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Abstract. The goal of predictive toxicology is the automatic construc-
tion of carcinogenecity models. Most common artificial intelligence tech-
niques used to construct these models are inductive learning methods. In
a previous work we presented an approach that uses lazy learning meth-
ods for solving the problem of predicting carcinogenecity. Lazy learning
methods solve new problems based on their similarity to already solved
problems. Nevertheless, a weakness of these kind of methods is that some-
times the result is not completely understandable by the user. In this
paper we propose an explanation scheme for a concrete lazy learning
method. This scheme is particularly interesting to justify the predictions
about the carcinogenesis of chemical compounds.

1 Introduction

During the seventies Europe and the United States respectively started long
term programs with the aim of developing toxicology chemical databases. The
idea was to establish standardized experimental protocols allowing to determine
the carcinogenecity of chemical compounds. In particular, the American Na-
tional Toxicology Program (NTP) established two protocols to be performed on
rodents: a short-term protocol (90 days) and a long-term protocol (2 years). To
develop both protocols is necessary to sacrify a lot of animals and sometimes
the results are not clearly conclusive concerning to carcinogenecity. Moreover,
even in the situation of clear carcinogenic activity of a chemical compounds on
rodents, there is no certainty that the results may be extrapolable to humans.

The use of computational models applied to toxicology could contribute to
reduce the cost of experimental procedures. In particular, artificial intelligence
methods such as knowledge discovery and machine learning can be used for
building models of carcinogenecity (see [13]). The construction of such models
is called predictive toxicology. From the machine learning point of view, the
goal of the predictive toxicology is a classification task, i.e. toxic compounds
are classified as belonging to the positive class and non-toxic compounds are
classified as belonging to the negative class.

Most of machine learning approaches use representations of chemical com-
poudns based on structure-activity relationship (SAR) descriptions since there



are easily obtained from commercial drug design tools ([14], www.accelrys.com/
chem/, www.disat.inimib.it/chm/Dragon.htm). Concerning the classification of
chemical compounds, a widely used technique to build carcinogenecity models
is inductive logic programming (ILP). The main idea of ILP is to induce general
descriptions satisfied by a set of examples represented using logical predicates.
In these approaches (for instance see [9]), compounds are represented as sets of
predicates relating the atoms of the molecule and they also include information
about the chemical compunds (such as molecular weight, charge, etc). Never-
theless, due to the wide variety of chemical compounds, the use of inductive
learning methods for building a general model of carcinogenesis is very difficult.

In [6] we proposed the use of lazy learning methods, instead of inductive
learning methods, to classify chemical compounds. The main difference among
both kinds of approaches is that inductive learning methods build a model and
then they use it to classify new chemical compounds. Instead, lazy approaches
do not build any model, but given a new problem they try to classify it based on
both its features and the similarity of that problem with already known problems.
This represents an advantage because lazy learning methods are not aware of
the variability of the problems but they only focus on the features of the new
problem. Concerning to the toxicology domain, since chemical compounds have
high variability, inductive learning methods produce models with rules that are
too general. Instead, a lazy learning method only focuses on the features of the
new chemical compound to assess the similarity of that compound with others
compounds with known carcinogenic activity.

A weakness of lazy learning methods is the way they are able to explain
the result to the user. The most common way used by case-based reasoning
systems to explain the result is to show the user all the cases that support the
classification of a new problem. This kind of explanation seems appropriate when
domain objects are not too complicated, however when domain objects have a
complicated structure the user is not able to detect similarities among the cases.
McSherry [18] argues that the most similar case could be a good explanation
but it also may have features that could act as arguments against that case and,
therefore, against the classification that it proposes. For this reason, McSherry
proposes that the explanation of a case-based reasoning system has to explicitly
distinguish between the case features supporting a classification and the case
features against it. In that way, the user could decide about the final solution
of the problem. A related idea proposed in [17] is to use the differences among
cases to support the user in understanding why some cases do not satisfy some
requirements.

