
Conflict Resolution in Norm-Regulated

Environments via Unification and Constraints

M. J. Kollingbaum[1,∗], W. W. Vasconcelos[1,†], A. Garćıa-Camino[2,�], and
T. J. Norman[1,‡]

1Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{∗mkolling,† wvasconc,‡ tnorman}@csd.abdn.ac.uk
2IIIA-CSIC, Campus UAB 08193 Bellaterra, Spain

�andres@iiia.csic.es

Abstract. We present a novel mechanism for the detection and resolu-
tion of conflicts within norm-regulated virtual environments, populated
by agents whose behaviours are regulated by explicit obligations, permis-
sions and prohibitions. A conflict between norms arises when an action
is simultaneously prohibited and obliged or prohibited and permitted.
In this paper, we use first-order unification and constraint satisfaction
to detect and resolve such conflicts, introducing a concept of norm cur-
tailment. A flexible and robust algorithm for norm adoption is presented
and aspects of indirect conflicts and conflicts across delegation of actions
between agents is discussed.

1 Introduction

Norm-governed virtual organisations use obligations, permissions and prohibi-
tions for the regulation of the behaviour of self-interested, heterogeneous soft-
ware agents. Norms are important in the design and management of virtual
organisations, as they allow a detailed specification of these social structures
in terms of roles and the rights and duties of agents adopting these roles.
Norm-regulated VOs, however, may experience problems when norms assigned
to agents are in conflict – actions that are forbidden, may, at the same time,
also be obliged and/or permitted. For example, a norm “Agent X is permitted
to send bid(ag1, 20)” and “Agent ag2 is prohibited from doing send bid(Y ,Z)”
(where X ,Y and Z are variables and ag1, ag2 and 20 are constants) show two
norms that are in conflict regarding an action send bid.

In order to detect and resolve norm conflicts and to check norm-compliance
of actions, we propose a mechanism based on first-order term unification [1]
and constraint satisfaction. With that, we develop further the work presented
in [2] where we used first-order term unification for conflict detection and norm
annotations to avoid conflicts indicating what the variables of a prohibition
cannot be when actions are deployed. In this paper, we also use unification, but
add constraint satisfaction for conflict detection and resolution.

In the following section, we introduce a “lightweight” definition of virtual
organisations and their enactments. In Section 3 we define norms, constraints
and global normative states. Section 4 describes in detail a machinery for conflict
detection and resolution. In section 5, we describe how agents check the norm-
compliance of their actions with the use of unification and constraint satisfaction.
Section 6 describes indirect conflicts occurring via domain-specific relationships
between actions and via the delegation between roles. Section 7 describes the

application of the conflict resolution machinery in a detailed example. Section 8
provides an overview about related work and section 9 concludes this paper.

2 Virtual Organisations

Following [2], we base our discussion of norm conflicts on a simple representation
of a virtual organisation [3] as a finite-state machine where actions of individual
agents lead to state transitions. Figure 1 depicts a graphical representation of

//?>=<89:;0

p(X)

��

q(Y ,Z)
//?>=<89:;1

s(A,B)
//?>=<89:;/.-,()*+2

Fig. 1: Sample VO as a Finite-State Machine

this finite-state machine, where the edges between discrete states are labelled
with first-order formulae representing actions performed by individual agents 1.
Although there are more sophisticated and expressive ways to represent agent
activity and interaction (e.g., AUML [5] and electronic institutions [6], to name
a few), but for the sake of generalising our approach, we shall assume any higher-
level formalism can be mapped onto a finite-state machine (possibly with some
loss of expressiveness). A virtual organisation is defined as follows:

Definition 1. A virtual organisation I is the tuple 〈S , s0,E ,T 〉, where S =
{s1, . . . , sn} is a finite and non-empty set of states, s0 ∈ S is the initial state,
E is a finite set of edges (s , s ′, ϕ) with s , s ′ ∈ S connecting s to s ′ and labelled
with a first-order atomic formula ϕ, and T ⊆ S is the set of terminal states.

Notice that edges are directed, so (s , t , ϕ) 6= (t , s , ϕ). The sample VO of Fig-
ure 1 is formally represented as I = 〈{0, 1, 2}, 0, {(0, 0, p(X)), (0, 1, q(Y ,Z)), (1,
2, s(A,B)}, {2}〉. We assume an implicit existential quantification on any vari-
ables in ϕ, so that, for instance, s(A,B) stands for ∃A,B s(A,B).

Roles, as exploited in, for instance, [7] and [6], define a pattern of behaviour
to which any agent that adopts a role ought to conform. Moreover, all agents
with the same role are guaranteed the same rights, duties and opportunities.
We shall make use of two finite, non-empty sets, Agents = {ag1, . . . , agn} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels.

The specification of a VO as a finite-state machine gives rise to a possibly
infinite set of histories of computational behaviours, in which the actions la-
belling the paths from the initial state to a final state are recorded. Although
the actions comprising a VO are carried out distributedly, we propose an ex-
plicit global account of all events. In practice, this can be achieved if we require
individual agents to declare/inform whatever actions they have carried out; this
assumes trustworthy agents, naturally2.

In order to record the authorship of the action, we annotate the formulae
with the agents’ unique identification. Our explicit global account of all events is

1 We adopt Prolog’s convention [4] and use strings starting with a capital letter to
represent variables and strings starting with a small letter to represent constants.

2 Non-trustworthy agents can be accommodated in this proposal, if we associate to
each of them a governor agent which supervises the actions of the external agent and
reports on them. This approach was introduced in [8] and is explained in section 5.

a set of ground atomic formulae ϕ̄, that is, we only allow constants to appear as
terms of formulae. Each formula is a truthful record of an action specified in the
VO. Notice, however, that in the VO specification, we do not restrict the syntax
of the formulae: variables may appear in them, and when an agent performs an
actual action then any variables of the specified action must be assigned values.
We thus define:

Definition 2. A global execution state of a VO, denoted as Ξ, is a finite, pos-
sibly empty, set of tuples 〈a : r , ϕ̄, t〉 where a ∈ Agents is an agent identifier,
r ∈ Roles is a role label, ϕ̄ is a ground first-order atomic formula, and t ∈ IN
is a time stamp.

