
A Complete Resolution Calculus for Signed Max-SAT∗

Carlos Ansótegui
DIEI, UdL

Lleida, Spain

Marı́a L. Bonet
LSI, UPC

Barcelona, Spain

Jordi Levy
IIIA, CSIC

Bellaterra, Spain

Felip Manyà
DIEI, UdL

Lleida, Spain

Abstract

We define a resolution-style rule for solving the Max-SAT
problem of Signed CNF formulas (Signed Max-SAT) and
prove that our rule provides a complete calculus for that
problem. From the completeness proof we derive an orig-
inal exact algorithm for solving Signed Max-SAT. Finally,
we present some connections between our approach and the
work done in the Weighted CSP community.

1 Introduction

In the last years, there has been an increasing interest in
the Boolean Max-SAT problem. Taking into account the
success of SAT on solving NP-complete decision problems,
the SAT community investigates how to transfer the tech-
nology created for SAT to Max-SAT with the aim of de-
veloping fast Max-SAT solvers, which can be used to solve
NP-hard optimization problems via their reduction to Max-
SAT.

The most recent and relevant results for Max-SAT can
be summarized as follows: (i) there exists solvers like
MaxSatz [8, 9], and Toolbar [7] which solve many instances
that are beyond the reach of the solvers existing just five
years ago; (ii) a complete resolution-style calculus preserv-
ing the number of unsatisfied clauses has been defined for
Max-SAT [6], (iii) sound resolution refinements have been
incorporated into Max-SAT solvers [7], (iv) formalisms like
Partial Max-SAT have been investigated for solving prob-
lems with soft constraints [4], and (v) an evaluation of Max-
SAT solvers has been performed for the first time as a co-
located event of the International Conference on Theory and
Applications of Satisfiability Testing (SAT-2006).

During the last decade, our research program has
focused on many-valued satisfiability and related prob-
lems. Our aim is bridging the gap between Boolean

∗This research was founded by the MEC research projects
iDEAS (TIN2004-04343), Mulog (TIN2004-07933-C03-01/03) and IEA
(TIN2006-15662-C02-02).

SAT/MaxSAT encodings and constraint satisfaction for-
malisms. The challenge is to combine the inherent efficien-
cies of Boolean SAT/MaxSAT solvers operating on uniform
encodings with the much more compact and natural repre-
sentations, and more sophisticated propagation techniques
of CSP/Weighted CSP formalisms. Regarding many-valued
Max-SAT, we have recently started exploring the role that
many-valued CNF formulas can play on solving NP-hard
combinatorial optimization problems via their reduction to
many-valued Max-SAT. The first results were presented in
ISMVL 2006 [3].

In this paper, we define a resolution-style rule for solv-
ing the Max-SAT problem of Signed CNF formulas (Signed
Max-SAT) and prove that our rule provides a complete cal-
culus for that problem. From the completeness proof we
derive an original exact algorithm for solving Signed Max-
SAT. Finally, we present some connections between our ap-
proach and the work done in the Weighted CSP community.

The structure of the paper is as follows. Section 2 con-
tains preliminary definitions and the signed encoding. Sec-
tion 3 defines the inference rule for signed Max-SAT and
proves its soundness and completeness. Section 4 describes
an exact algorithm for solving Weighted CSP. Section 5 re-
lates our work with Weighted CSP results.

2 Preliminaries

Definition 1. A truth value set, or domain, N is a non-
empty finite set {i1, i2, . . . , in} where n denotes its cardi-
nality. A sign is a subset S ⊆ N of truth values. A signed
literal is an expression of the form S :p, where S is a sign
and p is a propositional variable. We say that S is the sup-
port of p. The complement of a signed literal l of the form
S :p, denoted by l, is S :p = (N \ S):p. A signed clause is
a disjunction of signed literals. A signed CNF formula is a
multiset of signed clauses.

Definition 2. An assignment for a signed CNF formula is
a mapping that assigns to every propositional variable an
element of the truth value set. An assignment I satisfies a
signed literal S :p iff I(p) ∈ S, satisfies a signed clause C

1

iff it satisfies at least one of the signed literals in C, and
satisfies a signed CNF formula Γ iff it satisfies all clauses
in Γ. A signed CNF formula is satisfiable iff it is satisfied
by at least one assignment; otherwise it is unsatisfiable.