Our approach is based on generating an explanation scheme from the simi-
larities among a problem and a set of cases. As the approaches of McSherry and
McCarthy et al. [17], the explanation scheme of our approach is also oriented
to the user. The difference of our approach with that of McSherry is that we
explain the result using a set of similar cases whereas McSherry explains it using
both similarities and differences among the most similar case compared to the
problem at hand. An interesting part of the explanation scheme we propose is
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Fig. 1. Partial view of the chemical ontology

that it allows the user to focus on relevant aspects that differentiate carcinogen
compounds from non carcinogen compounds.

The structure of the paper is the following. In the next section we briefly
describe the formalism of feature terms, the representation we use to describe
chemical compounds. Then in Section 3 we introduce LID, the lazy learning
method we use to classify chemical compounds and that handles objects repre-
sented as feature terms. In Section 4 we introduce the anti-unification concept in
which is based the explanation scheme described in Section 5. We end up with
some related works and conclusions.

2 Representation of the chemical compounds using
feature terms

Current approaches using artificial intelligence techniques applied to chemistry
use representations inherited from existing tools. These tools describe chemical
compounds with a set of structure-activity relationship (SAR) descriptors be-
cause they were developed mainly for the task of drug design. In [6] we proposed
the use of a representation of chemical compounds based on the chemical on-
tology given by the IUPAC nomenclature (www.chem.qmul.ac.uk/ iupac/). The
IUPAC chemical nomenclature is a standard form to describe the (organic and
inorganic) molecules from their chemical structure. From our point of view, a
formal representation using the IUPAC nomenclature could be very useful since
it allows a direct description of the chemical structure, in a way very familiar to
the chemist. Our point is that, using the standard nomenclature, the name of
a molecule provides enough information to graphically represent its structure.
Actually, we represent a compound as a structure with substructures using the
chemical ontology that is implicit in the nomenclature of the compounds. Figure
1 shows part of the chemical ontology we have used to represent the compounds
in the Toxicology data set.
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Fig. 2. Representation of TR-339, 2-amino-4-nitrophenol, with feature terms

The implementation of our approach has been done using the feature terms
formalism [2]. Feature terms is a kind of relational representation, i.e. an object
is described by its parts and the relationhs among these parts. The intuition
behind a feature term is that it can be described as a labelled graph where
nodes are objects and links are the features describing the objects. An object,
as well as the values of the features of that object belong to a sort. A sort is
described by a set of features, where each feature represents a relation of this sort
with another sort. Sorts are related among them by partial order � (see 4.1) that
induces a hierarchy of sorts/subsorts relating the concepts of a domain. Thus,
the chemical ontology shown in Fig. 1 can be viewed as a sort/subsort hierarchy
relating the chemical concepts describing the molecular structure of a chemical
compound.

Let us illustrate with an exemple how chemical compounds are represented
using feature terms. Figure 2 shows the molecular structure of the chemical
compound TR-339, called 2-amino-4-nitrophenol, and its representation using
feature terms. Chemical compound TR-339 is represented by a feature term with
root TR-339 of sort benzene described by two features: radical-set and p-radicals.
The value of the feature radical-set is the set {alcohol, amine, nitro-derivate}.
The value of the feature p-radicals is a set whose elements are of sort position-
radical. In turn, the sort position-radical is described using two features: radicals
and position. Values of radicals are those of the feature radical-set meaning the
position where the radical is placed. TR-339 has the radical alcohol placed in
position one, the radical amine in position two and the radical nitro-derivate in
position four. Note that this information has been directly extracted from the
chemical name of the compound following the nomenclature rules.

A leaf of a feature term is defined as a feature whose value is a (set of) feature
term without features. For instance, leaf features of TR-339 are the following:
{radical-set, position, radicals, position, radicals, position, radicals}. Notice that
there is a leaf position and also a leaf radicals for each value of p-radicals.



Function LID (p, SD, D, C)
SD := Discriminatory-set (D)
if stopping-condition(SD)

then return class(SD)
else fd := Select-leaf (p, SD, C)

D′ := Add-path(π(root(p), fd), D)
SD′ := Discriminatory-set (D′, SD)
LID (SD′ , p, D′, C)

end-if
end-function

Fig. 3. The LID algorithm. p is the problem to be solved, D is the similitude term, SD

is the discriminatory set of D, C is the set of solution classes, class(SD) is the class
Ci ∈ C to which all elements in SD belong.