For instance, 〈ag1:buyer, p(a, 34), 20〉 states that agent ag1 adopting role buyer
performed action p(a, 34) at instant 20. Given a VO I = 〈S , s0,E ,T 〉, an ex-
ecution state Ξ and a state s ∈ S , we can define a function which obtains a
possible next execution state, viz., h(I, Ξ, s) = Ξ ∪ {〈a :r , ϕ̄, t〉}, for one (s , s ′,
ϕ) ∈ E . Such a function h must address the two kinds of non-determinism above,
as well as the choice on the potential agents that can carry out the action and
their adopted roles. We also define a function to compute the set of all possible
execution states, h∗(I, Ξ, s) = {Ξ ∪ {〈a:r , ϕ̄, t〉} | (s , s ′, ϕ) ∈ E}.

The VO specification introduced previously must be augmented to accom-
modate the agent identification as well as its associated role. We thus have
edges specified as (s , s ′, 〈a, r , ϕ, t〉). More expressiveness can be achieved if we
allow constraints (as introduced below) to be added to edges, as in, for instance,
(s , s ′, 〈a, r , (p(X ,Y) ∧ X > Y), t〉), depicting that the formula p(X ,Y) causes
the progress of the VO, provided X > Y . Such VOs are as expressive as the
logic-based electronic institutions proposed in [9].

3 Norms

Norms are the central element in our discussion. We regard agents adopting
specific roles and, with that, a set of norms that regulate their actions within
a virtual organisation. We extend our previous work [2], and introduce a more
expressive norm definition, accommodating constraints. We, again, adopt the
notation of [10] for specifying norms and complement it with constraints [11]. By
using constraints, we can restrict the influence of norms on specific parameters of
actions. Our building blocks are first-order terms τ , that is, constants, variables
and functions (applied to terms). We shall make use of numbers and arithmetic
functions to build those terms. Arithmetic functions may appear infix, following
their usual conventions. Constraints are defined as follows:

Definition 3. Constraints, generically represented as γ, are any construct of
the form τ C τ ′, where C∈ {=, 6=, >,≥, <,≤}.

We then introduce the syntax of norms:

Definition 4. A norm ω is a tuple 〈ν, td , ta , te〉, where ν is any construct of
the form Oτ1:τ2ϕ ∧

∧n

i=0 γi (an obligation), Pτ1:τ2ϕ ∧
∧n

i=0 γi (a permission)
or Fτ1:τ2ϕ ∧

∧n
i=0 γi (a prohibition), where τ1, τ2 are terms, ϕ is a first-order

atomic formula and γi , 0 ≤ i ≤ n, are constraints. The elements td , ta , te ∈ IN
are, respectively, the time when ν was declared (introduced), when ν becomes
active and when ν expires, td ≤ ta ≤ te .

Term τ1 identifies the agent(s) to whom the norm is applicable and τ2 is the
role of such agent(s). Oτ1:τ2ϕ ∧

∧n

i=0 γi thus represents an obligation on agent
τ1 taking up role τ2 to bring about ϕ, subject to constraints γi , 0 ≤ i ≤ n. The
γi ’s express constraints on those variables occurring in ϕ.

In the definition above, we only cater for conjunctions of constraints. If dis-
junctions are required then a norm must be established for each disjunct. For
instance, if we required the norm PA:Rmove(X) ∧ (X < 10 ∨ X = 15) then
we must break it into two norms PA:Rmove(X) ∧ X < 10 and PA:Rmove(X) ∧
X = 15. This holds because we assume an implicit universal quantification
over variables in ν. For instance, PA:Rp(X , b, c) stands for ∀A ∈ Agents. ∀R ∈
Roles. ∀X .PA:Rp(X , b, c). We comment on the existential quantification in the
final section of this paper.

We propose to formally represent the normative positions of all agents, tak-
ing part in a virtual society, from a global perspective. By “normative position”
we mean the “social burden” associated with individuals [8], that is, their obli-
gations, permissions and prohibitions:

Definition 5. A global normative state Ω is a finite and possibly empty set of
tuples ω = 〈ν, td , ta , te〉.

As a simplification, we assume a single global normative state Ω for a virtual
organisation. However, this can be further developed into a fully distributed
form, with each agent maintaining its own Ω, thus allowing the scaling up of our
machinery.

Global normative states complement the execution states of VOs with in-
formation on the normative positions of individual agents. We can relate them
via a function to obtain a norm-regulated next execution state of a VOs, that
is, g(I, Ξ, s , Ω, t) = Ξ ′, t standing for the time of the update. For instance, we
might want all prohibited actions to be excluded from the next execution state,
that is, g(I, Ξ, s , Ω, t) = Ξ ∪ {〈a:r , ϕ̄, t〉}, (s , s ′, ϕ) ∈ E and 〈Fa:rϕ, td , ta , te〉 6∈
Ω, ta ≤ t ≤ te . We might equally be interested that only permitted actions
be chosen for the next execution state. We do not legislate, or indeed recom-
mend, any particular way to regulate VOs. We do, however, offer simple un-
derpinnings to allow arbitrary policies to be put in place. In the same way
that a normative state is useful to obtain the next execution state of a VO,
we can use an execution state to update a normative state. For instance, we
might want to remove any obligation specific to an agent and role, which has
been carried out by that specific agent and role, that is, f (Ξ, Ω) = Ω − Obls,
Obls = {〈Oa:rϕ, td , ta , te〉 ∈ Ω | 〈a : r , ϕ̄, t〉 ∈ Ξ}. The management (i.e., cre-
ation and updating) of global normative states is an interesting area of research.
A simple and useful approach is reported in [12]: production rules generically
depict how norms should be updated to reflect what agents have done and which
norms currently hold. In this paper our focus is not proposing how Ω’s should
be managed, and assume some mechanism which does it.