Definition 3. The Signed Max-SAT problem for a signed
CNF formula consists of finding an assignment that mini-
mizes the number of falsified signed clauses.

3 The Inference Rule

We define a resolution rule for solving signed Max-SAT,
called Signed Max-SAT Resolution, and prove its sound-
ness and completeness. This rule was inspired by previ-
ous works [6, 7] for Max-SAT. The completeness proof for
signed CNF formulas is technically more involved than the
proof for Boolean CNF formulas in [6].

Definition 4. The Signed Max-SAT Resolution rule is de-
fined as follows

S :x ∨ a1 ∨ · · · ∨ as

S′ :x ∨ b1 ∨ · · · ∨ bt

S ∩ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S ∪ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S :x ∨ a1 ∨ · · · ∨ as ∨ b1

S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and
replaces the premises of the rule by its conclusions.
We say that the rule resolves the variable x.
The tautologies concluded by the rule like N :x ∨ A are
removed from the resulting multiset. Also we substitute
clauses like S :x∨S′ :x∨A by (S ∪ S′):x∨A, and clauses
like ∅:x ∨ A by A.

We would like to emphasize that the rule does not add
the conclusions to the premises. It replaces the clauses in
the premises by the clauses in the conclusions.

Definition 5. We write C ` D when the multiset of clauses
D can be obtained from the multiset C applying the rule
finitely many times. We write C `x C′ when this sequence
of applications only resolves the variable x.

In the context of Max-SAT problems, an inference rule
is sound iff the number of falsified clauses in the premises
is equal to the number of falsified clauses in the conclusions
for any assignment.

Theorem 6 Soundness. The signed Max-SAT resolution
rule is sound.

PROOF: Let I be an arbitrary assignment. There are four
cases:
1. If I falsifies the two premises, then I also falsifies the
first two conclusions, and only them.
2. If I satisfies the two premises, then it also trivially sat-
isfies the last s + t clauses of the conclusion, because they
are either implied by one or the other premise. The sec-
ond clause of the conclusion is implied by each one of the
premises. Therefore, it is also satisfied by I .

The first clause of the conclusion is not implied by the
premises. However, if both premises are satisfied then we
have two cases. If S :x and S′ :x are both satisfied, then so
it is (S ∩ S′):x. Otherwise, either some ai’s or some bj’s is
satisfied, thus also the first clause of the conclusion.
3. If I satisfies the first premise, but not the second one,
then the second clause of the conclusion as well as the t

following clauses are satisfied, because all them are implied
by the first premise.

For the rest of conclusions, there are two cases: If some
of the ai’s is satisfied, then let i be the index of such a.
The assignment will satisfy the first clause of the conclusion
and the last s conclusions, except S ′ :x ∨ b1 ∨ · · · ∨ bt ∨
a1 ∨ · · · ∨ ai−1 ∨ ai that is falsified. Otherwise none of the
ai’s is satisfied, and therefore, S :x is satisfied. Hence, the
first conclusion is falsified, and the last s conclusions are
satisfied.
4. If I satisfies the second premise, but not the first one, the
situation is analogous to previous case.

Definition 7. A multiset of clauses C is said to be saturated
w.r.t. x if, for every pair of clauses C1 = S :x ∨ A and
C2 = S′ :x ∨ B of C, i) there are literals S1 :y in A and
S2 :y in B such that S1 ∪ S2 = N , or ii) S ∩ S′ = S or
S ∩ S′ = S′.
A multiset of clauses C′ is a saturation of C w.r.t. x if C ′ is
saturated w.r.t. x and C `x C′, i.e. C′ can be obtained from C
applying the inference rule resolving x finitely many times.

We assign to every clause C a score s(C) equal to the
number of assignments to the variables that falsify C. The
score of a multiset of clauses is the sum of scores of the
clauses contained in it.

Lemma 8. For every multiset of clauses C and variable x,
there exists a multiset C′ such that C′ is a saturation of C
w.r.t. x.

