation must guarantee the
feasibility of the generated plans.

We look for a set of plans being coherent and diverse, as explained before. We use
an elitist selection over some individuals that will survive to the next generation. Elitism
should be applied to the subset of the population that better satisfies a combination of
factors: being coherent, diverse, having a minimum number of basic plans, and having
substantial utility and confidence. To facilitate the coverage of the whole search space,
also other individuals survive but with a probability of survival proportional to the value
of their fitness. Finally, the rest of the members of the new population are generated with
the crossover mechanism. A certain probability of mutation allows to explore plans
containing basic plans that were not included in the initial population.

As explained before, the environment is constantly changing and thus also the be-
liefs of the agent. As the confidence and utility measures depend on it, the individual
evaluation of the plans can change drastically and thus provoke an apparently inco-
herent behaviour of the agent. Like proposing to do the opposite that was proposed
seconds ago. If we guarantee that a set of coherent plans survive to the next generation,
the changes in the plans that are available for negotiation is not so drastic and therefore
the behaviour of the agent will not be too erratic. On the other hand, a certain degree of
diversity allows the search to explore the whole space of plans. This permits the agent
to be prepared for any changes in the environment when they happen. Just in the same
way as diversity acts in nature. Adjusting the level of coherence and diversity is thus
crucial to have a good set of plans available at any time. The specific design including
the codification of plans into chromosomes as well as the way to build the first popu-
lation, and how to apply crossover and mutation depend, obviously, on the application
domain.

5 Negotiation

Agents’ plans of action usually contain basic plans with actions assigned to other
agents. Those plans are considered joint plans. Plans and joint plans are formulated by
the action planning module, see Figure 3, but the other agents involved in those plans
do not know about them. Or, at least, do not know about our interest on them. Thus, the
confidence that we have a priori on those plans may not be good at all. We would like
that the other agents commit to the performance of the actions associated to the plans
with the highest utility values because the commitments increase the confidence in their
eventual execution and then our expected utility increases.

The first thing we need to do is to check which are our options for negotiation.
Then, we evaluate them taking into account our goal in the negotiation, the previous
commitments that we have and our independence. In the following we describe in more
depth those dimensions, their usage in the model and how to formulate the negotiation
options.

The options in a negotiation are the deals that we can accept [7]. A deal is in fact
a plan. The signature of a deal commits the agents accepting the deal to perform the
actions that the plan assigns to them. The action planning module provides us with a set
of plans that could be used as deals. However, it is sometimes necessary to split those
plans into several deals as they need to be negotiated separately with different agents.
Thus, from the plans we produce deals that have actions assigned to our agent and just
another agent. We denote the set of deals produced by a plan p as deals(p), which is a
set of plans: deals(p) ⊂ 2p.

When a deal has been accepted, the negotiating agents commit to perform the ac-
tions in the basic plans that are assigned to them. Commitments being honoured up
restrict the behaviour of agents. Achieving commitments from other agents is essential
as their behaviour gets restricted and then the confidence for our plans increases.2 At
the same time, our commitments restrict our behaviour making us more predictable and
thus vulnerable from being exploited. After signing a deal, some of the previous possi-
ble plans get incompatible with the current commitments (the set of commitments is in
fact a plan). Unfeasible plans are removed from the set of options

A deal is good if it provides satisfaction to the agent. We thus evaluate a deal as the
estimated satisfaction of the agent desires when adding this deal to the set of commit-
ments, δ ∪ Ct. Agents want to get the best possible set of commitments, that is, the set
that is compatible with the plans that have the highest utility. At the same time, the con-
fidence in those plans has to be as high as possible. And also the set of available plans,
i.e. independence, has to be kept as large as possible to allow for further improvement
of the current set of commitments. Therefore, the satisfaction of an agent is defined as
an aggregation operator over three criteria: utility, confidence and independence. This
aggregation operator may change along time.

Definition 8. Given a set of plans P t and a set of commitments Ct, the satisfaction of
an agent is defined as an aggregation of three different criteria: utility, confidence and
independence.

sat(P t, Ct) = f t(vU , vC , vI) (8)

where: f t is an aggregation operator (see for instance [10]), vU is the OWA average
utility of the plans in P t, vC is the average confidence of the plans in P t and vI is the
percentage of plans in P t compatible with Ct.