4 Norm Conflicts

A conflict between two norms occurs if a formula representing an action is simul-
taneously under the influence of a permission and prohibition or an obligation
and prohibition for the same agent (or set of agents) – the agent experiences a

normatively ambiguous situation for a specific set of actions. A norm influences
who (what agent/set of agents in a specific role) is either permitted, prohib-
ited or obliged to perform a specific action (or set of actions). We regard norms
having a scope of influence as they may have an influence on a set of actions.

Figure 2 shows the scope of influence of a prohibition and a permission on
instantiations of the action shift(X ,Y ,Z),X ∈ {a, b},Y ∈ {r , s},Z ∈ {u, v},

shift (X, Y, Z)

shift (a, Y, Z)

shift (a, r, Z) shift (a, s, Z)

shift (a, r, u)

shift (a, r, v)

shift (a, s, u)

shift (a, s, v)

shift (X, r, Z) X ∈ {a, b}
Y ∈ {r, s}
Z ∈ {u, v}

Conflict

〈FA:R shift(X, Y, Z) ∧∧∧∧ X = a, 1,1,1000 〉

〈PA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y = r, 1,1,1000 〉

X/bY/r

Y/r Y/s X/a

Z/u Z/v Z/u Z/v

Fig. 2: Conflict between a Permission and a Prohibition

in a blocks world scenario, representing that block X is shifted from the top
of block Y to the top of block Z . The prohibition prevents any agent in any
role to shift a specific block a from any block to any block. The scope of this
prohibition is the portion of the action’s space of possibilities enclosed within
the larger irregular polygon. The diagram also shows the scope of a permission
conflicting with this prohibition – it permits any agent in any role to shift a
specific block a from a specific block r to any other block. The scope of influence
of the permission is the portion of shift’s space of possibilities enclosed within
the smaller grey irregular polygon, contained within the scope of the prohibition.
This is a typical situation of conflict – the scopes of influence of both norms
overlap.

We use unification of first-order terms [4, 1] as an instrument to detect and
resolve conflicts between norms. Unification allows us i) to detect whether norms
are in conflict and ii) to detect the set of actions that are under the influence
of a norm. Unification is a fundamental problem in automated theorem proving
and many algorithms have been proposed [1], recent work proposing means to
obtain unifiers efficiently. Unification is based on the concept of substitution:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [1] – a substitution
σ is a unifier of two terms τ1 : τ2, if τ1 · σ = τ2 ·σ. In addition, we describe, how
substitutions are applied to obligations, permissions and prohibitions. Below, X

stands for either O, P or F:
1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x .

3. pn (τ0, . . . , τn) · σ = pn (τ0 · σ, . . . , τn · σ).
4. (Xτ1:τ2ϕ ∧

∧n

i=0 γi) · σ = (X(τ1·σ):(τ2·σ)ϕ · σ) ∧
∧n

i=0 γi · σ).
5. 〈ν, td , ta , te〉 · σ = 〈(ν · σ), td , ta , te〉

We shall use unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds for two terms τ1, τ2, iff τ1 ·σ = τ2 ·σ holds,
for some σ; unify(pn (τ0, . . . , τn), pn (τ ′

0, . . . , τ
′
n), σ) holds, for two atomic for-

mulae pn (τ0, . . . , τn), pn (τ ′
0, . . . , τ

′
n), iff unify(τi , τ

′
i , σ), 0 ≤ i ≤ n, for some σ.

We assume that unify is based on a suitable implementation of a unification al-
gorithm that i) always terminates (possibly failing, if a unifier cannot be found),
ii) is correct and iii) is of linear computational complexity. The unify relation-
ship checks, on the one hand, that substitution σ is a unifier, but can also be
used to find σ. By extending the definition of unify for handling norms, we can
use unification for detecting a conflict between two norms (X, X′, again, stand
for either O, P or F):

Definition 8. unify(ω, ω′) holds for two norms ω = 〈(Xτ1:τ2ϕ∧
∧n

i=0 γi),Ta ,Td ,
Te〉 and ω′ = 〈(X′

τ ′
1:τ

′
2
ϕ′ ∧

∧m

j=0 γ′
j),T

′
a ,T ′

d ,T ′
e〉, iff

1. unify(〈τ1, τ2, ϕ,Ta ,Td ,Te〉, 〈τ
′
1, τ

′
2, ϕ

′,T ′
a ,T ′

d ,T ′
e〉, σ) and

2. satisfy((
∧n

i=0(γi · σ)) ∧ (
∧m

j=0(γ
′
j · σ)))

Two conditions are tested: the first one checks that the various components of
a norm, organised as a tuple, unify; the second one checks that the constraints
associated with the norms are satisfiable3.

4.1 Conflict Detection

With unification, we can detect whether norms are in conflict. We define formally
a conflict between norms as follows:

Definition 9. A conflict arises between ω, ω′ ∈ Ω under a substitution σ, de-
noted as conflict(ω, ω′, σ), iff the following conditions hold:

1. ω = 〈(Fτ1:τ2ϕ ∧
∧n

i=0 γi), td , ta , te〉, ω′ = 〈(Oτ ′
1:τ ′

2
ϕ′ ∧

∧n

i=0 γ′
i), t

′
d , t ′a , t ′e〉,

2. unify(〈τ1, τ2, ϕ〉, 〈τ
′
1, τ

′
2, ϕ

′〉, σ), satisfy(
∧n

i=0 γi ∧ (
∧m

i=0 γ′
i · σ))

3. overlap(ta , te , t
′
a , t ′e).

That is, a conflict occurs if i) a substitution σ can be found that unifies the vari-
ables of two norms4, and ii) the conjunction

∧n

i=0 γi∧(
∧m

i=0 γ′
i)·σ) of constraints

from both norms can be satisfied (taking σ under consideration), and iii) the
activation period of the norms overlap. The overlap relationship holds if i) ta ≤
t ′a ≤ te ; or ii) t ′a ≤ ta ≤ t ′e . For instance, for the two norms PA:Rp(c,X)∧X > 50
and Fa:bp(Y ,Z) ∧ Z < 100, a substitution σ = {A/a,R/b,Y /c,X /Z} can be
found that allows the unification of both norms – being able to construct such a

3 We assume an implementation of the satisfy relationship based on “off the shelf”
constraint satisfaction libraries such as those provided by SICStus Prolog [13–15]
and it holds if the conjunction of constraints is satisfiable.