PROOF: We proceed by applying nondeterministically the
inference rule resolving x, until we obtain a saturated mul-
tiset. We only need to prove that this process terminates in

2

finitely many inference steps, i.e that there does not exist
infinite sequences C = C0 ` C1 ` . . . , where at every infer-
ence we resolve the variable x and none of the sets Ci are
saturated. Let M be the score of C.

Let us partition the multiset C of clauses into n multisets
(n is the size of the domain), {B0, B1, . . . , Bn−1}, where
Bi contains the clauses where the cardinality of the support
of x is i. Notice that B0 is the multiset of clauses that do
not contain the variable x. Let us denote by s(Bi) the score
of the multiset Bi.

We will look at these n multisets as a word of length
n and base M + 1. So our multisets will be represented
by the number s(B0) s(B1) · · · s(Bn−1), taking s(B0) as
the most significant digit. Since Bi is a subset of C, for
i = 0, . . . , n − 1, s(Bi) ≤ M .

When we apply our inference rule, we take two clauses,
say one from Bi and one from Bj and substitute them by
a set of clauses that we will distribute among the differ-
ent Bk’s. Now we have a new multiset of clauses and by
the soundness of our rule the score of the new multiset is
the same. But, if we again look at the multiset as a num-
ber in base M , the number will be different. We will ar-
gue that for each inference step, the number increases. Say
that the clauses we do inference are S :x ∨ A ∈ B|S| and
S′ :x ∨ B ∈ B|S′|. By the inference step we remove these
clauses and add some clause in B|S∩S′|, and maybe also
some clauses in B|S|, B|S′| and B|S∪S′|. Since, by def-
inition of saturation S ∩ S′ 6= S and S ∩ S′ 6= S′, we
know that |S ∩ S′| < |S|, |S′| < |S ∪ S′|, hence the digit
of B|S∩S′| is more significant than the digits of B|S|, B|S′|

and B|S∪S′|. We have to conclude that the new M-base
number after the inference step is larger than before. Since
the largest possible number we can obtain is the one repre-
sented as s(B0)s(B1) · · · s(Bn−1) = M0 · · · 0 the satura-
tion procedure for x has to finish before Mn steps.

Lemma 9. Let E be a saturated multiset of clauses w.r.t. x.
Let E ′ be the subset of clauses of E not containing x. Then,
any assignment I satisfying E ′ (and not assigning x) can be
extended to an assignment satisfying E .

PROOF: We have to extend I to satisfy the whole E . In
fact we only need to set the value of x. Let us partition the
multiset (E − E ′) (multiset of clauses that contain the vari-
able x) into two multisets: (E − E ′)T the multiset already
satisfied by I , and (E − E ′)F the multiset such that the par-
tial assignment I doesn’t satisfy any of the clauses. Our
aim is to show that the intersection of all the supports of x

in (E − E ′)F is non-empty. This way we will extend I by
assigning x to a value in the intersection of all the supports.

Since E is saturated, for every pair of clauses C1 =
S :x ∨ A and C2 = S′ :x ∨ B in (E − E ′)F either condi-
tion i) or ii) of the definition happens. Condition i) cannot

happen because C1 and C2 cannot both be in (E − E ′)F .
Therefore, for every pair of clauses, C1 = S :x ∨ A and
C2 = S′ :x ∨ B in (E − E ′)F , S ∩ S′ = S or S ∩ S′ = S′.
The relation ⊆ constitutes a total order on the supports of
x. The minimal support is unique, equal to the intersection
of all the supports, and, like any support, non-empty.

Theorem 10 Completeness. For any multiset of clauses C,
we have C ` , . . . ,

︸ ︷︷ ︸

m

,D,

where D is a satisfiable multiset of clauses, and m is the
minimum number of unsatisfied clauses of C.

PROOF: Let x1, . . . , xn be any list of the variables of C.
We construct two sequences of multisets C0, . . . , Cn and
D1, . . . ,Dn such that (i) C = C0, (ii) for i = 1, . . . , n,
Ci ∪ Di is a saturation of Ci−1 w.r.t. xi, and (iii) for
i = 1, . . . , n, Ci is a multiset of clauses not containing
x1, . . . , xi, and Di is a multiset of clauses containing the
variable xi.

