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Abstract. This paper introduces the Approximate Ethical Embed-
ding Process, an algorithm for automating the design of ethical en-
vironments for learning agents. Our algorithm helps build environ-
ments wherein multiple agents learn policies that align with an eth-
ical (moral) value while simultaneously pursuing their individual
objectives. Therefore, we contribute to endowing environment de-
signers with algorithmic tools for building ethical environments. We
demonstrate the ethical design process for two different settings of an
environment where agents have to adhere to beneficence to promote
the collective survival of the population. Our experiments show that
our approximate embedding process successfully generates environ-
ments that incentivise the learning of value-aligned policies.

1 Introduction

As autonomous agents gain more prevalence in daily tasks [39, 13,
42, 5], their risks become more apparent. Thus, various international
initiatives, such as the Al Act [8], mandate the systems to behave
aligned with human values [28, 32, 9]. Thereby, as Multi-Agent Re-
inforcement Learning (MARL) algorithms have found application in
diverse domains, they have also been used to instil value-alignment
in the context of Machine Ethics [44, 27].

Machine Ethics pursues that (ethical) value-aligned behaviour in-
volves proactivity in performing good (praiseworthy) actions (e.g.,
[9]). To achieve such an objective, the literature on Machine Ethics
has extensively used Reinforcement Learning (RL) to help agents
learn to behave ethically. Specifically, it is common in the literature
[21, 1, 41, 17, 3, 34] to adopt an agent-centered approach to value
alignment: an agent is guided towards a value-aligned behaviour by
providing it with extrinsic, manually-tuned ethical rewards incorpo-
rated into its learning environment.

Alternatively to the agent-centred approach, we find in the lit-
erature recent environment-centred approaches to value alignment
[23, 24]. This line of research takes an environment designer perspec-
tive, which focuses on automating the design of an ethical environ-
ment — the so-called ethical embedding process — for either a sin-
gle agent [23] or multiple agents [24]. In such ethical environments,
agents are guaranteed to learn ethical policies. Environment-centred
approaches to value alignment are particularly appealing with respect
to agent-centred approaches because they provide formal guarantees
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regarding the learning of ethical policies and the automation of the
reward design. However, these approaches are based on strict formal
assumptions (e.g. full observability, convergence to optimality while
learning), severely compromising their scalability.

Against this background, our goal is to contribute to the applicabil-
ity of environment-centred approaches to value alignment. Thus, our
main contribution is a new ethical embedding algorithm (henceforth
approximate embedding) that goes beyond the scalability of the em-
bedding algorithm in [24] (henceforth optimal embedding). There are
major differences between our approximate embedding and the pre-
vious optimal embedding. First, our approximate embedding adopts
more realistic assumptions (e.g., partial observability and no need for
RL algorithms with convergence guarantees). Second, the approx-
imate embedding builds on an entirely different technical method
compared with the optimal embedding.

Like optimal embedding, our approximate embedding takes as in-
put a multi-objective environment, with ethical and individual ob-
jectives (rewards), to produce a single-objective ethical environment
wherein agents learn. This approach prevents agents from learning
unethical policies by ensuring that it is in their best interest to behave
ethically. Moreover, it implements two key computations differently
from optimal embedding: (1) computing the reference (ethical) joint
policy for agents to learn in an ethical environment; (2) computing
the ethical weight to combine ethical and individual rewards into a
single reward so that the ethical joint policy is the optimal policy to
learn in the ethical environment.

First, our approximate embedding computes a reference ethical
joint policy as a Nash equilibrium of a multi-agent multi-objective
environment using Deep Reinforcement Learning (DRL). DRL has
impressive results in approximating Nash equilibria despite its lack
of theoretical guarantees [2, 43, 14]. Second, computing the ethi-
cal weight calls for introducing the Ethical Weight Finder (EWF), a
novel algorithm based on binary search. More precisely, we make the
following key contributions:

First, we present a novel embedding algorithm for building multi-
agent ethical environments that incentivise the learning of ethical
policies, the Approximate Embedding. Our algorithm builds upon
two novel multi-objective RL developments:

e An algorithm, Multi-Agent LPPO (MALPPO), for computing
the reference ethical policy. MALPPO is a multi-agent extension
of the lexicographic proximal policy optimisation (LPPO) [31],



a state-of-the-art multi-objective RL algorithm. MALPPO com-
putes a reference ethical joint policy as an (approximated) Nash
equilibrium of an ethical MOPOMG.

e An algorithm, the Ethical Weight Finder (EWF), for computing
the ethical weight to combine ethical and individual rewards into
a single-reward, ethical environment. EWF searches for the ethical
weight so that the optimal policy in the ethical environment is the
reference ethical policy computed by MALPPO.

Then, we empirically show that approximate embedding success-
fully builds ethical environments for a large environment for which
optimal embedding is inapplicable: an ethical version of the Gather-
ing Game [15, 11] with more than 10% states. In the resulting ethical
environments, agents learn to adhere to the moral value of benefi-
cence to ensure the survival of the whole agent population.

2 Background

The MARL literature formally defines a multi-agent environment
as a Markov Game (MG) [2]. MGs are sequential decision-making
settings where agents simultaneously act to modify the environment
state and accumulate individual rewards. When agents have limited
sensing capabilities over states, it is characterised as a Partially Ob-
servable Markov Game (POMG) [2]:

Definition 1 (POMG: Partially Observable Markov Game). A Par-
tially Observable Markov Game is defined as a tuple

(S, Ai=trn Risbeen p gishesn @iELn Y Here, S is a
finite set of states, and each A represents the set of actions available
to agent i. The transition function T : S x A= x § — [0,1]
defines the probability of moving from state s to the next state s',
given the joint action a = {(a*, ..., a™) of all agents. For each agent
i, the reward function R® : S x A=V " x § — R specifies the
reward r* after applying joint action a to state s and transitioning
to state s'. O*=""""" is a finite set of observations and the function
Qb AL S O™ (0, 1] represents the prob-
abilities over the agent’s possible observations o' given the state s
and a joint action a. Finally, v € (0, 1] is the discount factor which
indicates how important future rewards are on the current state.

