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Abstract. Regulating the behavior of autonomous agents is necessary to solve coordination problems and minimize conflicts
in multi-agent systems (MAS). Social conventions can be regarded as coordination schemes that can be employed by agents to
successfully coordinate. However, to have agents agree on good conventions, without the need of a central authority, is a chal-
lenging issue. In this paper we design a novel spreading-based convention emergence mechanism that helps agents distributedly
agree on the best convention when there are multiple alternatives. We apply our convention emergence mechanism to a problem
with a large convention space: finding a common vocabulary (lexicon) for the agents of a MAS that allows them to perfectly
communicate with neither ambiguity nor inconsistencies. Thus, we empirically show the scalability of our approach in large (in
terms of agents and conventions) scenarios that change over time. Moreover, since communication is crucial to spreading, we also
show that our proposed spreading mechanism is resilient to unreliable communications, thus guaranteeing the robust emergence
of conventions.
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1. Introduction

Regulating the behavior of autonomous agents in
multi-agent systems (MAS) to improve their overall
performance and effectiveness is important to solve
coordination problems and minimize conflicts. Since
centralized techniques employing global knowledge
are not viable, distributed mechanisms that help agents
coordinate through social conventions are particularly
valuable.

Spreading-based approaches have proved to be able
to establish conventions in agent populations [9,22].
Spreading is a natural phenomenon whose objective
is to propagate some characteristics (e.g., opinion, be-
lief, cultural trait) over the members of a population to
prompt a significant number of them to adopt it. There
is a wealth of examples of spreading in Nature (e.g.,
contagion of infectious diseases, computer viruses,
gossips) and their dynamics have been analyzed in dif-
ferent fields, such as epidemiology [16], statistical me-
chanics [20] and social sciences [18]. We observe that
spreading-based mechanisms are promising to help
agents rapidly agree on some convention(s). However,
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these spreading-based models, mainly based on epi-
demiology, are lacking to realize the emergence of
complex conventions because they limit themselves to
analyzing how a single characteristic spreads through
an agent population. Each population member may
take one out of two possible states: either the charac-
teristic is present or not (e.g., infected vs. susceptible,
opinion vs. no opinion). This is not enough for MAS
since a number of further issues must be considered.

Firstly, typically there will be a space of multiple
convention alternatives (the so-called convention space
[10]) from which agents make a collective choice.
Thus, multiple convention alternatives (rather than
two), here on referred as convention seeds, will be
competing with each other to spread through an agent
population. Moreover, in general not all the avail-
able conventions are equally preferred, because some
of them support coordination more effectively. There-
fore, a convention emergence mechanism must help
select the best convention(s). Secondly, there is no
guarantee that the good convention seeds are known
(to be spread) by any of the agents in the popula-
tion. Therefore, an emergence mechanism must allow
agents to build (search for) new convention seeds if
needed. Finally, since spreading relies on propagating
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information, if agents’ communications become unre-
liable (e.g., by noise, maliciousness, errors), conven-
tion emergence may fail. Hence, an emergence mech-
anism must be resilient to unreliable propagations.

In this paper we extend the convergence emergence
mechanism detailed in [23,24] to design a novel, ro-
bust spreading-based convention emergence mecha-
nism that helps agents agree on the best convention(s)
for coordination under the assumptions that: (i) there
are multiple convention alternatives and some of them
are preferred to others; and (ii) unreliable communi-
cations may jeopardize the spreading of conventions.
Therefore, our spreading-based mechanism guarantees
the robust emergence of conventions. To the best of
our knowledge, no convention emergence mechanism
in the literature has addressed all these requirements so
far as we do in this paper.

To validate our robust spreading-based mechanism,
we have selected language coordination as our case
study domain because: (i) it provides large convention
spaces with multiple, alternative conventions; and (ii) it
is a relevant problem for MAS. In MAS, communica-
tion is a key factor for agents to successfully interact
with each other. In particular, when agents rely on ex-
plicit communication, a shared language or vocabu-
lary (i.e., communication system) is highly necessary.
Nevertheless, in open, heterogeneous MAS, where no
central authority exists, such language may not exist.
Since no one enforces a common language, agents may
have their own, limiting their successful interactions to
agents with a similar or the same language (if any ex-
ists). In such MAS, agents may use different terms to
refer to the same concept, or may use the same term
to refer to different concepts, creating ambiguities in
their communications. Therefore, a mechanism that al-
lows agents to distributedly reach language conven-
tions (consensus) that improve their communications
is necessary. Furthermore, in an open MAS, establish-
ing conventions with an off-line process may not be re-
liable. Because, the MAS conditions can change with
time (e.g., the number of agents, their objectives, the
environment). Hence, the need for a mechanism that al-
lows agents to reach language conventions at the same
time they normally operate to achieve their (individual)
goals.

We perform an empirical analysis of our convention
emergence mechanism along two directions.

Firstly, we show that our mechanism guarantees the
emergence of a lexicon in large (in terms of agents and
convention alternatives) scenarios and under different
communication topologies. More precisely, we show

that the lexicon that emerges, agents agree upon, is a
so-called perfect communication system [8]. Since sev-
eral studies show that the social structure of a popu-
lation affects how a language emerges [6,13,21], we
further explore how different complex networks, such
as small-world [33] and scale-free [1], as underlying
topologies of our MAS may influence the results.

Secondly, we analyze the robustness of our approach
in dynamic settings by: (i) allowing new agents to join
a MAS at any time and hence changing its interaction
topology; and (ii) considering highly unreliable infor-
mation being exchanged between agents. We observe
that our convention emergence mechanism is highly re-
silient to both changes in the network and the harmful
effects of unreliable information.

The paper is organized as follows. Section 2 reviews
the relevant literature. Section 3 briefly describes the
illustrative domain. Section 4 presents in detail our
spreading mechanism. Section 5 empirically analyzes
our spreading mechanism in different scenarios. Fi-
nally, in Section 6 we draw some conclusions and set
paths to future research.