By lemma 8, these sequences can effectively be com-
puted: for i = 1, . . . , n, we saturate Ci−1 w.r.t. xi, and then
we partition the resulting multiset into a subset Di contain-
ing xi, and another Ci not containing this variable.

Notice that, since Cn does not contain any variable, it is
either the empty multiset ∅, or it only contains (some) empty
clauses { , . . . , }.

Now we are going to prove that the multiset D =
⋃n

i=1
Di is satisfiable by constructing an assignment sat-

isfying it. For i = 1, . . . , n, let Ei = Di ∪ · · · ∪ Dn, and let
En+1 = ∅. Notice that, for i = 1, . . . , n,

1. the multiset Ei only contains the variables
{xi, . . . , xn},

2. Ei is saturated w.r.t. xi, and

3. Ei decomposes as Ei = Di∪Ei+1, where all the clauses
of Di contain xi and none of Ei+1 contains xi.

Claim 1 and 3 are trivial. For claim 2, notice that, since
Ci ∪Di is saturated w.r.t. xi, the subset Di is also saturated.
Now, since Di+1 ∪ · · · ∪ Dn does not contain xi, the set Ei

will be saturated w.r.t. xi.
Now, we construct a sequence of assignments

I1, . . . , In+1, where In+1 is the empty assignment,
hence satisfies En+1 = ∅. Now, Ii is constructed from
Ii+1 as follows. Assume by induction hypothesis that
Ii+1 satisfies Ei+1. Since Ei is saturated w.r.t. xi, and
decomposes into Di and Ei+1, by lemma 9, we can extend
Ii+1 with an assignment for xi to obtain Ii satisfy Ei.
Iterating, we get that I1 satisfies E1 = D =

⋃n

i=1
Di.

3

Concluding, since by the soundness of the rule (The-
orem 6) the inference preserves the number of falsified
clauses for every assignment, m = |Cn| is the minimum
number of unsatisfied clauses of C.

4 An Exact Signed Max-SAT Solver

From the proof of Theorem 10, we can extract the fol-
lowing exact algorithm for solving Signed Max-SAT.

input: A Signed Max-SAT instance F with k variables
C0 := F

for i := 1 to k

C := saturation(Ci−1, xi)
〈Ci, Di〉 := partition(C, xi)

endfor
m := |Ck|
I := ∅
for i := k downto 1

I := I ∪ [xi 7→ extension(xi, I,Di)]
output: m, I

Given an initial signed Max-SAT instance F with k vari-
ables, this algorithm returns the minimal number of unsat-
isfied clauses (m) of F and an optimal assignment I .

The function saturation(Ci−1, xi) computes a satura-
tion of Ci−1 w.r.t. xi applying the resolution rule resolving
x until it gets a saturated set. Lemma 8 ensures that this pro-
cess terminates, in particular that it does not cycle. As we
have already said, the saturation of a multiset is not unique,
but the proof of Theorem 10 does not depend on which par-
ticular saturation we take.

The function partition(C, xi) computes a partition of
C, already saturated, into the subset of clauses containing
xi and the subset of clauses not containing xi.

The function extension(xi, I,Di) computes an assign-
ment for xi extending the assignment I , to satisfy the
clauses of Di according to Lemma 9. The function filters all
clauses of Di that are not satisfied by I . Then it computes
the intersection of the supports for xi of all of them, and
returns one of the values of such an intersection. It returns
a value from ∩{S |S :xi ∨A ∈ Di and I falsifies A}. The
argumentation of the proof of Lemma 9 ensures that this
intersection is not empty.

The order on the saturation of the variables can be freely
chosen, i.e. the sequence x1, . . . xn can be any enumeration
of the variables.

5 Signed Max-SAT and Weighted CSP

In this section we present the relationship between our
work and the work developed in the Constraint Program-
ming community. We first introduce the notions of con-
straint satisfaction problem (CSP), weighted CSP (WCSP),

and some local consistency properties fro WCSP. Then, we
define an original signed Max-SAT encoding for WCSP,
which allows one to solve WCSP instances with signed
Max-SAT solvers. Finally, we define a refinement of our
rule such that (i) its saturation can be applied in polynomial
time and (ii) it is not captured by the soft arc consistency
properties defined so far. See [10] and the references therein
for knowing more about WCSP.