Each agent 7 aims to learn a policy (i.e., a behaviour) 7 that max-
imises its expected discounted accumulation of rewards v (s) =
E[>>5°,7'r"], called the value' of the policy 7 at state s. Knowing
such value function allows an agent to choose actions that lead to the
most valuable states. However, computing an exact value function is
challenging for environments with large state and action sets.

Typically, a joint policy m = (x',...,7™) that maximises the
return for all agents does not exist. Consequently, following the game
theory literature, the main solution concept in MARL is reaching a
Nash Equilibrium (NE) [2], defined as a joint policy in which no
agent can unilaterally improve its current accumulation of rewards:

Definition 2 (Nash equilibrium). Given a Partially Observable
Markov Game M, a Nash equilibrium is a joint policy (mi, w; ")
satisfying that for every agent i and every state observation 6 =
(o', ...,0™), with each o' in O, the policy 7. of agent i is a best-
response against w (8), that is, it maximises the return against the
joint policy of the rest of the agents 5 *:

‘Qiﬂlm:i>(6') >V 7,-)(6'), for every w'and V5 € O, (1)

(mi

1 Here, “value* refers to a metric used in RL to evaluate the utility of states
or actions. This term is not related to moral or ethical values.

where V! (0) is the expected discounted accumulation of rewards

E°2, fyirz_ | m,0] of agent i if all agents follow the joint policy
7w = (n", ") after observing 0.

Computing Nash equilibria in Markov games is a complex
but well-studied problem [18, 40, 4]. The exact computation of
equilibria is computationally intensive, with complexity increasing
rapidly in high-dimensional environments. Recently, state-of-the-art
single-agent algorithms leveraging deep neural networks —extended
to multi-agent scenarios— have been employed to approximate
equilibria under paradigms such as independent learning and cen-
tralised training with decentralised execution [43, 20, 6].

Multi-Objective MARL. When considering multiple (m > 1)
learning goals in a POMG, agents aim to maximise the accumula-
tion of rewards obtained with respect to each of the objectives in the
so-called Partially Observable Multi-Objective Markov Game [29]:

Definition 3 (MOPOMG: Multi-Objective Partially Observable
Markov game). A (finite) Partially Observable m-objective
Markov game of n agents is defined as a tuple M = (S,
Ai=Lon il O=tm O 4) whose elements
S, A=Lon T O O and vy are defined exactly like those of
an POMG. On a MOPOMG, the reward function Ri=trm

( RPN Rin) is vectorial, where each scalar reward function R; €
Ri=Ym s the reward function regarding the j-th objective. Ac-
cordingly, at each simulation time step, the agent i gets a vectorial
reward signal 7 = (r& .- ri).

In a MOPOMG M, the value V™ of a policy 7 is a vector. Com-
paring vectorial returns requires additional information about objec-
tive priorities. This information, such as a user’s prioritisation among
objectives, is crucial for determining an optimal solution. A weight
vector @y € R™ can represent this prioritisation, allowing the scalar-
isation of value vectors as @ - V™ into comparable scalar values. The
single-agent MORL literature [26] defines the convex hull (CH) as
the set of policies that are optimal for some scalarisation weight vec-
tor w. Therefore, in the single-agent literature, the C'H is a solution
set containing the optimal policies for any linear prioritisations a fi-
nal user might prefer. However, the C'H has been extended to multi-
agent scenarios only when agents fully cooperate and share exactly
the same objective [25].

Besides linear scalarisation with a weight vector, the multi-
objective literature also considers non-linear prioritisations. Lex-
icographic orders (LO) [35] are explicit orderings of the objec-
tives where objectives are prioritised over those that follow them
on the ordering. Thus, the two policies are compared objective-
wise, following the LO. Imagine a policy 7 that receives a return
V™ = (3,4,5) and 75 with V™ = (3,5,3). Then, for an LO
01 = {Vi = Vi = V3}, policy 72 is better, as it has equal V4 and has
greater Va; under another LO £; = {V5 = Vi = Vu}, 71 is optimal
over 72 as it gets more return for V3.

3 The Embedding Problem

While the literature on automated environment design has primar-
ily focused on value alignment, the multi-objective embedding prob-
lem can be formalised for any pair of objectives. This approach
seeks to design environments in which agents learn to accomplish
their primary tasks while simultaneously aligning with an additional
alignment objective. This secondary objective may be ethical, safety-
related, or any other objective that agents are expected to abide



by, in the same vein as [36, 37]. Crucially, the goal of the embed-
ding problem is to design an environment where the only optimal
behaviour is the intended, aligned behaviour. Hence, our problem
amounts to creating environments where agents are incentivised to
learn behaviours aligned with an extrinsic alignment objective. How-
ever, rather than developing a learning algorithm, we focus on trans-
forming the agents’ learning environment by embedding the primary
objective with the alignment objective. With this embedded reward
function, agents do not have the means to separately prioritise the
objectives when learning. This environment-centred perspective is
motivated by the fact that such learning environments may be used
by third-party entities, whose choice of learning algorithms and pri-
oritisation of the objectives is unknown.

Despite the generality of the environment-centred approach, in
this paper, we focus on the ethical design of environments. To de-
sign an ethical environment, our algorithm takes as input an initial
(henceforth source) environment with two objectives: an individual
task representing the agents’ primary goal and an ethical objective
that evaluates and quantifies the agents’ alignment with a specific
moral value. A moral value or ethical principle, in Ethics, represents
a moral goal worth pursuing [38]. The environment is then trans-
formed into a single-objective ethical environment, where the two
objectives are embedded together in one reward function that priori-
tises the ethical objective. Therefore, maximising this single reward
can only lead to value-aligned behaviour. Henceforth, we formalise
the Ethical Embedding problem by defining: first, the agents’ source
and ethical environments; and then the problem itself of how to trans-
form an original environment into an ethical environment wherein
agents learn to behave ethically.

