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Abstract. A basic form of an instantiated argument is as a pair (support, conclu-
sion) standing for a conditional relation ‘if support then conclusion’. When this
relation is not fully conclusive, a natural choice is to model the argument strength
with the conditional probability of the conclusion given the support. In this pa-
per, using a very simple language with conditionals, we explore a framework for
probabilistic logic-based argumentation based on an extensive use of conditional
probability, where uncertain and possibly inconsistent domain knowledge about
a given scenario is represented as a set of defeasible rules quantified with condi-
tional probabilities. We then discuss corresponding notions of attack and defeat
relations between arguments, providing a basis for appropriate acceptability se-
mantics, e.g. based on extensions or on DeLP-style dialogical trees.

1 Introduction

In the literature, there have been a number of approaches [5,15,25,10,11,12,21,13,19,3]
to combine different theories of argumentation with probability theory, and other un-
certainty models, in order to allow for a more fine-grained reasoning when arguments
involve uncertain information. Since the earliest works of Pollock [17,18], where he in-
troduced the notion of strength of an argument in terms of numerical degrees of belief,
one main open problem has been to determine how the strength of arguments can be
related to probability theory, see e.g. [19].

In [23], arguments are generated in ASPIC+ and their rebutting attacks are resolved
with probabilistic strengths of arguments. However, some difficulties are encountered
when assigning probabilities to arguments in an abstract framework. In a natural way,
probabilities can be assigned to the truth of statements or to outcomes of events, but
an argument is neither a statement nor an event. Thus, there is a need for a meaning-
ful definition of what the probability of an argument is, and this has to be done at the
level of structured argumentation, for instance along the line of the epistemic approach
to probabilistic argumentation [10,20,19]. In particular, in the setting of classical-logic
based argumentation, Hunter considers in [10] the probability of an argument to be the
probability of its premises according to a fixed, and a priori given, probability distribu-
tion on the set of interpretations of the language. Similarly, In [19], Prakken discusses



the application of the ASPIC+ framework to default reasoning with probabilistic gener-
alisations, taking the probability of an argument to be the probability of the conjunction
of all its premises and conclusions.

In contrast to [10] but similarly to [19], in this paper we consider logic-based argu-
ments A = (support; conclusion) pervaded with uncertainty due a non-conclusive condi-
tional link between their supports and their conclusions. In such a case, it is very reason-
able to supplement the argument representation with a quantification α of how certain
conclusion can be claimed to hold whenever support is known to hold, leading to rep-
resent an arguments as triples A = (support; conclusion : α). A very natural choice is to
interpret α as a conditional probability, namely the probability P(conclusion | support).
As we frame our proposal in logic-based argumentation, where arguments rely on the
notion of proof in some underlying logic, we internalise the conditional link specified
by an argument in the logic as a conditional formula or a set of conditional formulas in
the general case, so that our basic probabilistic arguments will be of the form

A = ({ψ}, {ψ{ ϕ : α};ϕ : α),

where ψ and ϕ are classical propositions, ψ { ϕ is a conditional formula and α is
interpreted as a lower bound for the conditional probability P(ϕ | ψ). When arguments
get more complex and need several uncertain conditionals to link the support with the
conclusion, conditional probabilities are attached to each of the involved conditionals,
so arguments become of the form

A = (Π, ∆ = {(ψ1 { ϕ1 : p1), . . . , (ψn { ϕn : pn)};ϕ : α),

where Π is a finite set of factual (i.e. non conditional) premises and α the probability
with which ϕ can be logically entailed from Π and ∆. In fact, this type of arguments
can be seen as a probabilistic generalization of those at work in the Defeasible Logic
Programming argumentation framework (DeLP) [7]. This is a formalism combining
logic programming and defeasible argumentation, that provides the possibility of repre-
senting information in the form of weak rules and a defeasible argumentation inference
mechanism for warranting the entailed conclusions, see [8] for more details.

Our proposal can be cast in the above mentioned epistemic approach that assigns
probabilities to arguments. However, in contrast to many works in the literature, we
do not assign probabilities to the arguments a priori, but rather use smaller pieces of
probabilistic information that govern the universe of study, and use these to compute
the probability of a complex argument built from the more basic information items it
contains. Moreover, our approach also notably differs from previous schemes in that, to
compute the probability for an argument, we consider the whole family of probability
distributions compatible with the support, and not fixing only one distribution

This paper is structured as follows. Section 2 is devoted to introduce notions about
logic and probability necessary for the rest of the paper; in Section 3 we introduce and
explore the framework of probabilistic argumentation based on conditional probabili-
ties. We conclude the paper commenting on promising future work and open questions.



2 Logic and probability

When aiming towards the definition of a formal argumentation framework, a first step
is the selection of a underlying purely propositional language and the logical system
that will govern the derivation of new knowledge from a given set of information. In
this paper, our logical formalism will be inspired in DeLP [7].