The coherence and diversity that we were looking for when searching for plans is
crucial to be able to obtain an interesting set of deals. If the coherence of the plans is
high, we will have options that do not restrict a lot our independence. When we sign a
deal that is incompatible with a plan, we lose the opportunity to achieve it. And thus,
the opportunity to use the deals that are only provided by those plans that are now
incompatible. In this way, if we are not capable of convincing someone on accepting to
perform one of the basic actions of our preferred plan, then we will still be able to use
the already signed deals coming from this plan to satisfy other plans that are good as
well.

The commitments are just the union of all the deals that are already accepted. Those
deals can be jointly incompatible. This would mean that someone will deceit. Trust will

2 As the success of the execution of our actions depend on the actions that other agents perform.

be useful to estimate who will deceit and to decide if we should honour or not a deal.
Finally, legitimacy is not explained here because we focus on the exchange of deals and
not other types of information. In future work we will use upper language levels in the
tower [8] that allow for information exchange and then the legitimacy dimension will
become important.

6 Discussion and Future Work

In this paper we have outlined the basic components of a negotiation architecture. It is
tailored to build agents capable to interact with humans in competitive environments.
One of the main characteristics of the environments we envisage is that agents and
humans can occasionally co-operate through joint plans in order to get a better outcome.
Those plans are possible thanks to the negotiation processes ending successfully by
signing deals where agents commit to perform actions.

Our main contributions are: first, the interleaving of on the fly generation of plans
and options for the negotiation and the negotiation process itself; second, the use of a
notion of coherence and diversity to better explore huge search spaces that allow for a
more compact process of negotiation without erratic moves. We also advance the state
of the art in the modelling of graded BDI [6] by better integrating BDI reasoning and
planning.

We are currently building a DipGame agent using this architecture and test it play-
ing against humans. Our aim with these experiments is to empirically show that the
architecture has the right components to be able to negotiate against humans in com-
plex environments, multiple bilateral negotiations, repeated encounter scenarios, time
fixed negotiation rounds, joint plans and uncertainty.

Acknowledgments

Research supported by the Agreement Technologies CONSOLIDER project under con-
tract CSD2007-0022 and INGENIO 2010, by the Agreement Technologies COST Ac-
tion, IC0801, and by the Generalitat de Catalunya under the grant 2009-SGR-1434.

References

1. Fabregues, A., Sierra, C.: An agent architecture for simultaneous bilateral negotiations.
In: Proceedings of the 13è Congrés Internacional de l’Associació Catalana d’Intel·ligència
Artificial (CCIA 2010). (2010)

2. Debenham, J., Sierra, C.: An agent supports constructivist and ecological rationality. In
Baeza-Yates, R., Lang, J., Mitra, S., Simon, eds.: 2009 IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, Milano, IEEE Computer Society, IEEE Computer
Society (2009) 255–258

3. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention
model of agency. In M§ller, J., Rao, A., Singh, M., eds.: Intelligent Agents V: Agents The-
ories, Architectures, and Languages. Volume 1555 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (1999) 1–10

4. Shoham, Y.: AGENT0: A simple agent language and its interpreter. In: Proceedings of the
Ninth National Conference on Artificial Intelligence. Volume 2. (1991) 704–709

5. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4) (2002) 428–447

6. Casali, A., Godo, L., Sierra, C.: A logical framework to represent and reason about graded
preferences and intentions. In: Eleventh International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2008, Sydney, The AAAI Press (2008) 27–37

7. Sierra, C., Debenham, J.: The logic negotiation model. In: Proceedings of Sixth International
Joint Conference on Autonomous Agents and Multi-agent Systems. (2007) 1026–1033

8. Fabregues, A., Navarro, D., Serrano, A., Sierra, C.: Dipgame: A testbed for multiagent
systems. In: AAMAS ’10: Proceedings of the ninth international conference on autonomous
agents and multiagent systems. (2010) 1619–1620

9. Debenham, J., Sierra, C.: Trust and honour in information-based agency. In: Fiftth Interna-
tional Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS 2006.
(2006) 1225–1232

10. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Opera-
tors. Springer (2007)