5.1 Preliminaries

Definition 11. A constraint satisfaction problem (CSP) in-
stance is defined as a triple 〈X,D,C〉, where X =
{x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)}
is a set of domains containing the values the variables may
take, and C = {C1, . . . , Cm} is a set of constraints. Each
constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over
a subset of variables Si = {xi1 , . . . , xik

}, called the con-
straint scope. The relation Ri may be represented exten-
sionally as a subset of the Cartesian product d(xi1)× · · · ×
d(xik

).

Definition 12. An assignment v for a CSP instance
〈X,D,C〉 is a mapping that assigns to every variable
xi ∈ X an element v(xi) ∈ d(xi). An assign-
ment v satisfies a constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C iff
〈v(xi1), . . . , v(xik

)〉 ∈ Ri.

Definition 13. A Weighted CSP (WCSP) instance is defined
as a triple 〈X,D,C〉, where X and D are variables and
domains as in CSP. A constraint Ci is now defined as a pair
〈Si, fi〉, where Si = {xi1 , . . . , xik

} is the constraint scope
and fi : d(xi1) × · · · × d(xik

) → N is a cost function. The
cost of a constraint Ci induced by an assignment v in which
the variables of Si = {xi1 , . . . , xik

} take values bi1 , . . . , bik

is fi(bi1 , . . . , bik
). An optimal solution to a WCSP instance

is a complete assignment in which the sum of the costs of
the constraints is minimal.

Definition 14. The Weighted Constraint Satisfaction Prob-
lem (WCSP) for a WCSP instance consists of finding an
optimal solution for that instance.

We next define the most relevant WCSP local consis-
tency properties proposed in the literature. They do not
ensure global consistency of a set of constraints, but they
can be enforced efficiently.

We focus on binary WCSPs. We assume the existence
of a unary constraint for every variable xi. If no such a
constraint is defined, we can always define a dummy con-
straint as f(ak) = 0 for every ak ∈ d(xi). We will use
the standard notation for binary WCSP in the literature: Ci

will denote a unary constraint over a variable xi, and Cij

will denote a binary constraint between variables xi and

4

xj ; Ci(ak), where ak ∈ d(xi), will denote f(ak), and
Cij(ak, bl), where ak ∈ d(xi) and bl ∈ d(xj), will denote
f(ak, bk).

Definition 15. Variable xi is node consistent if there exists
a value ak ∈ d(xi) such that Ci(ak) = 0. A WCSP is node
consistent (NC∗) if every variable is node consistent.

Definition 16. Given a binary constraint Cij , the value b ∈
d(xj) is a simple support for a ∈ d(xi) if Cij(a, b) = 0,
and is a full support if Cij(a, b) + Cj(b) = 0.

Variable xi is arc consistent if every value a ∈ d(xi) has
a simple support in every constraint Cij . A WCSP is arc
consistent (AC∗) if every variable is node and arc consistent.

Variable xi is full arc consistent if every value a ∈ d(xi)
has a full support in every constraint Cij . A WCSP is full
arc consistent (FAC∗) if every variable is node and full arc
consistent.

Definition 17. Let > be a total ordering over the variables
of a WCSP. Variable xi is directional arc consistent (DAC)
if every value a ∈ d(xi) has a full support in every con-
straint Cij such that xj > xi. It is full directional arc con-
sistent (FDAC) if, in addition, every value a ∈ d(xi) has a
simple support in every constraint Cij such that xj < xi.
A WCSP is full directional arc consistent (FDAC∗) if every
variable is node and full directional arc consistent.

Definition 18. Let > be a total ordering over the variables
of a WCSP. Variable xi is existential arc consistent if there
is at least one value a ∈ d(xi) such that Ci(a) = 0 and
has a full support in every constraint Cij . A WCSP is ex-
istential arc consistent (EAC∗) if every variable is node and
existential arc consistent. A WCSP is existential directional
arc consistent (EDAC∗) if it is FDAC∗ and EAC∗.

Signed Max-SAT inference rules capturing the above arc
consistency properties are defined in [1].