2. Related work

Coordination is an important topic in AI since many
large-scale applications are formulated in terms of spa-
tially or functionally distributed entities. Coordina-
tion enables the different entities to work more ef-
ficiently and to complete activities they cannot ac-
complish individually. As argued in [27] coordina-
tion can be achieved via social laws and conven-
tions. Social conventions help balance agents’ individ-
ual goals with respect to those of the society so that
each agent can pursue its individual goals without pre-
venting other agents from pursuing theirs. Sociologi-
cally speaking, a convention results when members of
a population adhere to some behavior, which is neither
dictated nor enforced by a central authority. Therefore,
there is the challenging issue of “how conventions can
emerge dynamically as a result of a learning process
within the agent population” (sic) [27], as researched
in [14,28,32].

On the one hand, spreading-based approaches have
proved to be able to establish conventions in agent pop-
ulations [9,22]. Typically, a spreading mechanism en-
compasses some spreading (information transfer) strat-
egy (on the sender side) along with some selection
strategy for incoming transfers (on the receiver side).
The simplest information transfer strategy proposed
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in the literature is copy-transfer [4]: each agent tries
to copy its complete convention to its neighboring
agents. Copy attempts are locally controlled by some
spreading rate, a parameter that governs the spread-
ing pressure through the population [20]. As to se-
lection, the simplest strategy is random: each agent
randomly accepts one out of all its incoming trans-
fers (conventions). However, as argued above, current
spreading-based models in the literature, mainly based
on epidemiology, are lacking to realize the emergence
of conventions because they limit themselves to ana-
lyzing how a single characteristic spreads through an
agent population. Each population member may take
one out of two possible states: either the characteristic
is present or not (e.g., infected vs. susceptible, opinion
vs. no opinion).

On the other hand, evolutionary algorithms (EA)
have been employed as means of establishing conven-
tions either: as a centralized process [12]; or as an in-
dividual process embedded in each agent [19]. In [12]
(the centralized approach), a global EA tries to find a
set of rules (convention) that govern the behavior of all
agents. This is achieved by maintaining multiple soci-
eties each with a different convention and then apply-
ing the evolutionary process to them. Such approach
presents some disadvantages. First of all, it is an off-
line process, i.e., the algorithm is run for mock-up sys-
tems and when the best conventions are found they are
hardwired on agents. Additionally, as the complexity
of the domain grows this approach becomes very slow
because it requires multiple simulations at the same
time. Furthermore, it is a top–down approach, whereas
the approach proposed in this paper is a bottom–up
method (namely, agents reaching conventions by them-
selves).

Alternatively, [19] proposes to embed an EA in
each agent so that each agent employs some reinforce-
ment learning to find its appropriate behavior. These
methodologies do not have an explicit propagation
mechanism, though conventions still arise. Agents that
interact frequently with each other must evolve poli-
cies that decrease conflicts among them. The problem
with this approach is that the time required for all the
agents to stabilize their EA may be too long and then
it is also an off-line methodology.

The spreading mechanism proposed in this paper ex-
tends a basic spreading mechanism along several di-
rections by incorporating some EA principles. Firstly,
based on the principle behind the recombination tech-
nique from the evolutionary algorithms literature [3],
our spreading mechanism employs a partial-transfer

(instead of copy-transfer) spreading strategy: an agent
receiving a partial convention can combine it with its
own convention to create a new one. This allows agents
to explore a space of multiple conventions as well
as discovering conventions that are initially unknown
by the agent population. Secondly, drawing inspiration
from the principles of replicator dynamics [34], our
spreading mechanism employs elitist (instead of ran-
dom) selection as selection strategy. Thus, an agent
chooses the incoming convention with the highest val-
uation whenever this is higher than its own convention.
This selection strategy allows to look for conventions
that are more preferred than others. Besides the spread-
ing and selection components, our spreading mecha-
nism employs further components. On the one hand,
we employ innovation, controllable internal noise, to
enhance the exploration capabilities of the spreading
mechanism, leading the agent population to the best
convention. This interest is motivated by the observa-
tion in the literature (e.g., [18]) that noise can be either
beneficial or else lead to chaos. On the other hand, each
agent incorporates a self-protection component that lo-
cally and dynamically controls the acceptance of in-
coming transfers. By dynamically changing between
acceptance and rejection of incoming transfers, each
agent can self-protect against external noise.

To the best of our knowledge, the emergence of con-
ventions considering the existence of multiple, possi-
ble conventions has only been very recently consid-
ered in [26]. However, this work does not consider
that some conventions are more preferred than oth-
ers. Regarding the emergence of conventions in dy-
namic (changing) environments, we are only aware of
the contribution by Salazar et al. [23], though this work
only considers an eight-convention space. Neither of
these contributions considers dynamic environments
with large convention spaces where some conventions
are preferred or the presence of noise in the propaga-
tion of conventions as we consider in this paper.

Language conventionalization has been thoroughly
studied in social sciences [2,15] and its properties are
well known. Hence, it is a very rich scenario to vali-
date the capabilities of spreading as a mechanism for
the engineering of convention emergence. Therefore,
notice that contributing to the understanding of either
language emergence or evolution is beyond the scope
of our work.

It has been argued that languages are established as
a form of a social convention, thus the relationship be-
tween a word and a concept is dependent on the inter-
actions between individuals. Several studies have ad-
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dressed the modeling of such interactions as language
games between individuals [5,17], with various levels
of success. These games model language construction
at a purely semiotic level, i.e., they neglect the seman-
tic relationships between models and symbols. A com-
mon game to study conventionalization is the naming
game [31]. This game focuses on the interactions of
speakers and listeners that try to find names for objects
to understand each other. Thus, the aim of the naming
game is to study how a common lexicon (vocabulary)
is established in a society.

In a broad sense, the naming game can be regarded
as a model for ontology sharing [30]. Nevertheless,
currently the most common formulation of the nam-
ing game presents some impractical characteristics to
make it useful for open MAS. Firstly, it allows agents
to create any word to refer to a particular object, which
is impractical in MAS because the number of concepts
to name can most likely be bounded beforehand. Sec-
ondly, it allows the existence of multiple words to refer
to the very same object (synonymy), which may cause
ambiguities or inconsistencies in the communication
between agents. Moreover, the predominant naming
game formulation makes no distinction between the
communication model and the communication devel-
opment (language acquisition) algorithm (i.e., they are
inter-woven). To overcome these issues, in [25] Salazar
et al. propose a communication model based on the one
in [7]. De Jong’s model borrows some of the notions of
the naming game and defines them for a MAS. More-
over, it makes a distinction between the interaction
model and the communication development algorithm.
Nevertheless, it still considers word creation. There-
fore, we propose to replace word creation by word se-
lection (from a finite set), similar to a not commonly
used variation of the naming game presented in [29].