We model the agents’ source environment as a two-objective Par-
tially Observable Markov Game with: an individual reward func-
tion R} (the reward function that rewards each agent i for fulfilling
its individual objective), and an ethical reward function R’ that re-
wards each agent ¢ when behaving ethically. Thus, to properly incen-
tivise ethical behaviour, R’ has to be carefully designed following
the ethics literature. Ethical frameworks that assess actions based on
their consequences are particularly suitable when designing ethical
reward functions like RZ. In our work, we employ the ethical frame-
work presented in [22, 23, 24, 30] to construct ethical reward func-
tions R%, which is grounded in the Ethics literature. However, any
other ethical framework for properly designing R’ could be used.
We refer to such family of Markov Games as Ethical Multi-Objective
Partially Observable Markov Games:

Definition 4 (Ethical MOPOMG). An Ethical
Multi-Objective Partially Observable Markov  Game
(EMOPOMG) M is defined as a tuple (S, A=bm,

1_2(1'):1,“‘,717 ]%3'\7:1,“.,717 RiE:Lm’n,T, Oi:l,...,n’ Oi:l,m,n,,y>
such that for each agent i: First, Ry is the individual reward
function of each agent 1, representing their individual objective.
Then, Ry : S x A* — R is the normative reward function
of each agent i, penalising blameworthy actions, i.e. committing
morally prohibited actions or ignoring moral obligations. Finally,
R : S x A' — R7 is the evaluative reward function of each agent
i, rewarding praiseworthy or supererogative actions*.

Tuple elements S, A™=1n T, O=1m Qb and v of M
are defined identically to Partially Observable Markov Games.

Note that this framework can represent any ethical value that can
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Morally good but not actions

(https://plato.stanford.edu/entries/supererogation/)

mandatory

be encoded as a set of moral prohibitions, obligations and recom-
mendations over the agents’ actions.

We define an ethical equilibrium of an Ethical MOPOMG as an
NE with respect to the ethical reward function Ee = EN + R_’E,
where R, denotes R=1-" Among ethical equilibria, we highlight
best-ethical equilibria. A best-ethical equilibrium 7 is a Nash equi-
librium with respect to the individual reward function of agents, sub-
ject to also being an ethical equilibrium. Notice that the notion of
Ethical MOPOMBG and ethical equilibrium of an Ethical MOPOMG
generalise analogous concepts in [24].

Thus, the Ethical Embedding problem is: how to design, from a
given Ethical MOPOMG M, a (single-objective) POMG M. that
provides enough incentives to the agents to learn to behave ethi-
cally (a best-ethical equilibrium). These incentives are provided to
agents by weighting ethical rewards with a large enough ethical
weight we > 0 such that the (scalar) reward that each agent receives
R} 4+ w. - R% promotes the agents to behave ethically. Formally, our
target environment is an Ethical Partially Observable Markov Game:

Definition 5 (Ethical Partially Observable Markov Game). Let M be
an Ethical MOPOMG with reward functions Ry, R. for each agent
1. We refer to the Ethical Partially Observable Markov Game M. as-
sociated with M to a (single-objective) POMG with reward function
Ré + we - Ré with we > 0, such that at least one Nash equilibrium
of M. is a best-ethical equilibrium in M.

To ease notation, we mark M, to denote a single-objective
POMG with rewards Ry + w - R, resulting of scalarising M’s re-
wards (R}, R.), with ethical weight w, for each agent i. Moreover,
henceforth, we refer to an Ethical MOPOMG as a source environ-
ment and to its respective Ethical POMG as the target environment.

4 Solving the Embedding Problem

Figure 1 outlines the approximate embedding process. Following
the environment-centred perspective previously mentioned, this pro-
cess aims to design an ethical environment by transforming a multi-
objective environment (a source environment M) into an ethical
single-objective environment (the target environment M_.). Our pur-
pose is that in the ethical environment M., any third-party agent,
independently of its learning algorithm, will learn a value-aligned
behaviour. The approximate embedding process follows three steps:

1. Reference policy computation. We compute a so-called refer-
ence joint policy T, in the source environment. This is the ethical
policy we want agents to, ultimately, jointly learn in the ethical
single-objective target environment.

2. Ethical weight computation. We compute the ethical weight w.

to transform the source environment into our target environment.

3. Ethical environment synthesis. We build the target environment

as a POMG (M. = M,,)) by scalarising the ethical rewards in
the original environment using the ethical weight w. computed at
the previous step.

4.1 Reference policy computation

The first thing we must compute to obtain our target environment is
an ethical policy that serves as a reference. Using the value vectors
(multi-objective returns) of this policy, we will be able to properly
design an ethical environment where ethical behaviour is preferred
over individual behaviours. This reference policy is formally a best-
ethical equilibrium in the source environment, the MOPOMG. As
defined in Section 3, this best-ethical equilibrium corresponds to the
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Figure 1. Approximate Ethical Embedding Process.

equilibrium agents reach when prioritising ethical rewards over indi-
vidual rewards. This reference policy 7, is important for two reasons.
First, it is the joint policy we want to incentivise the agents to learn
in the target environment. Second, we will need it to find a scalarisa-
tion weight, the so-called ethical weight w., to combine ethical and
individual rewards in the target environment.

To obtain such an ethical reference policy, we need a learning al-
gorithm that always prioritises ethical returns over individual returns.
In the MORL literature, this type of non-linear prioritisation is stud-
ied under the name of lexicographic RL (LRL) [10, 31, 35]. LRL
prioritises objectives according to an explicit ordering.

Using a lexicographic learning algorithm in an ethical MOPOMG
M, which prioritises the ethical objective over the individual objec-
tive (Re = Ro), ensures the learned joint policy first optimises the
ethical objective and then, without altering their obtained ethical re-
turn, optimise the individual objective. Notice that, when learning a
joint policy in an ethical MOPOMG with a lexicographic algorithm,
any Nash equilibrium will be a best-ethical equilibrium by definition.

Consequently, by using a lexicographic learning algorithm in the
source environment M, we can obtain ethical joint policies that
abide by the ethical objective. This reference policy, 7., represents
the behaviour we aim to establish as the optimal policy in the result-
ing scalarised ethical environment M., so that any agent learning in
M finds it optimal to align with the moral value encoded in R..

However, no such algorithm exists for multi-agent environments.
Subsequently, to learn a best-ethical equilibrium, we implemented a
new lexicographic multi-agent algorithm. We provide more details
on this contribution in Sections 5 and 6.2. The next section shows
how to exploit a reference policy 7, to compute the ethical weight.