A path Π(root, f) is the sequence of features leading from the root of the
feature term to the feature f . Paths of TR-339 from the root to the leaves are
the following:

– TR-339.radical-set with value the set {alcohol, amine,nitro-derivate}
– TR-339.p-radicals.position with value one
– TR-339.p-radicals.radicals with value alcohol
– TR-339.p-radicals.position with value two
– TR-339.p-radicals.radicals with value amine
– TR-339.p-radicals.position with value four
– TR-339.p-radicals.radicals with value nitro-derivate

3 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant features of a problem and
searches in a case base for cases sharing these relevant features. The problem is
classified when LID finds a set of relevant features shared by a subset of cases all o
them belonging to a same class. We call similitude term the feature term formed
by these relevant features and discriminatory set the set of cases satisfying the
similitude term. A first version of LID was introduced in [3] to assess the risk
of complications in diabetic patients. In order to assess the carcinogenecity of
chemical compounds, the LID algorithm has been modified to cope with some
situation that, although general, they do not occur in the diabetes domain.

Given a problem p, the LID algorithm (Fig. 3) initializes D as a feature term
such that sort(D) = sort(p), with no features and with the discriminatory set
SD initialized to the set of cases satisfying D. For the Toxicology domain we set
C = {positive, negative}.



Let D be the current similitude term, the first step is to form the set SD

with all the cases satisfying the similitude term D. When the stopping condition
of LID is not satisfied, the next step is to select a leaf for specializing D.

The specialization of a similitude term D is achieved by adding features to
it. Given a set Fl of features candidate to specialize D, the next step of LID
is the selection of a leaf feature fd ∈ Fl to specialize the similitude term D 1.
Selecting the most discriminatory leaf feature in the set Fl is heuristically done
using the López de Mántaras’ distance (LM) [16] over the features in Fl. LM
measures the distance among two partitions and LID uses it to compare each
partition Pj induced by a feature fj with the correct partition Pc. The correct
partition has two sets: one with the examples belonging to a solution class Ci

and the other containing the cases not in Ci. Each feature fj ∈ Fl induces in the
discriminatory set a partition Pj with two sets, one with the cases where fj takes
the same value than p and the other with the rest. Given two features fi and fj

inducing respectively partitions Pi and Pj , we say that fi is more discriminatory
than fj iff LM(Pi, Pc) < LM(Pj , Pc). This means that the partition Pi induced
by fi is closer to the correct partition than the partition Pj induced by fj . LID
selects the most discriminatory feature to specialize D.

Let us call fd the most discriminatory feature in Fl. The specialization of
D defines a new similitude term D′ by adding to D the sequence of features
appearing in the path Π(root(p), fd). After adding the path Π to D, the new
similitude term D′ = D + Π subsumes a subset of cases in SD, namely SD′ .

Next, LID is recursively called with the discriminatory set SD′ and the simil-
itude term D′. The recursive call of LID has SD′ instead of SD because the cases
that are not subsumed by D′ will not be subsumed by any further specializa-
tion. The process of specialization reduces the discriminatory set at each step,
therefore we get a sequence Sn

D ⊆ Sn−1
D ⊆ . . . ⊆ S0

D.
LID has three possible stopping situations: 1) all the cases in the discrim-

inatory set belong to the same solution class, 2) there is no feature allowing
to specialize the similitude term, and 3) there are no cases subsumed by the
similitude term.

In a previous version of LID [3] there only the stopping conditions 1) and 2)
were considered. Now, in the Toxicology domain we have introduced a third stop-
ping condition: the similitude term does not subsumes any case. Let us explain
condition 3 in more detail. The similitude term is a feature term of the same sort
than p, and the sort of p is any sort of the ontology of organic compounds (Fig.
1). Nevertheless, it is possible than there is no chemical compound of the same
sort of p. For instance, let us suppose that cp is the compound TR-496 of sort
eicosane, then the similitude term is a feature term of sort eicosane. This means
that LID searches in the case base for chemical compounds of sort eicosane but
there is not any other chemical compound of that sort, therefore SD = ∅. In that
situation, LID finishes without giving a solution for p.