3. Language coordination game

We shall consider an open MAS composed of au-
tonomous agents where no central authority exists to
rule the agents and that the agents may only work
with local knowledge. Agents interact by exchanging
messages related to certain concepts C (from a finite
set) of a problem (be them, for instance, object, top-
ics, actions) using a set of words W . The vocabulary
for the messages is given by each agent’s internal lex-
icon, which assigns an external representation (word)
to each concept (see Fig. 1(a) for a lexicon example).
Thus, the language coordination problem amounts to

Fig. 1. Vocabulary acquisition scenario. (a) Lexicon, (b) interaction.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/AIC-2010-0479.)

find for all agents a common mapping (lexicon) that
assigns a word w ∈ W to each concept c ∈ C.

The quality of a lexicon is measured by its speci-
ficity. A lexicon’s specificity quantifies the percentage
of words that identify a single concept. Thus, a lex-
icon with maximum specificity (100%) represents a
lexicon with one-to-one mappings. Hence, those are
the most preferred lexicons by the agents because they
reduce the likelihood of misunderstandings. However,
a lexicon with 100% specificity is not useful if only
one agent (or even only a few) use it while the rest
of the agents use different ones. Therefore, a compul-
sory requirement for perfect communication (i.e., all
agents understand each other) is that all agents agree
on a common lexicon. Such lexicon convention must
emerge through agents’ interactions, since we assume
there is no central authority to establish it.

The language coordination problem is particularly
challenging. Firstly, agents’ lexicons stand as con-
vention seeds since they represent potential conven-
tions. Hence, the number of possible conventions (the
convention space) can easily become very large, de-
pending on the number of concepts and words (WC

where W and C stand for the number of words and
concepts, respectively). Furthermore, since there is no
guarantee that some agent already knows a lexicon
with 100% specificity at the beginning of the operation
of a MAS, it is impossible (through a classic spreading
approach) for agents to agree on a lexicon convention
that allows perfect communication. The reason behind
this is that classic spreading does not introduce new
information only propagates the existing one.

We assume that interactions between agents are pair-
wise. Specifically in each interaction an agent (playing
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a speaker role) uses the word assignments in its lexicon
to build one-word messages, while the second agent
(playing a hearer role) uses its lexicon to decipher the
received messages. Notice that, depending on the in-
tersection between the lexicons of the speaker and the
hearer, the hearer may or may not understand the re-
ceived message. For example, in Fig. 1(b), the agent on
the left (the speaker) tries to convey the concept check-
ered to the agent on the right (hearer) using the word
checkered (as given by its lexicon in Fig. 1(a)).
However, since the hearer has a different concept as-
sociated to the word checkered, the agents do not
understand each other.

Additionally, we consider that interactions between
agents in a MAS are restricted by an interaction topol-
ogy. We model an interaction topology as a graph
(Ag, E), where E ⊆ Ag×Ag, whose edges correspond
to relationships (neighborhoods) between agents. If
(agi, agj) ∈ E, then agi and agj are neighbors, and
thus they can interact with each other. Since the kind of
MAS we consider is open (agents join or leave at will),
interaction topologies may change with time.

To play a game, each agent, agi ∈ Ag has a lexi-
con, Li : C → W , which assigns an external represen-
tation (a word) to the concepts, and a decoding func-
tion, Di : W → 2C , which is used for translating a
given word to its related concept. We restrict the lex-
icon in such a manner that only one entry per con-
cept is permitted. Hence, it is not possible to assign
more than one word per concept (synonymy). How-
ever, we allow polysemy1 because it may arise while
agents jointly search for a common lexicon. The me-
chanics of a game between two agents is the follow-
ing:

1. agent agi selects a concept of the problem,
c ∈ C;

2. agent agi uses its lexicon, Li, to find the word,
w, that it uses to refer to c;

3. agent agi sends w to some neighbor agent agj ;
4. agent agj uses its decoding function, Dj , to in-

terpret w into a concept c′ ∈ C;
5. agent agj responds according to its understand-

ing of c′; and
6. the game is successful if agent agj’s response

matches agi’s concept (i.e., if c = c′).

Hence, for the games to be always successful all
agents much agree on a common, 100% specific lexi-
con. Finally, notice that the ratio between the number

1A word is associated with multiple concepts.

of available words (|W |) and concepts (|C|) generates
scenarios with different degrees of difficulty with re-
spect to the specificity. When |W | < |C| perfect com-
munication is not possible because ambiguity is un-
avoidable. When |W | = |C| lexicons with a 100%
specificity are feasible but, for a large enough num-
ber of concepts, the resulting convention space is large
(|W | |C|) and only a small number of them present
100% of specificity. Finally, when |W | > |C| many
lexicons with high specificity exist and the main issue
is to agree in a common one. This paper focuses on
the |W | = |C| case since it is the most interesting sce-
nario (see [25] for a previous study of the |W | > |C|
scenario).

4. Robust convention emergence

As we have stated during this paper, our goal is
to engineer the emergence of the best conventions in
open, dynamic MAS. In what follows, we propose a
spreading mechanism that is both distributed and adap-
tive so that it promotes a continuous convergence to-
wards the best conventions despite adverse circum-
stances (changes in the agent population and noise).
Specifically, our spreading mechanism (illustrated in
Fig. 2) consists of four components that continuously
attempt to create and spread new and better conven-
tions. Those components are: an information transfer
component to spread conventions to neighbors; a se-
lection component aimed at selecting more promising
conventions; an innovation component to locally en-
hance an agent’s convention exploration; and a self-
protection component to protect an agent against in-
coming unreliable information transfers. Next, we de-
tail these components.

4.1. Information transfer

Information transfer is the component responsible
for spreading convention seeds. As stated in Section 2,
in its traditional form (copy-transfer) it simply at-
tempts to completely replicate an agent’s convention
seed to its neighbors. However, such strategy clearly
promotes stagnation, since at its best, the resulting con-
vention would be the best convention seed known by
the agent’s during the MAS start-up.