4.2  Ethical weight computation

Recall that our goal is to build a target environment M. whose op-
timal policy for any learning algorithm is the (ethical) reference pol-
icy m,. Since the target environment M. is intended to be single-
objective, we must find an ethical weight w, that scalarises the ethi-
cal reward in the original environment M and sets 7, as the equilib-
rium in the target environment M.

We can exploit the multi-objective returns of the reference pol-
icy V™ to compute the ethical weight. Since we know that the ref-
erence policy is the one that attains the largest ethical return, the
ethical weight w, that we choose to scalarise the source environ-
ment M must be large enough to make 7, the optimal policy in the
scalarised environment M .. More technically, we must compute an
ethical weight w. such that the Nash equilibrium 7, attains more
scalarised return than any other equilibrium in M. Thereafter, we
will be able to build our target environment M. using w. wherein
the (ethical) reference policy stands as the optimal policy to learn.

When computing the ethical weight w., we target an ethical
weight we as low as possible while still capable of incentivising the
learning of ethical equilibria. There are two reasons for searching
for such an ethical weight. First, a large ethical weight could hinder
or even prevent agents from learning their individual objectives, as
demonstrated in the experiments section. Second, we consider that a
reward function might have an associated cost when deploying the

agents. Thus, an excessive weight w. would involve a higher cost.

Since we know that an ethical equilibrium 7, prioritising ethi-
cal reward exists, we assume there must be an ethical weight w,
sufficiently large such that when learning with scalarised objectives
R = Ro + we - Re, the ethical objective is completely prioritised
over the individual objective. With that assumption in mind, we ar-
gue that, in the space of possible weights, we can differentiate two
intervals: (i) [0, w.) with weights that do not incentivise the learn-
ing of an ethical equilibrium enough, and (ii) [we, c0) with ethical
weights that effectively incentivise ethical behaviour. Note that any
weight w in the interval [we, 0o0) allows building a scalarised, target
environment whose ethical equilibrium is the reference policy. How-
ever, for the reasons mentioned above, we pursue the lowest possible
ethical weight we.

To identify w., we need a method for testing whether a given
weight w qualifies as an ethical weight. Once a reference policy
7 is computed, testing whether a weight w is ethical is straight-
forward: (1) build a scalarised environment M ,,y; (2) learn the op-
timal joint policy 7 in M, (the so-called approximate reference
policy); (3) compare the ethical returns of 7 and .. If 7 achieves
close enough ethical return to the reference policy’s ethical return
(i.e., |V — V7| < 7 for some policy approximation error T > 0),
then we consider w as an ethical weight. We do so because it suffi-
ciently incentivises the learning of a policy that is as ethical as the
reference policy. For simplicity, henceforth, we will refer to testing
whether a weight w is ethical as function test(M (), 7).

This definition for a single-agent test(M ., T) function can be
extended to multi-agent setups simply by adding a sum over the
agents returns such that ‘ > [Ve"z - Vefﬂ ‘ < T

By repeatedly using the test function, we get valuable information
on the value of w. needed to create an environment whose equilib-
rium is 7. Therefore, the set of joint policies obtained after testing
different weights on a MOPOMG is relevant to inform our search for
the minimum ethical weight. To characterise this set more rigorously,
we introduce the Nash Convex Hull (N C H) for a MOPOMG, which
we define as the set of joint policies that include a Nash equilibrium
for any possible linear scalarisation weight vector. Formally:

Definition 6 (Nash Convex Hull). The Nash Convex Hull of a
MOPOMG M is the set of policies that contains the Nash equilib-
rium of all possible scalarisations M 5y performed with any lin-
ear scalarisation weights W: NCH(M) = {m € TM|3% : n €
NE(M )}, where ™ is the set of possible policies in M and
NE(M ) is the set of equilibria in the scalarised POMG M .

To obtain the ethical weight, there is no need to compute the whole
NCH. Consequently, the resulting set of our search is a subset of
the NC'H that contains the Nash equilibria associated with the can-
didate ethical weights considered throughout the search for the min-
imal ethical weight. Additionally, considering that the learning algo-
rithm might lack guarantees to find exact equilibria, we frame the
set of policies we compute as an approximate NC H. Later in this
section, we detail the construction of this NCH.

With test(M (., T) and considering a finite search space between
0 and an upper bound large enough, we can use any search algorithm



to find our desired ethical weight. We propose using a general search
paradigm like binary search [16] to automate the search of an ethical
weight inside a search interval w. € I. Then, our weight computa-
tion would work as follows. Let I = [w;, w,| represent the unex-
plored search space, where w; is not an ethical weight and w, is an
ethical weight. We can set w; to O because it produces an environ-
ment without ethical rewards, and hence no ethical policies. Regard-
ing w,, the environment designer can set it to any large upper-bound
number based on their expert knowledge. Thus, the search would be-
gin with an initial, non-negative solution w. = w,/2, along with a
precision parameter €, which controls the depth of the search, and a
policy approximation parameter 7. We test with T'est(M,, /2),T)
whether w, /2 is an ethical weight. That is, we test whether the op-
timal policy in M, /2y is as ethical as the reference policy. If it
is, we update the interval to I = [w;, w,/2]. If not, we update it
to I = [wr/2,w,]. The procedure continues iteratively narrowing
interval [ until the distance between its endpoints is less than or
equal to €, while ensuring that the left endpoint remains a non-ethical
weight and the right endpoint remains an ethical weight. The right
endpoint is the approximation to the minimum ethical weight we
are looking for. We refer to the whole process as the Ethical Weight
Finder (EWF). It is important to note that this algorithm does not
compute the exact w. that makes 7, the optimal policy. Instead, it
constructs an approximate subset NC'H around such theoretical we.
Since we progressively narrow the interval containing the exact we to
a width of €, by the end of the search, we obtain a set of policies that
are Nash equilibria for weights close to we. As environment design-
ers, we then select the weight that best incentivises ethical behaviour.

So far, we have demonstrated how to perform a binary search to
identify the desired ethical weight w., minimising the number of
times we run a learning algorithm, as this is the most computation-
ally expensive part of the search. The approach described so far is
only informed by the value vectors. We tried to develop a method as
generic as possible, following the lines of [33]. However, we admit
that the search can be optimised in different ways that may result in
a more optimal search for specific environments.