5.2 Encoding WCSP into Signed Max-SAT

We next define how to encode WCSP instances as signed
Max-SAT instances. This way, signed Max-SAT solvers can
be used to solve WCSP instances.

Definition 19. The signed encoding of a WCSP instance
〈X,D,C〉 is the signed CNF formula over the domain
N =

⋃

xi∈D d(xi) that contains for every possible tu-
ple 〈bi1 , . . . , bik

〉 ∈ d(xi1) × · · · × d(xik
) of every con-

straint 〈{xi1 , . . . , xik
}, fi〉 ∈ C, fi(bi1 , . . . , bik

) copies of
the signed clause: {bi1}:xi1 ∨ · · · ∨ {bik

}:xik
.

An alternative encoding is to consider signed clauses
with weights instead of allowing multiple copies of a clause.

x1

1

2

2

x2

0

0

0

x3

0

0

0

c

b

a

c

b

a

c

b

a

1

2

1

1

1

1 : {a}:x1

2 : {a}:x1

3 : {b}:x1

4 : {b}:x1

5 : {c}:x1

6 : {c}:x1 ∨ {a}:x2

7 : {c}:x1 ∨ {b}:x2

8 : {a}:x3 ∨ {c}:x2

9 : {b}:x3 ∨ {c}:x2

10 : {b}:x3 ∨ {c}:x2

11 : {c}:x3 ∨ {c}:x2

Figure 1. Example of signed encoding

For the sake of clarity we use unweighted clauses. Never-
theless, any efficient implementation of the algorithms pro-
posed should deal with weighted clauses. The extension
of our theoretical results to weighted clauses is straightfor-
ward.

Proposition 20. Solving a WCSP instance is equivalent to
solving the Signed Max-SAT problem of its signed encoding.

PROOF: For every combination of values to the variables
of the scope of a constraint Ci = 〈Si, fi〉 , the signed en-
coding contains as many clauses as the cost associated with
that combination. If an assignment of the signed encoding
restricted to the variables of Si coincides with a combina-
tion of Ci with cost 0, then all the clauses of the signed
encoding introduced by Ci are satisfied because there is no
clause forbidding that combination. If an assignment of the
signed encoding restricted to the variables of Si coincides
with a combination 〈bi1 , . . . , bik

〉 of Ci with cost u, where
u > 0, then, by construction of the signed encoding, only
the u clauses of the form {bi1}:xi1 ∨ · · · ∨ {bik

}:xik
are

falsified among the clauses introduced by Ci.

We plan to investigate other encodings from WCSP
to Signed Max-SAT and investigate their complexity in
the style of the satisfiability preserving encodings defined
in [5, 2].

Example 1. Figure 1 shows a WCSP instance 〈X,D,C〉
and its signed encoding. The WCSP has the set of variables
X = {x1, x2, x3} with domains d(x1) = d(x2) = d(x3) =
{a, b, c}. There is a binary constraint between variables x1

and x2, a binary constraint between variables x2 and x3,
and a unary constraint for every variable. Unary costs are
depicted inside small circles. Binary costs are depicted as
labeled edges connecting the corresponding pair of values.

5

The label of each edge is the corresponding cost. If two val-
ues are not connected, the binary cost between them is 0. In
this instance, the optimal cost is 2.

5.3 A refinement of signed Max-SAT resolution

We define a refinement of our rule that (i) it is sound but
incomplete, (ii) its saturation can be applied in polynomial
time, and (ii) it is not captured by the soft arc consistency
properties defined so far.

Definition 21. The Signed Max-SAT Binary Resolution rule
is defined as follows

S :x ∨ a

S′ :x ∨ b

S ∩ S′ :x ∨ a ∨ b

S ∪ S′ :x ∨ a ∨ b

S :x ∨ a ∨ b

S′ :x ∨ b ∨ a

It is obtained by restricting the signed Max-SAT resolution
rule to be applied on clauses with at most two literals.