Hence, to facilitate the creation of new convention
seeds we propose the use of a partial-transfer strat-
egy, which borrows the principle behind the recombi-
nation technique from evolutionary algorithms [3]. In
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Fig. 2. A robust spreading mechanism. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-2010-0479.)

Fig. 3. Creating a new lexicon from a partial transfer.

this strategy, agents only propagate some part of their
convention seeds. Thus, agents on the receiving side
can create new convention seeds by updating their own
with one of the incoming partial seeds. For instance, as
Fig. 3 shows, an agent replaces half of its lexicon with
the half it received from another agent to create a new
lexicon.

Additionally, information transfer attempts are lo-
cally regulated by some spreading rate. This parame-
ter serves to govern the spreading pressure through the
population [20], i.e., how frequently agents attempt to
promote their own conventions. Thus, agents do not ac-
tually require to constantly spread information to their
neighbors (as we show in the empirical evaluation sec-
tion).

In Section 5.3 we empirically show the shortcom-
ings of a traditional copy-transfer strategy against the
proposed partial-transfer strategy. Nevertheless, the ex-
periments also illustrate that the limited exploration ca-
pabilities of partial spreading are not sufficient to (em-
pirically) guarantee that the best convention is reached
(particularly on scale-free neighborhoods).

Finally, even though information transfer is crucial
for spreading, it has an inherent flaw: its sensitivity to-
wards unreliable communications (e.g., noise). In other
words, it can be adversely affected by tamperings dur-

ing communications. Section 4.4 discusses this issue
in more detail and proposes an approach to overcome
such tamperings.

4.2. Selection

Selection is the component of the mechanism that
guides convention emergence: from emerging any con-
vention, to emerging the one that provides the best co-
ordination (e.g., the lexicon with the highest quality).

For instance, by employing the simplest selection
strategy, random selection (as discussed in Section 2),
agents can emerge any convention regardless of its
quality. However, as we have argued above not all con-
vention seeds are equally valuable. Thus, a selection
component needs to be capable of guiding the agents
towards the best convention.

Nonetheless, since we assume that an agent does not
know the identities of other agents2 (neither during the
interaction nor throughout transfers), an agent has no
means of valuing the quality of its incoming conven-
tion seeds, limiting its ability to select one of them.
To this end, we propose that the information transfer
component includes a valuation (assessed by the send-
ing agent) of the convention seed being spread. There-
fore, each agent can use the valuations of the conven-
tion seeds it receives for selection purposes.

Taking inspiration from the principles of replica-
tor dynamics [34] (i.e., the better the performance the
more prone to replication), we propose a selection
strategy (elitist selection) that promotes the adoption
of convention seeds that can potentially improve an
agent’s own convention. Specifically, elitist selection

2The usual anonymity assumption in the emergence of conven-
tions (see Chapter 7 in [27]).
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chooses the incoming convention seed with the high-
est valuation if and only if such valuation is higher
than an agent’s valuation of its own convention seed.
In other words, agents only accept incoming transfers
that might improve their own convention seeds.

Section 5.3 will empirically show the shortcomings
of random selection with respect to elitist selection.

4.3. Innovation

Innovation is the exploration component. Specifi-
cally, innovation is a local component that internally
modifies an agent’s convention seed. Thus, an agent
no longer needs to depend on incoming partial trans-
fers to create new convention seeds. For our purposes,
we implement the innovation component by randomly
changing the elements of a convention seed with some
probability. In the language coordination game, this
amounts to changing a concept-word assignment with
a certain probability.

Innovation was designed as a way to internally
mimic noise, since multidisciplinary studies (e.g., [18])
have shown that low noise levels can enhance explo-
ration by introducing new traits (in our case new con-
ventions). Hence, this component increases the likeli-
hood of emerging the best convention for coordination.

Innovation is locally controlled by the innovation
rate, a parameter that governs the probability of per-
forming a random change on an agent’s own conven-
tion. In Section 5.4 we empirically show how this pa-
rameter affects the emergence of the best conventions.

4.4. Self-protection

As stated in Section 4.1, unreliable communications
can be an issue for spreading mechanisms because
their main component, information transfer, relies on
sending (propagating) information. Moreover, in open
MAS unreliable communications are more prone to
occur. Communications (message exchanges) between
agents may be corrupted due to several causes: envi-
ronmental (e.g., noisy communication channels), ma-
liciousness (e.g., lying agents), or even as a product of
some error or mistake. In general, we refer to the cause
of corrupted communications as noise, since regardless
of the source, it simply amounts to unwanted informa-
tion within communications.

When considering emergence of conventions in the
presence of noise, we take the stance that each agent
must be able to self-protect against unreliable spread-
ings. Moreover, we are working under the assumption

Algorithm 1 Self-protection algorithm
1: update bestPerformance;
2: if (c � window & stddev(performance) > threshold)

then
3: if (acceptance = close) then
4: acceptance ← open;
5: c ← 0;
6: elseif (performance � bestPerformance) then
7: acceptance ← close;
8: c ← 0;
9: end if

10: end if
11: c ← c + 1;

of anonymity (as stated in Section 4.2), which impedes
us from employing the tools in the reputation literature.
At this aim, we propose that each agent incorporates
a self-protection component that locally and dynami-
cally controls the acceptance of incoming transfers.

The self-protection component is a local component
responsible for toggling on and off an agent’s accep-
tance of incoming transfers (i.e., it can prevent an agent
from receiving any information transfer). Thus, it dis-
tinguishes between two acceptance states: open and
closed. The self-protection component switches be-
tween acceptance states after assessing that an agent’s
(communication) performance3 is not stable enough.
Therefore, when an agent’s acceptance state switches
to closed, it temporarily rejects incoming convention
seeds and instead only searches locally for better con-
ventions.