5 Implementing approximate embedding

Next, we detail how to compute the two main elements of our ap-
proximate embedding, the reference joint policy and the approximate
reference policies, to find our desired ethical weight.

For the sake of understanding, we begin with the computation of
the approximate reference policies, computed at each iteration of our
EWFE. Recall that the approximate reference policies are formally
Nash equilibria in a single-objective POMG. Thereafter, as explained
in Section 4.2, we must compute several Nash equilibria in multiple
scalarised POMGs during the search for the ethical weight. We can
find them using single-objective Multi-Agent Deep Reinforcement
Learning (MADRL) techniques. Indeed, MADRL techniques have
shown great results in approximating equilibria for complex cooper-
ative games [7, 43, 6] by extending powerful single-agent algorithms
to MARL scenarios. Examples include independent PPO (IPPO), and
its centralised training and decentralised execution (CTDE) counter-
part, MAPPO [2]. Here we choose to employ MAPPO because its
parameter sharing and use of centralised critic help reduce sample
complexity, increase learning efficiency, and stabilise learning.

On the other hand, the reference policy corresponds to a best-
ethical equilibrium in a multi-objective POMG. As such, its com-
putation requires a multi-objective RL algorithm. Crucially, lexico-
graphic algorithms can be used to compute a best-ethical equilib-
rium when priority is given to the ethical objective. Recently, [31]

introduced both value-based and policy-based lexicographic RL al-
gorithms, including LPPO. Nonetheless, those algorithms only exist
and were tested for the single-agent case.

Due to the lack of multi-agent lexicographic algorithms, we have
developed our so-called MALPPO, a novel CTDE extension of
LPPO. MALPPO adopts the CTDE paradigm from MAPPO, which
features a centralised critic with access to all agents’ observations.
The critic’s estimations are used by each agent to independently train
its own policy using LPPO. We implemented our MALPPO in a fork
of the EPyMARL library [19], extended for multi-objective algo-
rithms®.
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Figure 2. Sum of the individual and ethical returns of all agents for the
learned reference policies in environments M, (solid line) and M ps
(dash-dot line).

6 Empirical analysis

In this section, we employ our approximate embedding to build ethi-
cal environments for the Ethical Gathering Game (EGG), an ethical
extension of the Gathering Game originally introduced in [15] and
outlined in Section 6.1. Importantly, we empirically verify that the
ethical environments that we design do incentivise the learning of
ethical joint policies in large environments (Section 6.3. Moreover,
we quantify the price fo pay, the cost, to fabricate ethical environ-
ments through approximate embedding (Section 6.2).

6.1 The Ethical Gathering Game

The Ethical Gathering Game is a grid-world environment where
agents with different capabilities gather apples to survive [24]. An
agent survives if it manages to accumulate apples beyond some sur-
vival threshold. The EGG is an ethical extension of the well-known
Gathering Game [15] in the MARL literature. The EGG simulates
an unequal environment where only efficient agents can survive by
themselves while inefficient agents require the efficient agents’ help.*
The EGG also introduces a public donation box: agents can either do-
nate apples to the box or retrieve apples from it. Then, two objectives
drive agents in the EGG: an individual objective to collect apples for
personal survival, and an ethical objective to contribute to collective
survival. As environment designers, we will create ethical environ-
ments whose agents learn the moral value of beneficence to help the
whole agent population survive. For that, we will instill alignment
with beneficence through approximate embedding.

Source environments. We built two different source environments:
one with a majority of inefficient agents (M), and another one with
aminority of inefficient agents (M ). The settings for each environ-
ment are such that inefficient agents cannot survive unless the effi-
cient agents learn to behave ethically to help them. Thus, the survival
of the whole population is possible in both environments, though, as
we will show, the amount of required beneficence varies. This dif-
ference is key, as it makes the environments totally different with
respect to computing the embedding, as the minimum ethical weight

3 https://github.com/maymac00/mo-epymarl.git
4 The Gathering Game [15] deals with resource depletion, a different prob-
lem from ours, for which agents must coordinate to survive.



we look for will be different. More precisely, each environment has
5 agents and a 15-apple donation box, and the individual survival
threshold is 40 apples. M, has 40% (minority) of efficient agents
and M s has 80% (majority) of efficient agents. Importantly, since
the EGG uses the same grid size as the original Gathering game, our
settings configure two different large environments with more than
10%* states each. Therefore, optimal embedding [24], which relies
on Q-Learning, cannot be applied to these environments.
MOPOMG formalisation. The EGG is a MOPOMG whose agents
act during a 500-step gathering season. To specify a source environ-
ment, following Def. 4 of Ethical MOPOMG, we define an individual
reward function R} that gives a reward of +1 to an agent for each
collected apple. There are two types of agents: an inefficient agent
has a 15 % chance of gathering an apple from the ground, while
an efficient agent has an 85 % chance. An agent receives a negative
reward Ry = —1 when: (i) being below the survival threshold at
a given time step, or (ii) donating an apple to the public donation
box. As to ethical reward, R = R% + R%;, we penalise unethical
actions (R% = —1 when taking an apple from the donation box de-
spite having enough to survive), and positively reward ethical actions
(R% = 0.7 when donating an apple when having enough to survive,
namely accumulated apples beyond the survival threshold).
Metrics. Once designed an ethical environment, we have the agents
independently learn their policies. We will then employ two metrics
to analyse whether they have learned to behave ethically: (i) the sur-
vival rate (how many times all agents are able to reach the survival
threshold on average); (ii) the ethical returns (the accumulation of
discounted ethical rewards that all agents obtain on average).

6.2 Designing ethical environments

Approximate embedding algorithms. As discussed in Section 5,
we will employ MALPPO to compute reference policies and stan-
dard MAPPO within the EWF algorithm to find the ethical weight.
We run MALPPO and MAPPO using the EPyMARL library [19].
Learning reference policies. We applied approximate embedding to
our two source environments: minority (M) and majority (Mar).
We first computed the reference joint policy for each environment us-
ing MALPPO, our MARL lexicographic algorithm. Figure 2 presents
the expected (individual and ethical) returns that the reference policy
obtained in each environment. We summed up the returns over all
agents and smoothed them using an exponential moving average at
0.6 to reduce variance visually.