Let V be the set of propositional variables, simply a countable set of symbols. A
literal is any propositional variable x ∈ V or a negated variable ¬x for x ∈ V. If `
is a literal, we will use the notation ¬` to refer to x if ` = ¬x and to ¬x if ` = x. A
conjunction of literals is a formula of the form `1 ∧ . . . ∧ `n with n ≥ 1, where each `i

is a literal. A conditional is a formula of the form `1 ∧ . . . ∧ `n { `. Finally, we call
formula any conjunction or conditional, and denote the set of formulas by Fm. Given a
set of formulas Ψ ⊆ Fm, we will denote by lit(Ψ ) the set of literals appearing in Ψ .

Definition 1 (c.f. Def. 2.5 from [7]). Let Σ be a finite set of conditionals, Φ a finite set
of literals and ` a literal. A DeLP derivation of ` from Σ and Φ, denoted Σ,Φ ` `, is a
finite sequence `1, . . . , `n = ` of literals, such that, for each 1 ≤ i ≤ n:
a) either `i ∈ Φ, or
b) there is a conditional p1∧ . . .∧ pk { p ∈ Σ such that p = `i and for each 1 ≤ j ≤ k,

p j ∈ {l1, . . . `i−1}.

A pair {Σ,Φ} is consistent if it is not the case that there exists a literal ` such that both
Σ,Φ ` ` and Σ,Φ ` ¬`.

LetΩ stand for the set of truth-evaluations of variables e : V → {0, 1}, that extend to
literals and conjunctions of literals following the rules of classical logic. Probabilities on
the set of formulas Fm are defined in the standard way, as it is done in probability logics:
defining a probability distribution on Ω and extending it to all formulas by adding up
the probabilities of their models. More precisely, let P : Ω → [0, 1] be a probability
distribution on Ω. Then P induces a probability3 P : Fm→ [0, 1] by letting:

– P(C) = Σe∈Ω,e(C)=1P(e), if C is a conjunction of literals,
– P(`1∧. . .∧`n { `) = P(`∧`1∧. . .∧`n)/P(`1∧. . .∧`n), whenever P(`1∧. . .∧`n) > 0

and undefined otherwise. Namely, the probability of ` conditioned to `1 ∧ . . . ∧ `n.

Notice that the probability of a conditional C { ` is interpreted as the conditional
probability P(` | C), not as a probability of the material implication ¬C ∨ `, understood
as the implication in classical logic. Nevertheless, these two notions do coincide when
the probability equals to 1. Namely, for P(C) > 0 for a conjunction of literals C, then

P(C { `) = 1 if and only if P(¬C ∨ `) = 1.

We will call probabilistic-valued formulas (and denote this set of formulas by
FmPr) to all pairs of the form ϕ : α, where ϕ ∈ Fm and α ∈ [0, 1]. A probability
P : Ω → [0, 1] satisfies ϕ : α, written P |= ϕ : α, whenever P(ϕ) ≥ α. Similarly, P satis-
fies a finite set of valued formulas Σ = {ϕi : αi}i∈I if it satisfies each pair in Σ. We will
denote the set of probabilities that satisfy Σ by PMod(Σ).

3 Since there is no place to confusion, we will use the same symbol P to denote the probability
distribution over Ω and its associated probability over Fm.



Given a set of literals Π representing observations on the domain, one can define
two probabilistic consequence relations, depending on how the set of observations Π
is interpreted: either as facts holding with probability 1, or as assumptions over which
to condition the consequence. These two definitions are intrinsically related to the two
types of arguments we will introduce in the next section.

Definition 2 (Factual probabilistic entailment). Let Π be a set of literals, Σ a set of
valued formulas, ` a literal and α ∈ [0, 1]. We write Π, Σ |= f

Pr ` : α whenever for each
probability P ∈ PMod(Σ), if P(c) = 1 for each c ∈ Π then P(`) ≥ α.

Definition 3 (Conditioned probabilistic entailment). Let Π be a set of literals, Σ a
set of valued formulas, ` a literal and α ∈ [0, 1]. We write Π, Σ |=c

Pr ` : α whenever for
each probability P ∈ PMod(Σ), it holds that P(

∧
c∈Π c{ `) ≥ α.

These two notions of entailment do not coincide. First observe that the conditioned
probabilistic entailment is stronger than the unconditioned one, namely Π, Σ |=c

Pr ` : α
implies Π, Σ |= f

Pr ` : α. However, the converse does not hold, i.e. the conditioned prob-
abilistic entailment is strictly stronger than the factual one. For instance, if we take the
observation Π = {a} and the valued formulas Σ = {a{ b : 0.7, b{ c : 0.5}, it t is easy
to check that Π, Σ |= f

Pr c : 7/20, but Π, Σ 6|=c
Pr c : 7/20.