4 A similar definition is required to address the case of conflict between a prohibi-
tion and a permission – the first condition should be changed to ω′ = 〈(Pτ ′

1:τ ′
2
ϕ′ ∧

Vn

i=0 γ′
i), t

′
d , t ′a , t ′e〉. The rest of the definition remains the same.

unifier is a first indication that there may be a conflict, expressed as an overlap
of their influence on actions. The unifier expresses that the two norms conflict
if the variables A,R,Y and X receive as bindings the values contained in the
unifier. On the other hand, there will be no conflict if different bindings are cho-
sen. The constraints on the norms may restrict this overlap and, therefore, leave
actions under certain variable bindings free of conflict. The constraints of both
norms have to be investigated to see if an overlap of the values indeed occurs.
In our example, the permission has a constraint X > 50 and the prohibition
has Z < 100. By using the substitution X /Z , we see that 50 < X < 100 and
50 < Z < 100 represent ranges of values for variables X and Z where a conflict
will occur.

For convenience (and without any loss of generality) we assume that our
norms are in a special format: any non-variable term τ occurring in ν is replaced
by a fresh variable X (not occurring anywhere in ν) and a constraint X =
τ is added to ν. This transformation can be easily automated by scanning ν
from left to right, collecting all non-variable terms {τ1, . . . , τn}; then we add
∧n

i=1Xi = τi to ν. For example, norm PA:Rp(c,X)∧X > 50 is transformed into
PA:Rp(C ,X) ∧ X > 50 ∧ C = c.

4.2 Conflict Resolution

In order to resolve a conflict with respect to a specific action that is located
in the overlap of the scopes of influence of both norms, a social entity has to
decide which of the two conflicting norms it should adhere and which it should
ignore. For a software agent, a machinery has to be put in place that computes
a possible disambiguation of its normative situation – the set of norms Ω has
to be transformed into a set Ω′ that does not contain any conflicting norms so
that the agent can proceed with its execution. In [2], we achieved this by using a
concept of curtailment – one of the norms is changed in a way so that its scope of
influence is retracted from specific actions (which norm to choose for curtailment
is a different matter and not discussed in this paper). By curtailing the scope of
influence of a norm, the overlap between the two norms is eliminated.

Extending [2], we achieve curtailment by manipulating the constraints of the
norms. In figure 3, we show how a curtailment of the prohibition changes its scope

shift (X, Y, Z)

shift (a, Y, Z)

shift (a, r, Z) shift (a, s, Z)

shift (a, r, u)

shift (a, r, v)

shift (a, s, u)

shift (a, s, v)

shift (X, r, Z) X ∈ {a, b}
Y ∈ {r, s}
Z ∈ {u, v}

Conflict Resolution
by curtailing the
Prohibition with the
constraint Y ≠≠≠≠ r

X/bY/r

X/a

Y/r Y/s X/a

Z/u Z/v Z/u Z/v

〈FA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y ≠≠≠≠ r, 1,1,1000 〉

〈PA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y = r, 1,1,1000 〉

Fig. 3: Conflict Resolution with Curtailment

of influence and thus eliminates the overlap between the two norms. Specific
constraints are added to the prohibition in order to perform this curtailment –
as shown in figure 3, these additional constraints are derived from the permission.
The scope of the permission is determined by the constraints X = a and Y = r ,
restricting the set of bindings for variables X and Y to values a and r . Adding a
constraint Y 6= r to the prohibition curtails its scope of influence and eliminates
the overlap with the scope of influence of the permission.

We now formally define how the curtailment of norms takes place. It is im-
portant to notice that the curtailment of a norm creates a new (possibly empty)
set of curtailed norms:

Definition 10. Relationship curtail(ω, ω′, Ω), where ω = 〈Xτ1:τ2ϕ ∧
∧n

i=0 γi ,
td , ta , te〉 and ω′ = 〈X′

τ ′
1:τ ′

2
ϕ′ ∧

∧m

j=0 γ′
j , t

′
d , t ′a , t ′e〉 (X and X′ being either O, F or

P) holds iff Ω is a possibly empty and finite set of norms obtained by curtailing
ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}, that is, the set of curtail-
ments of a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0 , . . . , ω

c
m}, where ωc

j = 〈Xτ1:τ2ϕ ∧∧n
i=0 γi ∧ (¬γ′

j · σ), td , ta , te〉, 0 ≤ j ≤ m.

The rationale for the definition above is as follows. In order to curtail ω thus
avoiding any overlapping of values its variables may have with those variables of
ω′, we must “merge” the negated constraints of ω′ with those of ω. Additionally,
in order to ensure the appropriate correspondence of variables between ω and ω′

is captured, we must apply the substitution σ obtained via conflict(ω, ω′, σ) on
the merged negated constraints. By combining the constraints of ν = Xτ1:τ2ϕ ∧∧n

i=0 γi and ν′ = X′
τ ′
1:τ

′
2
ϕ′∧

∧m

j=0 γ′
j , we obtain the curtailed norm νc = Xτ1:τ2ϕ∧∧n

i=0 γi ∧ ¬(
∧m

j=0 γ′
j · σ). The following equivalences hold:

Xτ1:τ2ϕ ∧

n∧

i=0

γi ∧ ¬(

m∧

j=0

γ′
j · σ) ≡ Xτ1:τ2ϕ ∧

n∧

i=0

γi ∧ (

m∨

j=0

¬γ′
j · σ)

That is,
∨m

j=0(Xτ1:τ2ϕ ∧
∧n

i=0 γi ∧ ¬(γ′
j · σ)). This shows that each constraint

of ν′ leads to a possible solution for the resolution of a conflict and a possible
curtailment of ν. The curtailment thus produces a set of curtailed norms νc

j =

Xτ1:τ2p(t1, . . . , tn) ∧
∧n

i=0 γi ∧ ¬γ′
j · σ, 0 ≤ j ≤ m. Although each of the νc

j ,
0 ≤ j ≤ m, represents a solution to the norm conflict, we advocate that all of
them have to be added to Ω in order to replace the curtailed norm. This would
allow a preservation of as much of the original scope of the curtailed norm as
possible. During the formation of a conflict-free Ω′, the agent has to choose
which norm to curtail in case of a conflict. In order to express such a choice,
we introduce the concept of special curtailment policies that determine, given a
pair of norms, which norm to curtail. We define curtailment policies as:

Definition 11. A policy π is a tuple 〈ω, ω′, (
∧n

i=0 γi)〉 establishing that ω should
be curtailed (and ω′ should be preserved), if (

∧n
i=0 γi) hold.