Algorithm 1 outlines the operation of the self-
protection scheme. The algorithm periodically (after
some time window elapses) reviews an agent’s ac-
ceptance state. At the end of each time window, the
algorithm assesses the stability of an agent’s communi-
cation performance as its variability (its standard devi-
ation) over the window. If an agent’s performance vari-
ability (stddev(performance)) exceeds some threshold,
the algorithm considers that the current acceptance
state (either open or closed) is not contributing to
emerge (stabilize) a convention, and therefore a state
switch is required. Notice that when the acceptance
state is closed, the state can immediately change to
open. However, an immediate switch from open to
closed does not make sense because an agent might
lock itself with a convention seed of bad quality.
Hence, a switch from open to closed is delayed until
the current performance of the agent’s convention is at

3As mentioned above, the difference between successful and un-
successful communications when acting as a speaker.
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Fig. 4. The self-protection acceptance toggling from an agent’s per-
spective on a medium noise situation. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/AIC-2010-
0479.)

least as good as the best performance obtained so far
(bestPerformance). Figure 4 depicts an agent’s accep-
tance state toggling process. Observe that an agent’s
acceptance state starts as open, and even though the
variability exceeds the threshold, the self-protection
component cannot change the state to closed because
of the risk of locking the agent with a bad conven-
tion seed. However, once a good convention (the one
yielding the highest performance so far) is found, the
self-protection component closes its acceptance state
(∼4000 ticks). Nonetheless, when the convention seed
proves not to be stable enough it opens the state once
again (∼7000 ticks) only to close it one final time when
the best convention is found.

4.5. The robust spreading mechanism

Finally, we can wrap up the local components de-
scribed above to build a spreading mechanism aimed
at the emergence of conventions. Notice that all the
components operate at the agent level and hence they
only employ local knowledge. Therefore, from each
agent’s point of view, the resulting spreading mecha-
nism consists of the following operations (illustrated
in Fig. 2): (1) monitor the agent’s interactions to mea-
sure its performance (e.g., number of successful inter-
actions); (2) send convention seeds to all neighbors us-
ing partial transfer; (3) determine the acceptance state
(open/closed) to either accept or block the incoming
conventions; (4) select (using elitist selection) an in-
coming seed to update its own convention seed (only
when the acceptance gate is open); and (5) apply inno-
vation to the current seed.

The robustness of the proposed mechanism results
from both the innovation and self-protection compo-
nents, namely by exploiting internal controllable noise
and protecting against external uncontrollable noise.
On the one hand, innovation helps find the best con-
ventions when the no agent is initially aware of the best

convention seed. Additionally, it provides the means
to escape from low quality conventions. On the other
hand, self-protection allows the spreading mechanism
to function despite highly unreliable communications.

5. Empirical evaluation

In this section we empirically show that the spread-
ing mechanism detailed in Section 4: (i) emerges con-
ventions in MAS with large convention spaces; and
(ii) is highly robust. More precisely, we show that our
spreading mechanism applied to the language coordi-
nation problem: (a) allows agents to reach lexicon con-
vention(s) with a high level of specificity (i.e., a perfect
communication system) under the most common inter-
action topologies; (b) allows conventions to be resilient
against changes in the agent population and its under-
lying interaction topology; and (c) allows conventions
to emerge and be maintained in spite of various levels
of unreliable communications.

In Sections 5 and 5.1 we describe the interaction
topologies and the empirical settings that we em-
ployed. Sections 5.3 and 5.4 show the shortcomings of
traditional spreading and the effectiveness of our pro-
posed mechanism. Next, in Section 5.5 we study a dy-
namic setting, where both the agent population and the
interaction topology change over time, to test the ro-
bustness of our approach. Finally, in Section 5.6 we
continue to validate the robustness of the mechanism
by showing its effectiveness to cope with noisy com-
munications.

5.1. Interaction topologies

It has been argued that the social distribution of in-
dividuals is an important factor in the evolution of lan-
guages [6,13,21]. This distribution is modeled in our
MAS by the underlying interaction topology. Thus,
in order to empirically analyze the capabilities of the
spreading mechanism we chose the following interac-
tion topologies:

Small-world networks presenting the small-world
phenomenon, in which nodes have small neighbor-
hoods and yet it is possible to reach any other node
in a small number of hops. This type of networks are
highly-clustered (i.e., have a high clustering coeffi-
cient). We note them as W

k,p
V , where V is the number

of nodes, k the average connectivity, i.e., the average
size of the node’s neighborhood, and p the re-wiring
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probability. We used the Watts and Strogatz model [33]
to generate these networks.

Scale-free networks characterized by having a few
nodes acting as highly-connected hubs, while the rest
of them have a low connectivity degree. Scale-free net-
works are low-clustered networks. We note them as
S

k,−γ
V , where V is the number of nodes and its degree

distribution is given by P (k) ∼ k−γ , i.e., the proba-
bility P (k) that a node in the network connects with
k other nodes is roughly proportional to k−γ .

5.2. Experimental settings

The large convention space of our experimental do-
main is given by a language coordination problem with
|C| = 10 concepts and |W | = 10 words (i.e., the size
of the convention space is 1010). Thus, to prevent am-
biguity a lexicon must manage to match each one of
the ten concepts to a different word.

Each experiment consists of 50 discrete event sim-
ulations, each one running up to 100,000 time-steps
(ticks). Each simulation runs with 1000 agents using
one of the underlying topologies defined in Section 5.1.
At the beginning of each simulation, each agent up-
loads a random lexicon. During each simulation, at
each time-step, each agent interacts, through commu-
nications as defined in Section 3, with some randomly
selected neighbor. The interactions occur by agents
randomly choosing some concepts to send. The indi-
vidual understanding of each agent, is measured every
20 ticks, as the number of successful communications,
as a speaker, during that period.

We generated interaction topologies for the simula-
tions as small-world and scale-free networks by set-
ting the following parameters: W 10,0.1

1000 and S10,−3
1000 .

The clustering coefficients of the topologies are 0.492
(highly-clustered) and 0.056 (not clustered), respec-
tively. Notice that we generate a new interaction topol-
ogy per simulation.

As for the parameters of the spreading mechanism,
both values were arbitrarily chosen to be considerably
low to show that even under such circumstances the
proposed spreading mechanism performs well. Specif-
ically, we chose (unless indicated otherwise) a spread-
ing rate of 0.1 and an innovation rate of 10−4.

In order to study the effect of the spreading over
a MAS, we probed simulations in two ways. On the
one hand, to measure whether a lexicon convention is
adopted, we analyze the number of agents that share
each lexicon per tick. We shall refer to the lexicon
shared by the largest number of agents as the dominant

lexicon. On the other hand, we also analyze at every
tick the quality of such lexicon. Given a lexicon its
quality is determined by its specificity, namely the per-
centage of words that represent a single concept. For
both dominant lexicons and specificity, we aggregate
the measures obtained after 50 simulations using the
inter-quartile mean.