Finding ethical weights. We applied the EWF algorithm to search
for the ethical weight for our two EGG environments. Recall that an
ethical weight allows us to scalarise ethical rewards from a source
environment so that the reference (ethical) policy becomes optimal
in an ethical, target environment. For both environments, we used
[0,10] (w; = 0,w, = 10) to search for ethical weights, 7 = 4.0
as policy approximation error, and ¢ = 0.2. Now, for each envi-
ronment, we search for an as-low-as-possible ethical weight w. that
produces a scalarised environment M ., whose Nash equilibrium
is ethical, namely a good approximation of the reference policy. Fig-
ure 3 shows the evolution of the search for the ethical weight in each
environment for six iterations. For iteration ¢ and ethical weight we,
(different for each 7), we show the multi-objective expected returns of
policy ¢ (blue circle), which we previously computed with MAPPO
as a Nash equilibrium in the scalarised environment M . As iter-
ations increase, we evolves as well as the (approximate) Nash equi-
librium in each M, ). The Nash equilibrium for each w. can be
regarded as an approximation to the reference policy, and the set of
policies that we obtain, as an approximate NC H as defined in Def.6.

Notice that the approximate reference policies within each shaded
grey area can be considered ethical because they are close enough,
according to policy approximation error 7, to the reference policy
(‘ > [Ve’rl —vir|| < 7 considering all n agents). From the
new set of policies, we finally select w. = 2.5 and we = 1.71875 as
ethical weights for M,,, for M s respectively because they are the
lowest weights leading to good enough approximations of their refer-
ence policies. In detail, our EWF converged to these points because
we obtained the final intervals I,,, = [2.34375,2.5] for M,,, and
Ine = [1.56,1.71875] for Mz, with both intervals with a length
smaller than e = 0.2, and with the left extrema being unethical, and
the right extrema being ethical. Notably, in Figure 3, we observe that
using a weight larger than necessary (i.e., with w. > 5) is detrimen-
tal to individual return while providing only a marginal improvement
in ethical return. This underscores the importance of identifying the
approximate minimal weight as we motivated in Section 4.2.
Embedding cost. To measure the cost of the design process, we
analyse the number of algorithm executions required to compute:
(i) the reference policy; and (ii) the approximate reference policies
when searching for the ethical weights. For each source environment,
we run MALPPO once (to compute each reference policy), and we
run MAPPO six times (during the ethical weight search). The total
amount of steps needed to learn the necessary policies to design ethi-
cal environments is 420M for both M,,, and M 5;. MALPPO needed
80M steps to learn both policies, while the different runs of MAPPO
during both binary searches needed 70M on average.

We conclude that there is a price to pay to design an ethical en-
vironment In this particular experiment, designing each EGG ethical
environment required running our MARL algorithms seven times.
This investment paid off because agents learned ethical policies in
the EGG ethical environments, as we show next.

Minority environment M,,,

Ag. Ethical Ethical Individual Individual
Return 7, Return 7, Return 7, Return 7,
1 17.54 £ 8.67 1835+583  26.15+16.97 27.18 +9.53
2 17.61 + 8.53 17.51 +5.79 26.4 + 16.78 26.17 + 9.68
3 1.69 + 1.42 0.77 + 1.09 -8.01 + 10.87 -8.85 +8.24
4 1.7+ 1.31 0.54 + 091 -7.83 £ 10.64 -10.16 £ 8.70
5 1.64 £+ 1.34 0.60 £+ 0.85 -7.63 £ 10.52 -10.36 £ 8.62
Eff. 17.575 £ 0.035 17.93 + 042 26.27 +0.13 26.67 + 0.50
Ineff. 1.676 + 0.026 0.63 + 0.09 -7.82 £0.15 -9.79 £+ 0.67
Majority envirc t Mas
1 7.13 +3.97 7.26 £4.59 19.11 £9.49 19.70 + 10.64
2 6.96 +4.13 7.09 + 4.81 18.59 + 9.63 18.10 + 10.18
3 7.08 + 3.89 7.49 +4.74 18.75 + 10.01 20.30 + 10.80
4 7.05 £ 3.96 7.41 £ 4.62 18.65 £9.77 20.40 + 10.29
5 0.83 + 0.66 0.00 + 0.02 -7.93 £5.86 -18.10 £ 8.44
Eff. 7.05 £ 0.06 7.34 £ 0.26 18.775 £ 0.2 19.92 + 1.16
Ineff. 0.83 4+ 0.00 0.00 % 0.00 -7.93 £+ 0.00 -18.10 £ 0.00

Table 1. Value vectors of each agent for the reference policy ;- and the
ethical policy 7« learned in the designed environments M, and M ;.
Results correspond to an average of 2000 rollouts. Recall that 7, is the same
policy for all agents, but it is not the case for 7.

6.3 Learning in the ethical environments

We built the ethical environments for the source environments M.,
and M s using the weights computed above. To prove that the en-
vironments are indeed ethical, we will let agents learn with a single-
objective learning algorithm to test whether they learn to behave eth-
ically. Specifically, we employed IPPO [7], where all agents learn
independently within each environment. This approach allows us to
demonstrate that in an ethical environment designed with approxi-
mate embedding, ethical behaviour emerges as the optimal policy for
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Figure 3. Approximate reference policies obtained in the search for the ethical weights of environments M, (left) and M, (right). Black lines show the
approximate N C H around the exact ethical weight needed to build an ethical environment.

all agents, even in the absence of an explicit coordination mechanism
during the training phase, such as the ones provided by MAPPO.

Policy Survival rate in M, Survival rate in M 5/
T 100% 99%
T 100% 98%
Ty 10% 66%

Table 2. EGG metrics for the reference (7r,), ethical (7. ), and unethical
() policies. The expected ethical return of the policies is shown only for
the efficient agents of the population.

The results obtained in the designed environments show that, in-
deed, agents were incentivised to learn a joint policy as ethical as
the reference policy, as the metrics in Table 2 illustrate. First of all,
the collective survival is achieved almost 100% of the times for both
the reference policy . and the joint policy 7. that agents learn in
both target ethical environments (column 3 of Table 2). For compar-
ison, an unethical policy m,, trained in an environment with ethical
weight we = 0, reaches a much lower level of collective survival.
Moreover, in terms of ethical returns, joint policies learnt in the tar-
get ethical environments obtain very close average returns to those
obtained by the reference policies (column 4 of Table 2).