For example, a policy 〈〈FA:Rp(X ,Y),Td ,Ta ,Te〉, 〈PA:Rp(X ,Y),T ′
d ,T ′

a ,T ′
e〉,

(Td < T ′
d)〉 expresses that any prohibition held by any agent that corresponds

to the pattern FA:Rp(X ,Y) has to be curtailed, if the additional constraint,
which expresses that the prohibition’s time of declaration Td precedes that of
the permission’s T ′

d , holds. Adding constraints to policies allows us a fine-grained
control of conflict resolution, capturing classic forms of resolving deontic conflicts
– the constraint in the example establishes a precedence relationship between
the two norms that is known as legis posterior (see section 8 for more details).
We shall represent a set of such policies as Π .

The algorithm shown in figure 4 depicts how to obtain a conflict-free set
of norms. It describes how an originally conflict-free (possibly empty) set Ω
can be extended in a fashion that resolves any emerging conflicts during norm
adoption. With that, a conflict-free Ω is always transformed into a conflict-free

algorithm adoptNorm(ω, Ω, Π, Ω′)
input ω, Ω, Π
output Ω′

begin

Ω′ := ∅
if Ω = ∅ then Ω′ := Ω ∪ {ω}
else

for each ω′ ∈ Ω do
// test for conflict
if unify(ω, ω′, σ) then

// test policy
if 〈ωπ, ω′

π, (
Vn

i=0 γi)〉 ∈ Π and unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and

satisfy(
Vn

i=0(γi · σ))
then

curtail(ω, ω′, Ω′′)
Ω′ := Ω ∪ Ω′′

else
// test policy
if 〈ω′

π, ωπ, (
Vn

i=0 γi)〉 ∈ Π and unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and

satisfy(
Vn

i=0(γi · σ))
then

curtail(ω′, ω, Ω′′)
Ω′ := (Ω − {ω′}) ∪ ({ω} ∪ Ω′′)

endif
endif

endif
endfor

endif
end

Fig. 4: Norm Adoption Algorithm
Ω′ that may contain curtailments. The algorithm makes use of a set Π of policies
determining how the curtailment of conflicting norms should be done. Policies
determine whether the new norm ω is curtailed in case of a conflict or whether
a curtailment of one of the existing ω′ ∈ Ω should take place. When a norm
is curtailed, a set of new norms replace the original norm. This set of norms is
collected into Ω′′ by curtail(ω, ω′, Ω′′). A curtailment takes place if there is a
conflict between ω and ω′. This test creates a unifier σ that is re-used in the
policy test. When checking for a policy that is applicable, the algorithm uses
unification to check (a) whether ω matches/unifies with ωπ and ω′ with ω′

π; and
(b) whether the policy constraints hold under the given σ. If a previously agreed
policy in Π determines that the newly adopted norm ω is to be curtailed in
case of a conflict with an existing ω′ ∈ Ω, then the new set Ω′ is created by
adding Ω′′ (the curtailed norms) to Ω. If the policy determines a curtailment of
an existing ω′ ∈ Ω when a conflict arises with the new norm ω, then a new set
Ω′ is formed by a) removing ω′ from Ω and b) adding ω and the set Ω′′.

5 Norm-Aware Agent Societies

With a set Ω that reflects a conflict-free normative situation, the agent can
test whether its actions are norm-compliant. In order to check actions for norm-
compliance, we, again, use unification. If an action unifies with a norm, then it
is within its scope of influence:

Definition 12. 〈a : r , ϕ̄, t〉, is within the scope of influence of 〈Xτ1:τ2ϕ∧
∧n

i=0 γi ,
td , ta , te〉 (where X is either O, P or F) iff the following conditions hold:

1. unify(a, τ1, σ), unify(r , τ2, σ), unify(ϕ̄, ϕ, σ) and satisfy(
∧n

i=0 γi · σ)
2. ta ≤ t ≤ te

This definition can be used to establish a predicate check/2, which holds if its
first argument, a candidate action (in the format of the elements of Ξ of Def. 2),
is within the influence of an prohibition ω, its second parameter. Figure 5 shows

check(Action, ω)←
Action = 〈a :r , ϕ̄, t〉∧
ω = 〈(Fτ1:τ2ϕ

′ ∧
Vn

i=0 γi), td , ta , te 〉∧
unify(〈a, r , ϕ̄〉, 〈τ1, τ2, ϕ

′〉, σ) ∧ satisfy(
Vn

i=0 γi · σ)∧
ta ≤ t ≤ te

Fig. 5: Check if Action is within Influence of a Prohibition

the definition of this relationship as a logic program. Similarly to the check of
conflicts between norms, it tests i) if the agent performing the action and its role
unify with the appropriate terms τ1, τ2 of ω; ii) if the actions ϕ̄, ϕ themselves
unify; and iii) the conjunction of the constraints of both norms can be satisfied,
all under the same unifier σ. Lastly, it checks if the time of the action is within
the norm temporal influence.