1 In fact, the selection of a leaf implies the selection of the path from the root to the
leaf.
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Fig. 4. Molecular structure, feature term representation and paths of the chemical
compound TR-089 (resorcinol).

When the stopping condition 1) is satisfied because all the cases in SD belong
to a same solution class Ci, then p is classified as belonging to Ci. When SD = ∅
then LID gives no classification for p, and finally when the discriminatory set
contains cases from several classes, then the majority criteria is applied, i.e. p is
classified as belonging to the class of the majority of cases in SD.

3.1 Example

In this section we explain the LID algorithm by illustrating the process with the
classificacion of the chemical compound TR-089 (Fig. 4 shows the molecular
structure and paths of TR-089 ). The first step is to select a relevant feature,
therefore, it is necessary to induce the partitions associated to each feature of
TR-089 and then to compute the distance to the correct partition. Using the LM
distance, LID takes the feature radical-set with value methane. In such a situation,
D0 = Π1 (Fig. 4) and SD0 = {TR-491, TR-416, TR-414, TR-372, TR-351, TR-
223, TR-171, TR-142, TR-128, TR-127, TR-124, TR-120, TR-114, TR-105,
TR-084} where some compounds are positive and some others are negative for
carcinogenesis. Therefore LID has to specialize D0 by selecting a relevant feature
to be added to it. The next most relevant feature is radical-set with value amine.
Now the discriminatory set associated to D1 = D0 + Π2 is SD1 = {TR-084,
TR-105, TR-127, TR-142, TR-171, TR-351, TR-372} that still contains both
positive and negative compounds. Therefore a new relevant feature has to be
selected. Now the selected feature is distance with value 1. The new similitude
term is D2 = D1 + Π5 and the discriminatory set is SD2 = {TR-084, TR-127,
TR-142, TR-171, TR-372} where TR-171 is the only compound with negative
carcinogenecity for male rats. Because LID cannot further specialize D2, since
there are no features able to discriminate the compound TR-171 from the others,
it uses the majority criterion to classify TR-089 as positive.

Notice that in the situation above, the result given by LID after the appli-
cation of the majority rule seems clear, i.e. TR-089 is positive because all the
cases assessed as the most similar (except TR-171) are positive. Nevertheless,
sometimes such a majority is not so clear. for instance, in the current situation,
the user could note that the molecular structures of all the compounds in SD2

are very similar (see Fig. 6) so the question is: why TR-171 is negative? In the
next section we propose an explanation scheme in order to justify to the user
the classifications given by LID.



4 How results of a lazy learning method can be
explained?

Case-based reasoning (CBR) systems predict the solution of a problem based on
the similarity between this problem (the current case) and already solved prob-
lems (cases). Clearly, the key point is the measure used to assess the similarity
among the cases. Since the resulting similarity value is difficult to explain, CBR
systems often show the retrieved cases (the set of cases that have been assessed
as the most similar to the new problem) to the user as an explanation of the
prediction: the solution is predicted because the problem was similar to the cases
shown. Nevertheless, when the cases have a complex structure, simply showing
the most similar cases to the user may not be enough. Our proposal, similar
to that introduced in [4] is to show the user a symbolic description (the final
similitude term given by LID) that makes explicit what the new problem has in
common with the retrieved cases.

As we already mentioned, LID has three stopping situations for the classifi-
cation process of a problem p. For the first one, when all the cases in SD belong
to a same solution class, the similitude term is a good explanation since makes
explicit the relevant features shared by p and a subset of classes belonging to
a class. However, when the second stopping condition holds, p shares relevant
features with cases from different solution classes, therefore the similitude term,
by its own, is not a good justification of the result. For this resason, we take the
explanation scheme introduced in [4] to explain results obtained by LID using
the majority rule. This scheme is based on the anti-unification concept.