5.3. Shortcomings of traditional spreading

In this section we empirically analyze the shortcom-
ings of traditional spreading approaches in realistic
settings. In particular, we focus on a scenario where:
(1) multiple possible convention exist; and (2) the
most useful (best) conventions are not known by any
agent beforehand (i.e., agents are not aware of them
at the operation outset of a MAS). Specifically, our
experiments compare a copy (transfer) + random (se-
lection) spreading mechanism (i.e., traditional spread-
ing) against spreading mechanisms based on partial-
transfer and elitist selection.

We ran experiments with different spreading rates
(within [0.1, 1.0]) to observe: (i) if some global con-
ventions emerged; and (ii) the quality of such conven-
tions. On the one hand, the experiments (see squared
plots in Fig. 5(a) and (c)) show that traditional spread-
ing can indeed reach some convention, although very
slowly. However, the best convention cannot be es-
tablished (even with the spreading rate at its highest).
Specifically, agents reach lexicons with around 70 and
63% quality on small-world and scale-free networks
respectively (the squared plots in Fig. 5(b) and (d)).
Regarding the effect of the topology, agents on scale-
free networks begin to agree on a single convention
much faster than on small-world. Scale-free topologies
require, at least, 105 ticks, while small-world ones re-
quire, at least, 2 × 105 ticks to reach a single con-
vention. This slower spreading diffusion exhibited on
small-world facilitates the establishment of lexicons
with higher quality. Since in small-world a global con-
vention is reached at a relatively slower pace, the
convention seeds with higher valuation have a better
chance of being spread through all the agents.

However, by replacing random selection with elitist
selection (copy + elitist), agents reach lexicons with
86.5% quality on small-world and 80% on scale-free
(the circled plots in Fig. 5(b) and (d)). Nonetheless, it
is not possible to reach a convention out of the initial
agent’s convention seeds. Namely, if no agent has the



366 N. Salazar et al. / Robust coordination in large convention spaces

Fig. 5. Information transfer/selection combinations with low spreading rate (0.1). (a) Small-world convention agents, (b) small-world convention
quality, (c) scale-free convention agents, (d) scale-free convention quality. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-2010-0479.)

best convention seed at the beginning of the MAS op-
eration, it is not possible to spread it.

When employing partial + elitist, the lexicons
reached had at least 90% quality on both topologies.
A detailed analysis shows that for small-world topolo-
gies ∼70% of the simulations reached a maximum
quality lexicon, in contrast with ∼20% of the scale-
free simulations. Regarding convergence speed, the
partial + elitist mechanism exhibits fast convergence,
though slightly slower than copy + elitist. However,
the value of this mechanism comes from the quality
of the resulting conventions. In other words, partial-
transfer benefits from its better exploration abilities to
achieve higher quality conventions at the price of a
slower convergence speed. Notice that global conven-
tions are still reached much faster in scale-free net-
works, which limits the ability to find the best con-
vention (there is less time to explore the convention
space).

To summarize, the traditional spreading approach
(copy + random) is not enough to deal with the fea-
tures of realistic MAS settings described at the begin-
ning of this section. Moreover, even a mechanism only
composed of partial-transfer and elitist selection yields
significantly better results. Nevertheless, the results are
still not good enough, since a perfect communication
system cannot consistently emerge. Thus, in the fol-
lowing subsection we evaluate a more complete mech-
anism.

5.4. The role of innovation

In the previous section we showed that pure spread-
ing (be it through copy or partial transfers) has not
enough exploration capabilities to reliably guide
agents towards the best convention when the conven-
tion space is large. Hence, in this section we show that
a spreading mechanism requires an innovation compo-
nent (as described in Section 4.3) to endow it with ex-
ploration.

Small-world. The innovation component experi-
ments show (Fig. 6(a)), that on average agents over
a small-world topology exhibit a smooth growth to-
wards a global lexicon convention (the circled plot).
Such growth is similar to the one shown in Section 5.3
(i.e., innovation does not alter the convention adop-
tion behavior). Nevertheless, now the dominant lexi-
con reaches maximum quality (100% specificity), i.e.,
a perfect communication system emerges. Notice that
the quality of the lexicon improves as more agents start
to share a common lexicon (the crosses plot) and when
a 100% lexicon is found (∼13,000 ticks), the global
convention is reached.

Moreover, observing a particular simulation pro-
vides some interesting insights. Figure 7 shows one
of the 50 simulations performed for the small-world
topology. In this plot, the transition towards a lexicon
with 100% specificity is clearer. Observe that around
2000 ticks most of the agents (∼95%) appear to reach
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Fig. 6. Convention convergence using elitist + partial + innovation. (a) Small-world, (b) scale-free. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-2010-0479.)

Fig. 7. Results of a particular small-world simulation. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
AIC-2010-0479.)

a convention with 90% quality. However, as a result
of innovation they are promptly pulled away from that
convention to another one (also with 90% quality). At
around tick 4800 a lexicon with maximum quality ap-
pears and starts pulling agents and after ∼5000 ticks
the global convention settles.

Scale-free. The innovation experiments over scale-
free topologies (Fig. 6(b)) reveal that a low innova-
tion rate is enough to emerge a global lexicon with
maximum quality. However, even though a global lexi-
con is reached quite promptly, the best lexicon requires
a longer time to be found (∼45,000 ticks). In other
words, the experiments once again show (as the ones
in the previous section did) that such fast convergence
towards a global convention can be detrimental for ex-
ploration. When most agents share a good/high quality
lexicon convention, it is more difficult to sway them
towards a better one (especially in games like the lan-
guage coordination game, where the utility of a lexicon
heavily depends on the number of agents that share it).

Therefore, although emerging perfect communica-
tion system takes time, it is still a good result. How-
ever, it is reasonable to think that we can speed up the
process by increasing the innovation rate (remember
that our experiments employ a considerably low value,
10−4). To that end, we repeated the experiments with
higher innovation rates (Table 1).