6 Indirect Conflicts

In our previous discussion, norm conflicts were detected via a direct comparison
of atomic formulae representing actions. However, conflicts and inconsistencies
may also arise indirectly via relationships among actions. For instance, if we
consider that an agent holds the two norms PA:Rp(X) and FA:Rq(X ,X) and
that the action p(X) amounts to the action q(X ,X), then we can rewrite the
permission as PA:Rq(X ,X) and identify an indirect conflict between these two
norms. We use a set of domain axioms in order to declare such domain-specific
relationships between actions:

Definition 13. The set of domain axioms, denoted as ∆, are a finite and possi-
bly empty set of formulae ϕ → (ϕ′

1 ∧· · ·∧ϕ′
n) where ϕ, ϕ′

i , 1 ≤ i ≤ n, are atomic
first-order formulae.

In order to accommodate indirect conflicts between norms based on domain-
specific relationships of actions, we have to adapt our curtailment mechanism.
A curtailment occurs, if there is a conflict, that is, if for two norms ω and ω′,
their variables unify, the conjunction of their constraints can be satisfied and
their activation periods overlap. With the introduction of domain axioms, this
test has to be performed for each of the conjuncts in the relationship. For ex-
ample, if we have a set of domain axioms ∆ = {(p(X) → q(X ,X) ∧ r(X ,Y))}

and a permission 〈PA:Rp(X), td , ta , te〉 then q(X ,X) and r(X ,Y) are also per-
mitted. There is, thus, an indirect conflict between 〈PA:Rp(X), td , ta , te〉 and
〈FA:Rq(X ,X), td , ta , te〉 and 〈FA:Rr(X ,Y), td , ta , te〉.

Domain axioms may also accommodate the delegation of actions between
agents. Such a delegation transfers norms across the agent community and, with

that, also conflicts. We introduce a special logical operator ϕ
τ1:τ2 τ′

1:τ
′
2

−−−−−−→(ϕ′
1∧· · ·∧ϕ′

n)
to represent that agent τ1 adopting role τ2 can transfer any norms on action ϕ to
agent τ ′

1 adopting role τ ′
2, which should carry out actions ϕ′

1 ∧ · · · ∧ ϕ′
n instead.

7 Example: Agents for the Grid

We address a scenario taken from the e-Science/Grid domain in which a service
provider may request payment that introduces a financial obligation for users,
but, at the same time commits to the provision of the service that represents a
right for the user to access the service.

In this scenario, a Principal Investigator (PI) of a research project has
to perform a specific research task that involves the analysis of data. We as-
sume that a contract exists between the PI and the funding body that in-
troduces certain rights, restrictions
and obligations for the contracting
partners. We regard both the PI
and the funding body as being rep-
resented as agents operating on the

8

>

>

<

>

>

:

〈Frsa:piclaim(X), 1, 1, 1000〉
〈Prsa:piclaim(staff costs), 1, 1, 1000〉
〈Prsa:piclaim(travel), 1, 1, 1000〉
〈Orsa:pireport experiment(rsa,D), 1, 1, 1000〉
〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

=

>

>

;

Fig. 6: Contract C

Grid and that this contract is available in electronic form and taken into account
by the agents in their actions.

A possible initial contract C is shown in Fig. 6. The first three norms repre-
sent financial requirements of the agent taking on the principal investigator role.
All claims are prohibited (norm 1)
with the exception of a number of
specific types of item: staff costs
(norm 2) and travel costs (norm 3)
are itemised here. In addition, an
obligation is stated that requires
the PI to report about the experi-

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

〈FA:R claim(X) ∧

„

A = rsa∧
R = pi

«

, 1, 1, 1000〉

〈PA:R claim(X) ∧

„

A = rsa ∧ R = pi∧
X = staff costs

«

, 1, 1, 1000〉

〈PA:R claim(X) ∧

A = rsa∧
R = pi∧

X = travel

!

, 1, 1, 1000〉

〈OA:R report experiment(A, D) ∧

„

A = rsa∧
R = pi∧

«

, 1, 1, 1000〉

〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

Fig. 7: Alternative Format of Contract C

ment as well as a prohibition for anybody to publish data. The last norm is a
basic prohibition, forbidding any agent in any role to publish data. Contract C
in its alternative (equivalent) format in which constants are replaced by variables
and constraints is shown in Fig. 7.

7.1 Conflict Resolution

Contract C has conflicting norms. We use our machinery to obtain a conflict-
free version C ′ of it, in which only the first prohibition is curtailed. C ′ is
shown in Fig. 8. In our example, two
Grid services are made available by
two potential subcontractors for the
execution of the data analysis task.
These are: i) a public non-profit or-
ganisation provides a free service, but

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

〈FA:R claim(X) ∧

A = rsa ∧ R = pi∧
X 6= staff costs∧

X 6= travel

!

, 1, 1, 1000〉

〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉

.

.

.
〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Fig. 8: Contract C ′ with Curtailed Norm

requires the disclosure of data in a public repository; and ii) a private com-
mercial organisation provides the service without the need for disclosure, but
requests a payment. These conditions of use can be expressed as norms in our
formalism. The terms of the service, provided by the public non-profit organisa-
tion, are N1 = {〈OA:R publish(D ′), 1, 1, 1000〉}, that is, according to the terms
of conditions of the public service, the input data have to be published. The
terms of the service of the private commercial organisation, on the other hand,
are 〈OA:R pay(fee), 1, 1, 1000〉 or, alternatively, N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} That is, whoever uses the service is obliged to pay a fee. The
Research Assistant Agent (rsa) has to choose which service to use. Each of them
introduces a new obligation with associated inconsistencies, explained below.

If the public Grid service is chosen, then the set N1, containing a new obli-
gation, is introduced. The set C ′ ∪ N1 contains a conflict: the obligation to
publish overlaps with the influence of the
prohibition to publish. Our machinery han-
dles this, completely curtailing the prohibi-
tion and giving rise to a new set C ′′, shown
in Fig. 9. The constraint D 6= D ′ expresses

8

>

>

>

>

>

<

>

>

>

>

>

:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉

〈FX :Y publish(D) ∧ D 6= D′, 1, 1, 1000〉

〈OA:R publish(D′), 1, 1, 1000〉

9

>

>

>

>

>

=

>

>

>

>

>

;

Fig. 9: Contract C ′′ = C ′ ∪ N1

that variable D cannot be bound to anything (since D ′ is a free variable) – the
prohibition, therefore, becomes completely curtailed and has no effect any more
and, hence, it is removed.