4.1 The Anti-unification Concept

The explanation scheme we propose is based on the concept of least general
generalization (lgg), commonly used in Machine Learning. The partial order �
among sorts mentioned in Section 2 gives an informational order among sorts
since s1 � s2 (s2 is a subsort of s1) means that s1 provides less information
than s2. Using the partial order � we can define the least upper bound (lub) of
two sorts lub(s1, s2) as the most specific super-sort common to both sorts. For
instance, Fig. 1 shows the sort hierarchy representing this chemical ontology. The
most general sort is organic-compound and most specific sorts are the leafs of
this hierarchy (e.g. pentane, hexane, benzene, furane, etc). Thus, the super-sort
of any two sorts of that hierarchy (for instance benzene and furane) is always
organic-compound. The anti-unification concept concerns to the most specific
sort of two sort, therefore the lub(benzene, furane) (Fig. 1) is the sort monocycle.
Similarly, lub(benzene, xantene)=ring-system, and lub(methane, O-compound) =
organic-compound.

Now, we can define the least general generalization or anti-unification of a
collection of descriptions represented as feature terms (either generalizations or
cases) using the relation more general than (≥g) as follows:

– AU(d1, ..., dk) = g such that (g ≥g d1) ∧ ... ∧ (g ≥g dk) and not exists (g′ ≥g

d1) ∧ ... ∧ (g′ ≥g dk) such that g >g g′
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Fig. 5. Graphical representation of both the chemical compound TR-403 and the anti-
unification of TR-089 and TR-403.

That is to say, g is the most specific generalization of all those generalizations
that cover all the descriptions d1, ..., dk. AU(d1, ..., dn) is a feature term described
by all the features common to (or shared by) d1, ..., d2, i.e it describes all aspects
in which two ore more descriptions are similar.

The anti-unification of the chemical compounds TR-089 (Fig. 4) and TR-403
(Fig. 5) is the feature term AU(TR-089, TR-403), shown in Fig. 5. AU(C-089,
C-403) represents a chemical compound that is a benzene with a radical of sort
O-compound and another radical in a non specified position. See [2] for a more
detailed account on feature terms and their anti-unification. In the next section
we detail the explanation scheme used to justify the classification of LID.

5 The explanation scheme

This section presents the way in which descriptions resulting from the anti-
unification of a collection of cases can be used to explain the classification of a
new problem in CBR systems. Let SD the discriminatory set containing cases
satisfying the similitude term D given by LID as a result of the classification of
a problem p. There are two possible situations: 1) cases in SD belong to only
one class Ci, and 2) cases in SD belong to several classes.

Concerning the first situation, the similitude term D is a good explanation of
why the cases in SD are similar to p, since it is a description of all that is shared
among a subset of cases belonging to a some class Ci and the new problem. Let
us to concentrate on the second situation.

Assuming two solution classes C1 and C2, let S1
D ⊆ SD be the set of retrieved

cases hat belong to a class C1, and S2
D ⊆ SD the subset of retrieved cases that

belong to C2 (SD = S1
D ∪ S2

D). The explanation scheme we proposed in [4] is
composed of three descriptions:

– AU∗: the anti-unification of p with all the cases in SD. This description
shows what aspects of the problem are shared by all the retrieved cases, i.e.
the k retrieved cases are similar to p because they have in common what is
described in AU∗.

– AU1: the anti-unification of p with the cases in C1. This description shows
what has p in common with the cases in C1.
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– AU2: the anti-unification of p with the cases in C2. This description shows
what has p in common with the cases in C2.

This explanation scheme supports the user in the understanding of the classi-
fication of a problem p. With the explanation scheme we propose, the similarities
among p and the cases of each class are explicitly given to the user, who can
decide the final classification of p. This scheme can also be used in situations
where more than two classes are present in SD, our explanation scheme is simply
to build one anti-unification description for each one of them. For instance, if
cases in the retrieval set belong to 4 classes the explanation scheme consists on
the following symbolic descriptions: AU1, AU2, AU3, and AU4.