The results show that agents can indeed find a lex-
icon with maximum quality much faster, but at some

Table 1

Effects of innovation rates on scale-free topologies

Innovation Ticks to Agents in

rate maximum quality convention (%)

1 × 10−4 ∼45,000 ∼99

3 × 10−4 ∼21,000 ∼94

5 × 10−4 ∼18,000 ∼90

1 × 10−3 ∼15,000 ∼81

1 × 10−2 <5000 <15

cost. As the innovation rate increases, the number of
agents sharing the dominant lexicon decreases. Table 1
clearly depicts this effect for different innovation rates.
For instance, when using 5 × 10−4 as the innovation
rate a 100% quality lexicon is found faster than using
1×10−4 (at ∼18,000 ticks), but only 90% of the agents
share the dominant lexicon. Such effect is not surpris-
ing because a higher innovation rate means that more
agents change their lexicons at any point in time. More-
over, it is in line with the results in the literature (e.g.,
[18]) showing that a too high frequency of change can
lead to chaos (e.g., the 1 × 10−2 experiments).

However, it is interesting to analyze how innova-
tion affects spreading over scale-free topologies. From
Fig. 8 we observe that with a (relatively) higher innova-
tion rate (5 × 10−4), the shape (plot-wise) of the domi-
nant lexicon emergence is similar to the one presented
by the small-world experiments (Fig. 6(a)), but with
less agents joining the dominant convention. There-
fore, the higher the innovation rate, the less successful
the spreading. If this is the case, we can increase the
spreading rate (so far we have been employing a low
value, 0.1) to counterbalance such effect. For instance,
using a higher spreading rate (0.3) with a higher in-
novation rate (5 × 10−4) provides much better results
(100% quality lexicon for ∼98% of the population at
∼11,000 ticks).

To summarize, experimental results show that a
partial + elitist + innovation spreading mechanism
can emerge a perfect communication system for most
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Fig. 8. Results of 5 × 10−4 innovation probability on scale-free.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/AIC-2010-0479.)

of the population regardless of the topology. How-
ever, under scale-free topologies (moderately) higher
spreading and innovation rates are needed.

5.5. Dynamic population

So far we have showed the ability of our spread-
ing mechanism to emerge conventions. Nevertheless,
all scenarios considered so far were static, in the sense
that the MAS did not change with time. Hence, the pur-
pose of the next experiments is to evaluate our spread-
ing mechanism in dynamic conditions, i.e., when the
MAS changes with time.

To that end, we model the dynamics of a MAS by al-
lowing the agent population and the agents’ neighbor-
hoods to change over time. In practice, both changes
are achieved by dynamically changing the network
topology. Hence, we proceeded as follows: (1) we
create a scale-free network interaction topology up
to a certain number of agents; (2) we let agents in-
teract over the interaction topology; and (3) after
400 simulation ticks, we introduce 20 new agents, with
random lexicons, in the agent population by wiring
them to other while maintaining the properties of
the scale-free (re-wiring the existing agents if nec-
essary). We chose scale-free topologies because the
Barabási–Albert (BA) scale-free network generation
algorithm [1] is iterative. Hence, we can easily imple-
ment the MAS dynamics by inter-weaving the BA al-
gorithm with the MAS simulation. In other words, we
ran the MAS and the BA algorithms at the same time.
The MAS employed started with a scale-free network
topology with 400 agents (S10,−3

400 ), which grew until

reaching 3500 agents (S10,−3
3500 ).

Likewise Section 5.4, agents rapidly join a com-
mon lexicon with low quality. Moreover, the incom-
ing agents are promptly swayed towards the common
lexicon convention. However, unlike the static experi-
ments, our default low spreading and innovation rates
are not enough to find the 100% specific lexicon con-

Fig. 9. Lexicon convention evolution for dynamic agent population
over a scale-free topology. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/AIC-2010-0479.)

vention (at least in less than 60,000 ticks). This shows
that in growing population with continuous re-wiring
it is indeed challenging to emerge top quality lexicon
conventions.

Nonetheless, as we learned in Section 5.4 by in-
creasing the innovation rate agents become more prone
to find the best lexicon convention. Figure 9 illustrates
the results of employing a moderately higher innova-
tion rate (3 × 10−4). Observe that, even with a higher
innovation rate, most agents (even the incoming ones)
still agree on a common lexicon (circled plot). How-
ever, they now can emerge a 100% specific lexicon
convention (∼50,000 ticks). In fact, notice that the be-
havior of spreading with a moderately higher innova-
tion rate on a dynamic environment is very similar to
the behavior with a low innovation rate on a static en-
vironment. That is to say that innovation plays a key
role in dealing with dynamic environments.

Overall, our spreading mechanism is robust enough
to deal with dynamic environments where both the
agent population and the neighborhoods change with
time. However, innovation plays a key role in coping
with such dynamic environments.

5.6. Unreliable communications

Our experiments so far have not considered the
sensitivity of spreading to unreliable communications.
Next, we study how noise affects spreading. We re-ran
the experiments in Sections 5.3 and 5.4, but now in-
cluding noise during information transfers. For each
information transfer, we randomly corrupted the trans-
ferred lexicons by changing the concept-word associa-
tions up to half of the entries (50% of the lexicon) with
some probability (pnoise) ranging from low to very high
(pnoise ∈ {0.1, 0.3, 0.6, 0.8}). Moreover, we employed
the maximum spreading rate (1.0) to study the worst
case scenario (the more information transfers sent, the
larger the number of corrupted lexicons at any time).

Figure 10 shows the results of our experiments. Ob-
serve that even though a convention can still emerge,
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Fig. 10. The effects of different noise levels on emergence. (a) Small-world, (b) scale-free. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-2010-0479.)

Fig. 11. Convention emergence exploiting self-protection. (a) Small-world, (b) scale-free. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-2010-0479.)

the higher the noise level the less the number of agents
agreeing on a convention. For instance, when the noise
level is low agents reach a near global convention.
However, as the noise level increases, the number of
agents capable of reaching a convention decreases for
both topologies.

In scale-free topologies the relationship between the
noise level and the number of agents in a shared con-
vention is more visible. For instance, with a high noise
level (60% chance of sending corrupted lexicons), it
is difficult for more than 40% of the agents to agree
on a single convention. However, the emerged conven-
tions are more stable than the ones reached on a small-
world topology. This stable behavior is in line with a
reported property of scale-free networks, namely their
robustness against undirected corruption (e.g., random
attacks, viruses) [11], where undirected means that the
network hubs are not consciously targeted.