A conflict within the set C ′ ∪ N2 is not immediately obvious. Intuitively, in
terms of paying expenses for research (the domain of discussion here), the action
pay is related to the action claim. In order for our mechanism to cope with such
a situation, a concept of indirect conflicts based on domain axioms for relating
actions has to be introduced. We have explored such indirect conflicts in [2] and
we plan to extend that work to handle arbitrary constraints.

7.2 Indirect Conflict Resolution

In choosing the private service, the obligation N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} is introduced and a contract C ′′ = C ′ ∪ N2 created. Intu-
itively, we know that this introduces an indirect conflict, as the original contract
does not allow such a claim. With a do-
main axiom, we can express that to pay for
something eventually amounts to claiming
it: ∆ = {pay(X)

A:R A:R
−−−−→claim(X)}. In con-

tract C ′′, we have to permissions that allow

8

>

>

>

>

>

<

>

>

>

>

>

:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉

〈FX :Y publish(D) ∧ D 6= D′, 1, 1, 1000〉
〈OA:R claim(X) ∧ X = fee, 1, 1, 1000〉

9

>

>

>

>

>

=

>

>

>

>

>

;

Fig. 10: Contract C ′′ = C ′ ∪ N ∆
2

claiming staff costs and travel, but not claiming fees. According to the given do-
main axiom, obligation N2 can be transformed into N ∆

2 = OA:R claim(X)∧X =
fee, 1, 1, 1000〉}. By forming a new contract C ′′ = C ′ ∪N ∆

2 , a direct conflict be-
tween the first prohibition regarding claims and obligation N ∆

2 arises (Fig. 10).
The conflict resolution can now take place as shown in the case of direct conflicts
(see contract C ′ in Fig. 8).

7.3 Solving Conflicts arising from Delegation

Conflicts can also arise from delegation among agents/roles. Let there be the
set of domain axioms ∆ of Fig. 11: it contains axioms describing how the
Research Assistant Agent can fulfil its obligation to report the result of an

experiment. As the domain axioms show, there is a relationship between the
action report experiment and do exp. An additional axiom tells us that the
action do exp leads to the sending of experimental data to one of the cho-

sen Grid services of subcontractors. The domain axiom send(A,R′,E ,D)
A:R A′:R′
−−−−−→

receive(A′,R′,A,E ,D) shows the
delegation of activities from the
agent responsible for the data anal-
ysis to a subcontractor for actually
performing the experiment. The
rest of the domain axioms describe

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

pay(X)
A:R A:R
−−−−−→claim(X)

report experiment(A, E, D)
A:R A:R
−−−−−→do exp(A, E, D)

do exp(A, e1, D)
A:pi A:pi
−−−−−→send(A, exp, e1, D)

send(A, R′, E, D)
A:R A′:R′
−−−−−−→receive(A′, R′, A, E, D)

receive(A′, R′, A, E, D)
A′:R′ A′:R′
−−−−−−−−→

„

analyse(A′, E, D, S)∧

send(A, A′, S)

«

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Fig. 11: Set of Domain Axioms ∆

how a subcontractor performs an experiment and sends back results upon receiv-
ing such a request. For example, the obligation to report experimental results
gives rise to an obligation to perform the action do exp and, continuing in this
transitive fashion, obligations for all the related actions as described before. Due
to the delegation step, obligations also arise for the partner agents. These obli-
gations, in their turn, may interfere with prohibitions held by the collaborating
agents and may have to be dealt with in the same way.

8 Related Work

The work presented in this paper is an extension and adaptation of the work
presented in [2, 16] and [17]. It can also be seen as a logic-theoretic investigation
into deontic logics to represent normative modalities along with their paradoxes
[18, 19]. In [2], we introduced conflict detection and resolution based on unifica-
tion. In this paper, we re-visited this research and introduced constraints into
the given conflict detection/resolution mechanism. The result is a new machinery
for conflict detection/resolution and reported in this paper.

Efforts to keep law systems conflict-free can be traced back to the jurispru-
dential practice in human society. Inconsistency in law is an important issue
and legal theorists use a diverse set of terms such as, for example, normative
inconsistencies/conflicts, antinomies, discordance, etc., in order to describe this
phenomenon. There are three classic strategies for resolving deontic conflicts by
establishing a precedence relationship between norms: legis posterior – the most
recent norm takes precedence, legis superior – the norm imposed by the strongest
power takes precedence, and legis specialis – the most specific norm takes prece-
dence [20]. The work presented in [16] discusses a set of conflict scenarios and
conflict resolution strategies, among them the classic strategies mentioned above.
For example, one of these conflict resolution strategies achieves a resolution of a
conflict via negotiation with a norm issuer. In [21], an analysis of different norma-
tive conflicts is provided. The authors suggest that a deontic inconsistency arises
when an action is simultaneously permitted and prohibited. In [22], three forms
of conflict/inconsistency are described as total-total, total-partial and intersec-
tion. These are special cases of the intersection of norms as described in figure 2
and in [16] – a permission entailing the prohibition, a prohibition entailing the
permission or an overlap of both norms.

The SCIFF framework [23] is related to our work in that it also uses con-
straint resolution to reduce the scope of expectations to avoid conflict – expec-
tation is a concept closely related to norms [24]. For instance, in that work,
E(p,X), 0 ≤ X ≤ 10 means that p is expected to hold true between 0 and

10, and EN(p,Y),Y > 5 means that p is expected not to hold true when
Y is greater than 5; positive expectations are related to obligations (and are
implicitly existentially quantified) and negative expectations are related to pro-
hibitions (and are implicitly universally quantified). The SCIFF proof procedure
uses constraint resolution to reduce the domain of the expectations (and non-
expectations). However, SCIFF always gives higher priority to negative expec-
tations against positive ones.