When the similitude term AU∗ is too general (e.g. most of the features hold
the most general sort as value), the meaning is that the cases have low simi-
larity. Conversely, when AU∗ is a description with some features holding some
specific value, this means that the cases share something more than only the
general structure. In this paper instead of AU∗ we propose the use of the final
similitude term D given by LID. The main difference between AU∗ and D is that
AU∗ shows all the aspects shared by all the retrieved cases whereas D shows
the important aspects shared by the problem and the retrieved cases, i.e. those
aspects considered important to classify the problem.

AU1 shows the commonalities among the problem p and the retrieved cases
belonging to C1. This allows the user to focus on those aspects that could be
relevant to classify p as belonging to C1. As before, the more specific AU1 is, the
more information it gives for classifying p. Notice that AU1 could be as general
as D; in fact, it is possible that both feature terms are equal. This situation
means that p has not too many similar aspects with the cases of C1. A similar
situation may occur with AU2.

In [7] an example that follows this scheme can be found. Here we illustrate
the explanation scheme with the example of the classification of the chemical
compound TR-089 developed in section 3.1. This is an interesting case where
the explanation scheme can support the user the search of unclear aspects of



the classification of compounds. Figure 6 shows the similitude term D2 and the
discriminatory set SD2 = {TR-084, TR-127, TR-142, TR-171, TR-372} given
by LID when classifying the chemical compound TR-089. Concerning the car-
cinogenesis on male rats, SD2 can be partitioned in the following two subsets:
S1

D2
= {TR-084, TR-127, TR-142, TR-372} and S1

D2
= {TR-171}, where com-

pounds in S1
D2

are positive and the compound in S2
D2

is negative. The explanation
scheme for chemical compound TR-089 is the following:

– The similitude term D2 shows that TR-089 and the compounds in SD2

have in common that they all have a benzene structure with two radicals at
distance 1 among them. One of these radicals is an ether that in turn has a
radical methane. The other radical is an amine.

– The description AU1 is the anti-unification of TR-089 and the chemical
compounds considered as positive for male rats. In fact, AU1 = D2, since
all positive compounds share, as before, that they are benzenes with two
radicals (an ether with a radical methane and an amine. ) with distance 1
among them.

– The description AU2 is the anti-unification of TR-089 and TR-171 that is
the unique compound in SD2 , i.e. negative for carcinogenesis. Note that also
in that case, AU2 = D2

From the descriptions AU1 and AU2 the user can easily observe the similari-
ties and differences among the compounds in C1 and those in C2. In the current
example, D2, AU1 and AU2 give the same feature term as explanation, which is
quite specific since common radicals have specific sorts (benzene, ether, methane,
amine), therefore the user can conclude that all the compounds are really very
similar. So, the question could be why TR-171 is negative for carcinogenesis.
All compounds in SD (included TR-171 ) are aromatic amines which are highly
correlated with carcinogenecity [19, 1], therefore, in principle TR-171 should
also be carcinogenic. Because the TR-171 (2,4 - Dimethoxyaniniline hydrochlo-
ride) is an aniline we performed a search on Internet asking for information
about experimental results on anilines. We found from the page of the Interna-
tional Agency for Research on Cancer (IARC) that there are defined four cat-
egories of chemical compounds according to their potential carcinogenic power
on humans. In particular, anilines are classified on category 3 corresponding
to chemical compounds with inadequate evidence of carcinogenecity in humans
or those compounds whose experimental evidence on animals is either inade-
quate or limited. In fact, the NTP report of experimental results of TR-171 on
rodents (see long term NTP Study Reports from web page ntp.niehs.nih.gov/)
states that studies began when 2,4 - Dimethoxyaniniline hydrochloride was sus-
picious to be the cause of the increment of incidence of bladder cancer among
dye manufacturing industry workers. Nevertheless the experimental results on
rodents did not provide a convincing evidence of the carcinogenic power of the
2,4 - Dimethoxyaniniline hydrochloride. This means that for chemical experts,
TR-171 was at first sight a potential carcinogen and despite the experimental
results on rodents show no evidence of carcinogenecity, toxic activity on other
species could not be discarded.