x1

0

0

0

x2

0

0

0

x3 0 0

x4 0 0

1

1

1

1 1

1

1

1

c

b

a

c

b

a

a b

a b

1 : {a} : x3 ∨ {a} : x1

2 : {a} : x3 ∨ {b} : x1

3 : {a} : x4 ∨ {c} : x1

4 : {b} : x4 ∨ {a} : x3

5 : {a} : x4 ∨ {b} : x3

6 : {b} : x4 ∨ {c} : x2

7 : {b} : x3 ∨ {a} : x2

8 : {b} : x3 ∨ {b} : x2

9 : (1, 2, x1) {c} : x1 ∨ {a} : x3

10 : (3, 9, x1) {a} : x3 ∨ {a} : x4

11 : (3, 9, x1) ternary clause

12 : (3, 9, x1) ternary clause

13 : (4, 10, x4) {a} : x3

14 : (7, 8, x2) {c} : x2 ∨ {b} : x3

15 : (6, 14, x2) {b} : x3 ∨ {b} : x4

16 : (6, 14, x2) ternary clause

17 : (6, 14, x2) ternary clause

18 : (5, 15, x4) {b} : x3

19 : (13, 18, x3)

Figure 2. Application of the signed Max-SAT
binary resolution rule

Example 2. Figure 2 shows a WCSP instance and its signed
encoding. The set of variables is {x1, x2, x3, x4}, with do-
mains d(x1) = d(x2) = {a, b, c} and d(x3) = d(x4) =
{a, b}. The instance, whose optimal cost is 1, is existential

directional arc consistent, but its cost cannot be detected
enforcing the soft arc consistency properties defined so far.
The first 8 signed clauses represent the initial WCSP in-
stance. Clauses 9 to 19 are derived by applying signed
Max-SAT binary resolution; e.g., clause 9 is derived from
clauses 1 and 2 resolving the variable x1. By applying
signed Max-SAT binary resolution, we are able to derive
the empty clause (clause 19) and compute its optimal cost.

References

[1] C. Ansótegui, M. Bonet, J. Levy, and F. Manyà. The logic
behind weighted CSP. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
2007, Hyderabad, India, pages 32–37, 2007.

[2] C. Ansótegui and F. Manyà. Mapping problems with finite-
domain variables into problems with boolean variables. In
Proceedings of the 7th International Conference on The-
ory and Applications of Satisfiability Testing (Revised Se-
lected Papers), SAT-2004, Vancouver, Canada, pages 1–15.
Springer LNCS 3542, 2004.

[3] J. Argelich, X. Domingo, C. M. Li, F. Manyà, and J. Planes.
Towards solving many-valued MaxSAT. In Proceedings,
36th International Symposium on Multiple-Valued Logics
(ISMVL), Singapore. IEEE CS Press, 2006.

[4] J. Argelich and F. Manyà. Exact Max-SAT solvers for over-
constrained problems. Journal of Heuristics, 12(4–5):375–
392, 2006.

[5] B. Beckert, R. Hähnle, and F. Manyà. Transformations
between signed and classical clause logic. In Proceed-
ings, International Symposium on Multiple-Valued Logics,
ISMVL’99, Freiburg, Germany, pages 248–255. IEEE Press,
1999.

[6] M. Bonet, J. Levy, and F. Manyà. A complete calculus for
Max-SAT. In Proceedings of the 9th International Confer-
ence on Theory and Applications of Satisfiability Testing,
SAT-2006, Seattle, USA, pages 240–251. Springer LNCS,
2006.

[7] J. Larrosa and F. Heras. Resolution in Max-SAT and its re-
lation to local consistency in weighted CSPs. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence, IJCAI-2005, Edinburgh, Scotland, pages 193–198.
Morgan Kaufmann, 2005.

[8] C. M. Li, F. Manyà, and J. Planes. Exploiting unit propa-
gation to compute lower bounds in branch and bound Max-
SAT solvers. In Proceedings of the 11th International Con-
ference on Principles and Practice of Constraint Program-
ming, CP-2005, Sitges, Spain, pages 403–414. Springer
LNCS 3709, 2005.

[9] C. M. Li, F. Manyà, and J. Planes. Detecting disjoint incon-
sistent subformulas for computing lower bounds for Max-
SAT. In Proceedings of the 21st National Conference on
Artificial Intelligence, AAAI-2006, Boston/MA, USA, pages
86–91, 2006.

[10] P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, pages 281–328. Elsevier, Aca-
demic Press, 2006.

6