9 Conclusions and Future Work

We have presented a novel mechanism to detect and resolve conflicts in norm-
regulated environment. Such conflicts arise when an action is simultaneously
obliged and prohibited or, alternatively, when an action is permitted and pro-
hibited. We introduce norms as first-order atomic formulae to whose variables we
can associate arbitrary constraints – this allows for more expressive norms, with a
finer granularity and greater precision. The proposed mechanism is based on first-
order unification and constraint satisfaction algorithms, extending our previous
work [2], addressing a more expressive class of norms. Our conflict resolution
mechanism amounts to manipulating the constraints of norms to avoid overlap-
ping values of variables – this is called the “curtailment” of variables/norms. We
have also introduced a robust and flexible algorithm to manage the adoption of
possibly conflicting norms, whereby explicit policies depict how the curtailment
between specific norms should take place. Our proposed formalism naturally
allows the detection of indirect normative conflicts, arising when an action is
broken down into composite actions appearing in conflicting norms.

In this paper we only considered universally quantified norms, leaving out
important cases of existential quantifications. If existential quantification is al-
lowed, then disjunction of constraints must be preserved. In this case, replacing a
norm that has a disjunction of constraints with a conjunction of separate norms
does not work anymore. If we allow existential quantification then we must pre-
serve disjunctions of constraints and the set of norms Ω should be managed
differently, in particular, disjunctions of norms should be allowed. We are cur-
rently working to address these issues.

The policies establishing which of two conflicting norms should be curtailed,
confers generality on our approach, being neatly accommodated in our algo-
rithms. We observe, however, that it would also be possible to make policies
part of the virtual organisation (VO) specification, giving higher priority to
those norms that allow the progress of the organisation. For instance, if p(X) is
forbidden and p(Y) is permitted (both for the same group of agents/roles), that
is, there is a complete overlap on the norms’ scope of influence, then a policy
on the VO could specify which of the two should be “removed” (by adding the
constraint X 6= Y onto it), based on which of them would allow the VO to
progress. For example, if the VO progresses when an agent performs p(a), then
the prohibition could be lifted.

We want to extend our work to also address the removal of norms: when a
norm is removed, all those curtailments it caused must be undone. We envisage a
roll-back/roll-forward mechanism, whereby a history of normative states allows
us to retrieve the state prior to the introduction of the norm to be removed (roll-
back) and apply to this state all the updates which took place after the norm was

introduced, skipping the actual norm to be removed (roll-forward). Additionally,
we want to integrate our mechanisms with norm-updating approaches such as
[12] – we want to investigate if it is possible (and in which circumstances) to
detect conflicts at the design stage of norm updates (as opposed to run-time).

Acknowledgements: This research is continuing through participation in the Inter-

national Technology Alliance sponsored by the U.S. Army Research Laboratory and

the U.K. Ministry of Defence (http://www.usukita.org).

References

1. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, U.S.A. (1990)

2. Vasconcelos, W., Kollingbaum, M., Norman, T., Garćıa-Camino, A.: Resolving
Conflict and Inconsistency in Norm-Regulated Virtual Organizations. In: Pro-
ceedings of AAMAS 2007. (2007)

3. O’Leary, D.E., Kuokka, D., Plant, R.: Artificial Intelligence and Virtual Organi-
zations. Commun. ACM 40(1) (1997)

4. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
5. Parunak, H.V.D., Odell, J.: Representing Social Structures in UML. In: Procs 5th

Int’l Conf. on Autonomous Agents, Montreal, Canada, ACM Press (2001) 100–101
6. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-

tronic Institutions. PhD thesis, IIIA-CSIC, Spain (2001)
7. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of

Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2) (2003) 145–184

8. Garcia-Camino, A., Rodriguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A
Distributed Architecture for Norm-Aware Agent Societies. Volume 3904 of LNAI.
Springer-Verlag (2005)

9. Vasconcelos, W.W.: Expressive Global Protocols via Logic-Based Electronic In-
stitutions. In: Proc. 2nd Int’l Joint Conf. on Autonomous Agents & Multi-Agent
Systems (AAMAS 2003), Melbourne, Australia, ACM, U.S.A (2003)

10. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of
Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2) (2003) 145–184

11. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of
Logic Progr. 19/20 (1994) 503–581

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions. ACM
SIGecom Exchanges 5(5) (2006) 33–40

13. Swedish Institute of Computer Science: SICStus Prolog. (2005) http://www.sics.
se/isl/sicstuswww/site/index.html, viewed on 10 Feb 2005 at 18.16 GMT.

14. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. Journal of Logic Programming 37(1-3) (1998) 1–46

15. Holzbaur, C.: ÖFAI clp(q,r) Manual, Edition 1.3.3. TR-95-09, Austrian Research
Institute for A. I., Vienna, Austria (1995)

16. Kollingbaum, M., Norman, T., Preece, A., Sleeman, D.: Norm Refinement: In-
forming the Re-negotiation of Contracts. In Boella, G., Boissier, O., Matson, E.,
Vazquez-Salceda, J., eds.: ECAI 2006 Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems, COIN@ECAI 2006. (2006) 46–51

17. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: An Algorithm for Con-
flict Resolution in Regulated Compound Activities. In: Seventh Annual Interna-
tional Workshop Engineering Societies in the Agents World (ESAW’06). (2006)

18. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69–79

19. Sergot, M.: A Computational Theory of Normative Positions. ACM Transactions
on Computational Logic 2(4) (2001) 581–622

20. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-Dimensional Dynamic Knowledge
Representation. Volume 2173 of LNAI. Springer-Verlag (2001)

21. Elhag, A., Breuker, J., Brouwer, P.: On the Formal Analysis of Normative Conflicts.
Information & Comms. Techn. Law 9(3) (2000) 207–217

22. Ross, A.: On Law and Justice. Stevens & Sons (1958)
23. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF Abduc-

tive Proof Procedure. Volume 3673 of LNAI. Springer-Verlag (2005)
24. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping

Deontic Operators to Abductive Expectations. Computational & Mathematical
Organization 12(2-3) (2006) 205–225