Considering all agents’ returns, not only efficient agents, Table 1
shows the value vectors of the ethical policy 7. and the reference
policy . for all agents. Overall, we can see how the value vectors
are within the tolerance parameter 7 = 4. Interestingly, the policies
7. learned in the designed environments achieve better individual
returns than the reference policy. When looking at the statistics of
the ethical gathering game rollouts, we find that efficient agents in 7.
learned to gather more apples than those in 7, in the same amount
of time, which increased their return and led to inefficient agents not
gathering as much as they did with 7.

Note that both policies have been achieved through different al-
gorithms. While in 7, agents shared the same value and policy net-
work, in 7., each agent learned its own value and policy networks.
This can explain the difference between the deviations for agents
sharing efficiency groups in both policies.

Finally, Figure 4 helps us understand the policies that inefficient
and efficient agents learn in the majority, M 57, environment. Agents
learn analogous policies in the minority, M., , environment The fig-
ure shows the median number of apples (over 2000 policy rollouts)
that efficient and inefficient agents have throughout the episode. We
observe that, in all runs, efficient agents have learned to donate their

surplus apples to aid inefficient agents in survival. Moreover, agents
collect apples from the donation box only when they do not have
enough apples to survive. This behaviour confirms again that, indeed,
agents have been incentivised to learn to behave ethically.

In summary, all results from the experiments we conducted cor-
roborate that the approximate embedding algorithm can design envi-
ronments where agents learn best-ethical policies.

Number of apples through time
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50 T Donation Box
7y —-—- Survival Threshold
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8 40| =
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£
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Figure 4. Median number of apples (and inter-quartile ranges) collected
by agents throughout 2000 episodes of 500 steps in M ;.

7 Conclusions and Future Work

This work introduced the Approximate Embedding, an algorithm for
designing environments where all agents are incentivised to learn to
behave ethically. Our empirical analysis shows that by combining
deep RL and novel MORL tools like MALPPO, our approximate em-
bedding successfully incentivises the learning of ethical policies in a
large environment such as the Ethical Gathering Game. As future
work, we aim to reduce the computational costs of approximate em-
bedding and to evaluate it in further environments. Nevertheless, this
will first require the engineering of more MARL environments with
ethical objectives because they do not currently exist. For instance,
we will consider an ethical reformulation of the cleaning game [12].

8 Acknowledgements

The research presented in this paper was supported by the EU-funded
VALAWALI (# 101070930) project, and the Spanish-funded VAE
(#TED2021-131295B-C31), EMOROBCARE (# IASOMMA?2024),
and ACISUD (PID2022-136787NB-100) projects.



References

(1]

[2]

[3]

[4]

[3]

(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Abel, J. MacGlashan, and M. L. Littman. Reinforcement learning
as a framework for ethical decision making. In AAAI Work.: Al, Ethics,
and Society, volume 92, 2016.

S. V. Albrecht, F. Christianos, and L. Schifer. Multi-Agent Reinforce-
ment Learning: Foundations and Modern Approaches. MIT Press,
2024. URL https://www.marl-book.com.

A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi. Incorporating
behavioral constraints in online ai systems. Proceedings of the AAAI
Conference on Artificial Intelligence, 33:3—11, 07 2019. doi: 10.1609/
aaai.v33i01.33013.

L. Busoniu, R. Babuska, and B. De Schutter. Multi-agent reinforce-
ment learning: An overview. Innovations in multi-agent systems and
applications-1, pages 183-221, 2010.

Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen, L. Yang, X. Yi,
C. Wang, Y. Wang, et al. A survey on evaluation of large language
models. arXiv preprint arXiv:2307.03109, 2023.

F. Christianos, G. Papoudakis, and S. V. Albrecht. Pareto actor-critic
for equilibrium selection in multi-agent reinforcement learning, 2023.
URL https://arxiv.org/abs/2209.14344.

C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. S. Torr,
M. Sun, and S. Whiteson. Is Independent Learning All You Need in the
StarCraft Multi-Agent Challenge?, Nov. 2020.

European Comission. Artificial Intelligence Act. https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=celex:52021PC0206, 2021. Accessed:
2024-01-22.

I. Gabriel. Artificial intelligence, values, and alignment. Minds and
Machines, 30:411-437, 09 2020. doi: 10.1007/s11023-020-09539-2.
Z. Gébor, Z. Kalmdr, and C. Szepesvdri. Multi-criteria reinforcement
learning. In ICML, volume 98, pages 197-205, 1998. URL https://sites.
ualberta.ca/~szepesva/papers/multi98.ps.pdf.

E. Hughes, J. Z. Leibo, M. Phillips, K. Tuyls, E. Duefiez-Guzman,
A. Garcia Castafieda, I. Dunning, T. Zhu, K. McKee, R. Koster, et al. In-
equity aversion improves cooperation in intertemporal social dilemmas.
Advances in neural information processing systems, 31, 2018.

E. Hughes, J. Z. Leibo, M. Phillips, K. Tuyls, E. Duefiez-Guzman,
A. Garcia Castafieda, I. Dunning, T. Zhu, K. McKee, and R. Koster.
Inequity aversion improves cooperation in intertemporal social dilem-
mas. Advances in neural information processing systems, 31, 2018.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Zl’dek, A. Potapenko, et al. Highly
accurate protein structure prediction with alphafold. Nature, 596(7873):
583-589, 2021.

M. Lapan. Deep Reinforcement Learning Hands-On: Apply modern
RL methods, with deep Q-networks, value iteration, policy gradients,
TRPO, AlphaGo Zero and more. Packt Publishing Ltd, June 2018.

J. Z. Leibo, V. F. Zambaldi, M. Lanctot, J. Marecki, and T. Grae-
pel. Multi-agent reinforcement learning in sequential social dilemmas.
CoRR, abs/1702.03037, 2017. URL http://arxiv.org/abs/1702.03037.
A. Lin. Binary search algorithm. WikiJournal of Science, 2(1):1-13,
2019.