Moreover, noise has another interesting effect, it al-
lows some agents to emerge 100% specific lexicon
conventions. However, this is only useful in the low
level noise case, since its the only case where most
agents reach the lexicon convention. Such effect is con-
sistent with the observation that sometimes a small
amount of noise is needed to introduce diversity (the
idea behind the innovation component).

To summarize, spreading can only deal with low
noise level scenarios. Hence, we need to extend the

spreading mechanism with a further component that
protects agents against the higher noise levels.

5.7. The robust spreading mechanism

We observed above that noise is an uncontrollable
factor that damages the spreading by degrading the
convention seeds that each agent receives. Thus, for a
spreading mechanism to be truly robust it has to be
capable of withstanding, or at least minimizing, the
harmful effects of noise. To that end, the experiments
in this section aim to empirically validate the effec-
tiveness of the self-protection component (presented in
Section 4.4) in both static and dynamic scenarios.

Static. Figure 11 depicts the results when agents
employ self-protection (using a window of 30 spread-
ings) over a static scenario. In general, observe that the
complete spreading mechanism (employing the four
components) is robust because it helps agents emerge
the best convention in scenarios with medium and
high noise levels over both topologies. In particular,
the results are quite significant for high noise lev-
els. Now 90% of the agents agree on a 100% spe-
cific lexicon convention, which is significantly better
than 40% agreeing on a convention when disregarding
self-protection. In other words, a spreading mechanism
with self-protection is powerful enough to emerge a
top quality convention even when, at any point in time,
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Table 2

Convention emergence on various scale-free scenarios

Static Dynamic

Noiseless Noisy Noiseless Noisy

Convention compliance Percentage ∼100 ∼90% ∼100 ∼87%

Time to Very fast Very fast Fast Fast

Convention quality Percentage 100% 100% 100% 100%

Time to [slow . . . fast] subject
to innovation rate

Fast Slow Fast

Notes: Compliance – agents in dominant convention. Quality – quality of the highest convention reached.
Time to – time it takes to reach compliance and quality.

Fig. 12. Results of dynamic agent population with high noise levels.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/AIC-2010-0479.)

there is a high probability that agents propagate unre-
liable information. Moreover, the resilient behavior of
the spreading mechanism is similar for scale-free and
small-world topologies, though scale-free neighbor-
hoods reach near global conventions at a faster pace.
Regarding scenarios with very high noise levels, it is
no surprise that a relevant convention did not emerge
since this is an extreme situation.

Dynamic. Figure 12 depicts the results of our exper-
iments when agents continuously join the MAS while
the communications are affected by a high noise level.
Observe that even in such complex/difficult scenario
our spreading mechanism still can reach a 100% spe-
cific lexicon convention for ∼87% of the agent popu-
lation. The fact that less agents join the dominant con-
vention (with respect to the noiseless experiment) was
expected in a high noise level environment. Specially,
since the constant influx of agents with random lex-
icons also acts as extra noise. In other words, such
high agent convention compliance is a significant re-
sult. Moreover, a maximum quality lexicon convention
is found much faster than in the experiments consid-
ering a dynamic population but disregarding noise, re-
ported in Section 5.5 (∼6000 ticks against the ∼48,000
ticks). This can be explained by the constant explo-
ration resulting from the high noise level.

Overall, the proposed spreading mechanism has
shown to be highly robust since it helps agents reach

a perfect communication system for most of the MAS
population despite continuous changes in the dynamic
population and in the presence of high noise levels.

6. Conclusions and future work

The main contribution of this paper is a robust mech-
anism for convention emergence that facilitates coor-
dination in multi-agent systems. Overall, our empir-
ical results showed that a spreading mechanism that
endows each agent with partial information-transfer,
self-protection, elitist selection and innovation (as a se-
quence of operations): (i) can cope with a space of
multiple convention alternatives; (ii) functions in dy-
namic environments; and (iii) is resilient to unreliable
propagations. So far, no convention emergence mech-
anism in the literature has addressed these issues. Ta-
ble 2 summarizes the performance of our mechanism
by showing the time it takes (time to) for a percent-
age of the agent population (percentage) to agree on
any convention (convention compliance) and on a top
quality convention (convention quality).

The results show that our spreading mechanism
can emerge (near-)global conventions regardless of the
topology in a largely populated multi-agent system.
Nevertheless, the topology does affect the time it takes
to reach such convention. On the one hand, agents on
a small-world topology smoothly emerge top quality
(best) conventions in a very reasonable amount of time.
On the other hand, agents on scale-free topologies very
rapidly agree to a common, lower quality, convention
and require more time to find a top quality one.

Furthermore, the spreading and innovation rates
play an important role in the behavior of the spread-
ing mechanism. They can improve the effectiveness
of spreading and speed up the convergence time to
the best convention, specially on scale-free topologies.
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In fact, to promptly emerge a top quality global con-
vention (moderately) higher spreading and innovation
rates are required, though their values must counter-
balance each other. For instance, only increasing the
innovation rate speeds up the convergence to the best
convention but decreases the number of agents that
join it.

Additionally, our experiments confirmed that un-
controllable medium or high degrees of noise are
very detrimental to traditional spreading. However, our
spreading mechanism endowed with self-protection
proved to be resilient to such unfavorable conditions
(not surprisingly very high noise levels are outside our
scope). Not only that, we showed that our mechanism
can even emerge conventions on continuously chang-
ing (dynamic) MAS that are also affected by high noise
levels (although for a slightly lower percentage of the
population). This result shows the power of our ap-
proach in the worst conditions.

To summarize, although the proposed spreading
mechanism has proved to be very powerful, it is not
perfect. Firstly, it requires the adequate tuning of some
parameters to reach its full potential. Secondly, it can-
not cope with the presence of very high noise lev-
els. Nevertheless, observe that the spreading mecha-
nism components admit alternative versions. There-
fore, a wealth of convention mechanisms of varying
features results from combining such versions. Hence,
for future work we plan to attempt to increase our ap-
proach robustness by exploring the construction of al-
ternative versions of the self-protection and innovation
components capable of parameter self-tuning.
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