6 Related Work

Concerning to the Predictive Toxicology domain, we have proposed 1) a new
approach to represent chemical compounds and 2) a lazy approach for solving
the classification task. The most common representation of chemical compounds
is using SAR descriptors which represent the compounds from several points
of view (structural, physical properties, etc) and they are the basis to build
equational models that relate the structure of a chemical compound with its
physical-chemical properties. The main difference between the representations
based on SAR and our ontological approach is that the former describe the
molecular structure of the chemical compounds in an exhaustive way. Instead
the representation we propose is more conceptual than SAR in the sense that it
directly uses the concepts understood by the chemists.

Some authors use approaches that are not centered on the representation of
specific atoms but on molecular structures. For instance, González et al [12] and
Deshpande and Karypis [11] represent chemical compounds as labeled graphs,
using graph techniques to detect the set of molecular substructures (subgraphs)
more frequently occurring in the chemical compounds of the data set. Concep-
tually, these two approaches are related to ours in that we describe a chemical
compound in terms of its radicals (i.e. substructures of the main group).

Concerning the explanation of the solution proposed by a CBR system, there
are a lot of possible approaches depending on the kind of explanation we are look-
ing for. Sørmo et al. [20] performed a deep analysis of the different perspectives
from whose an explanation can be taken. Related to problem solving tasks, there
are two main kinds of explanations that are specially useful: 1) an explanation
of how a solution has been reached, and 2) an explanation justifying the result.
In this sense, the explanation proposed in this paper justifies the solution pro-
posed by the system. Nevertheless, because part of this explanation scheme (the
similitude term) contains the important features that LID used to classify a new
problem, the explanation also gives some clues of how the system reached the
solution.

Most of explanations given by CBR systems are oriented to the user. Sørmo et
al. [20], Leake [15] and Cassens [10] also consider that the form of the explanation
depends on the user goals. This statement has been proved in the application
presented by Bélanger and Martel [8] where the explanations for expert and
novice users are completely different. Leake [15] see the process of explanation
construction as a form of goal-driven learning where the goals are those facts
that need to be explained and the process to achieve them gives the explanation
as result. Cassens [10] uses the Activity Theory to systematically analyze how
a user evolves in the utilization a system, i.e. how the user model is changing.
The idea is that in using a system, the user can change his expectations about
it and, in consequence, the explanation of the results would also have to change.
In our approach we are considering classification tasks, therefore the user goals
are always the same: to classify a new problem. This means that the explanation
has to be convincing enough to justify the classification and we assume that the
kind of explanation has always the same form, i.e. it does not change along the



time. The explanation scheme we have introduced is also oriented to explain the
result to the user. Nevertheless, these explanations could also be reused by the
system as general domain knowledge as we proposed in [5].

7 Conclusions and Future Work

Lazy learning methods seem to be specially useful on domains such as toxicol-
ogy, in which object domains are highly variable. Nevertheless, one of the main
weakness of the lazy learning methods is how they justify the results to the user.
In this paper we have proposed an explanation scheme that supports the user in
comparing molecular structures of positive and negative compounds.

The application of that explanation scheme to explain the results of a lazy
learning approach to predictive toxicology can be of high utility. Unlike induced
leaning methods, a lazy learning method does not build a carcinogenecity model,
therefore there is not a clear justification of the result. On the other hand, a
chemist needs to focus on both similarities and differences among the molecu-
lar structure of chemical compounds. Using our approach, even if it focuses on
similarities, the user can easily see the differences among carcinogenic and non
carcinogenic compounds. Due to this fact, and because small differences on the
molecular structure of compounds may give different carcinogenic activity, the
user can revise literature supporting the classification given by the lazy learning
method.

As future work we plan to assess the confidence degree of an explanation.
This confidence could be assessed taking into account the entropy of the discrim-
inatory set associated to a similitude term. In other words, since LID can finish
with a similitude term D satisfied by cases of several classes, a discriminatory
set SD with high entropy means that D is too general, therefore the features
included in D, even if considered as relevant, are not actually discriminant. This
could be interpreted as a low confidence in the explanation of the classification.
Conversely, a discriminatory set with low entropy means that the similitude term
D is accurate, therefore the confidence on the classification would be high. This
same criteria could be applied to assess the confidence of the parts AU1 and
AU2 of the explanation scheme.
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