R. Noothigattu, D. Bouneffouf, N. Mattei, R. Chandra, P. Madan,
R. Kush, M. Campbell, M. Singh, and F. Rossi. Teaching ai agents eth-
ical values using reinforcement learning and policy orchestration. /BM
Journal of Research and Development, PP:6377-6381, 09 2019. doi:
10.1147/JRD.2019.2940428.

C. H. Papadimitriou and T. Roughgarden. Computing equilibria in
multi-player games. In SODA, volume 5, pages 82-91, 2005.

G. Papoudakis, F. Christianos, L. Schifer, and S. V. Albrecht. Bench-
marking multi-agent deep reinforcement learning algorithms in coop-
erative tasks. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks (NeurIPS), 2021. URL
http://arxiv.org/abs/2006.07869.

G. Papoudakis, F. Christianos, L. Schifer, and S. V. Albrecht. Bench-
marking Multi-Agent Deep Reinforcement Learning Algorithms in Co-
operative Tasks, Nov. 2021. URL http://arxiv.org/abs/2006.07869.

M. O. Riedl and B. Harrison. Using stories to teach human values to
artificial agents. In AAAI Workshop: Al, Ethics, and Society, 2016.

M. Rodriguez-Soto, M. Lopez-Sanchez, and J. A. Rodriguez-Aguilar.
A structural solution to sequential moral dilemmas. In Proceedings of
the 19th international conference on autonomous agents and multiagent
systems, pages 1152-1160, 2020.

M. Rodriguez-Soto, M. Lopez-Sanchez, and J. A. Rodriguez-Aguilar.
Multi-objective reinforcement learning for designing ethical environ-
ments. In IJCAI, pages 545-551, 2021.

M. Rodriguez-Soto, M. Lopez-Sanchez, and J. A. Rodriguez-Aguilar.
Multi-objective reinforcement learning for designing ethical multi-

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

agent environments. Neural Computing and Applications, pages 1-26,
2023.

D. M. Roijers. Multi-objective decision-theoretic planning. Al Matters,
2(4):11-12, 2016.

D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of
multi-objective sequential decision-making. Journal of Artificial Intel-
ligence Research, 48:67-113, 2013.

F. Rossi and N. Mattei. Building ethically bounded ai. Proceedings of
the AAAI Conference on Artificial Intelligence, 33:9785-9789, 07 2019.
doi: 10.1609/aaai.v33i01.33019785.

S. Russell, D. Dewey, and M. Tegmark. Research priorities for ro-
bust and beneficial artificial intelligence. Ai Magazine, 36(4):105-114,
2015.

R. Réddulescu, P. Mannion, D. M. Roijers, and A. Nowé. Multi-objective
multi-agent decision making: a utility-based analysis and survey. Au-
tonomous Agents and Multi-Agent Systems, 34(1), Apr. 2020. ISSN
1387-2532, 1573-7454. doi: 10.1007/s10458-019-09433-x. URL http:
/Mink.springer.com/10.1007/s10458-019-09433-x.

M. Serramia, M. Rodriguez-Soto, M. Lopez-Sanchez, J. A. Rodriguez-
Aguilar, F. Bistaffa, P. Boddington, M. Wooldridge, and C. Ansotegui.
Encoding ethics to compute value-aligned norms. Minds and Machines,
33(4):761-790, 2023.

J. Skalse, L. Hammond, C. Griffin, and A. Abate. Lexicographic
Multi-Objective Reinforcement Learning. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, pages
3430-3436, Vienna, Austria, July 2022. International Joint Conferences
on Artificial Intelligence Organization. ISBN 978-1-956792-00-3.
doi: 10.24963/ijcai.2022/476. URL https://www.ijcai.org/proceedings/
2022/476.

N. Soares and B. Fallenstein. Aligning superintelligence with human
interests: A technical research agenda. Machine Intelligence Research
Institute (MIRI) technical report, 8, 2014.

R. Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1):38, 2019.
E. Tennant, S. Hailes, M. Musolesi, et al. Modeling moral choices in
social dilemmas with multi-agent reinforcement learning. In Proceed-
ings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI-23, pages 317-325, 2023.

A. Tercan and V. S. Prabhu. Thresholded Lexicographic Ordered Mul-
tiobjective Reinforcement Learning, Sept. 2024. URL http://arxiv.org/
abs/2408.13493. arXiv:2408.13493 [cs].

P. Vamplew, R. Dazeley, C. Foale, S. Firmin, and J. Mummery. Human-
aligned artificial intelligence is a multiobjective problem. Ethics and In-
formation Technology, 20, 03 2018. doi: 10.1007/s10676-017-9440-6.
P. Vamplew, C. Foale, R. Dazeley, and A. Bignold. Potential-based
multiobjective reinforcement learning approaches to low-impact agents
for ai safety. Engineering Applications of Artificial Intelligence, 100,
04 2021. doi: 10.1016/j.engappai.2021.104186.

I. Van de Poel and L. Royakkers. Ethics, technology, and engineering:
An introduction. John Wiley & Sons, 2023. URL https://books.google.
com/books?hl=en&lr=&id=SYq4EAAAQBAJ&oi=fnd&pg=PR10&
dg=Ethics,+technology,+and+engineering:+an-+introduction.&ots=
0461Jck9zx&sig=ZDXTDwrsWKkNNBWMe0Y1Sgqlv2hY.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Na-
ture, 575(7782):350-354, 2019.

B. Von Stengel. Computing equilibria for two-person games. Handbook
of game theory with economic applications, 3:1723-1759, 2002.

Y.-H. Wu and S.-D. Lin. A low-cost ethics shaping approach for design-
ing reinforcement learning agents. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subra-
manian, T. J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs,
et al. Outracing champion gran turismo drivers with deep reinforce-
ment learning. Nature, 602(7896):223-228, 2022.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu.
The surprising effectiveness of ppo in cooperative multi-agent games.
Advances in Neural Information Processing Systems, 35:24611-24624,
2022.

H. Yu, Z. Shen, C. Miao, C. Leung, V. R. Lesser, and Q. Yang. Building
ethics into artificial intelligence. In IJCAI, page 5527-5533, 2018.