3 Using conditional probability in arguments

Our approach is inspired DeLP, ASPIC+ and other systems that differentiates knowl-
edge that is certain and consistent (strict) from other that is tentative and possibly un-
certain and inconsistent (defeasible). Probabilities offer a finer classification of the un-
certain knowledge and so increase the trustworthiness and accurateness of arguments.
In this paper, we assume the strict domain knowledge to come attached with probability
1, but other values could be used (e.g. if precise statistical data is possessed).

Definition 4. K = 〈Π, ∆〉 is a probabilistic conditional knowledge base (KB) whenever

– Π = ΠF ∪ ΠD ⊆ Fm is a consistent4 set of formulas encompassing the strict
knowledge in K , divided in factual knowledge (ΠF) under the form of literals, and
domain knowledge (ΠD) under the form of strict rules.

– ∆ ⊆ FmPr encompasses uncertain probabilistic knowledge.

Example 1. The following KB is a probabilistic refinement of Example 2.1 in [7], a
variant of the famous Tweety example. Chickens usually do not fly (even if they are
birds), but they may if they are scared, for instance if a fox is near. However, if a chicken
has nestling babies, most likely it will not abandon them in any case.

ΠF =


chicken

f ox

nestlings


ΠD =

{
chicken{ bird

} ∆ =



bird { f lies : 0.85

chicken{ ¬ f lies : 0.9

chicken ∧ nestlings{ ¬ f lies : 0.95

chicken ∧ f ox{ scared : 0.8

chicken ∧ scared { f lies : 0.6


4 According to `.



To specify an argument, we needed to specify which observations and which (con-
sistent) part of the uncertain probabilistic knowledge it is based upon. We propose two
main definitions for a probabilistic argument, each one following relying in one of the
definitions of probabilistic entailment from the previous section. In what follows, for a
set of formulas Γ ⊆ Fm we let Γ+ = {γ : 1}γ∈Γ ⊆ FmPr. Conversely, for a set of valued
formulas Σ ⊆ FmPr, we let Σ− = {σ | σ : α ∈ Σ for some α ∈ [0, 1]} ⊆ Fm.

Definition 5 (Argument). Let ? ∈ { f , c}5, and a KB = 〈Π, ∆〉. A ?-probabilistic
argument A for a literal ` in KB is a structure A = 〈Φ,Γ; ` : α〉, where Φ ⊆ ΠF ,
Γ = {(ϕ1 { l1 : α1), . . . , (ϕn { ln : αn)} ⊆ ∆ and α > 0 such that:

(1) PMod(Γ ∪ Π+) , ∅ (3) α = max{ β ∈ [0, 1] : Φ,Π+
D ∪ Γ |=

?
Pr ` : β }

(2) Π, Γ− ` ` (4) Φ and Γ are minimal satisfying (1), (2) and (3).

Thus, an argument for a literal provides for both a logical and an optimal probabilistic
derivation of its conclusion (in any of the two variants) from its premises.

Some simple examples of probabilistic arguments over the KB from Example 1 are:

A1 =({chicken}, {bird { f lies : 0.85}; f lies : 0.85)

A2 =({chicken}, {chicken{ ¬ f lies : 0.9};¬ f lies : 0.9)

A3 =({chicken, f ox}, {chicken ∧ f ox{ scared : 0.8, chicken ∧ scared { f lies : 0.6};

f lies : 0.54)

A4 =({chicken, nestlings}, {chicken ∧ nestlings{ ¬ f lies : 0.95};¬ f lies : 0.95)

A1, A2 and A4 are both f - and c-arguments, while A3 is a f -argument but not a
c-argument. This occurs because |=c

Pr becomes non-informative (its degree equals 0)
when its logical derivation involves the chaining of more than one conditional, due
to the well-known failure of transitivity on conditional probabilities [9], unless some
additional assumptions are made. For instance, in [19] arguments implicitly make prob-
abilistic independence assumptions and it is shown that the independence assumptions,
that justify the use a version of the chain rule for probabilities, is useful in certain cases,
but it is clearly invalid in general.

In order to define an attack relation between probabilistic arguments, we need the
notions of subargument and of disagreement between probabilistic-valued literals.

Definition 6 (Subargument, Disagreement and Attack). 1) Let A = (Φ,Γ; ` : α) be
an ?-argument for `. A subargument of A is an ?-argument B = (Φ′, Γ′; `′ : β) where
Φ′ ⊆ Φ and Γ′ ⊆ Γ.

2) Let KB = (Π, ∆) be a knowledge base. We say that the valued-literals ` : α and h :
β disagree whenever they are probabilistically inconsistent with the strict knowledge,
i.e. when PMod(Π+ ∪ {l:α, h:β}) = ∅.

3) A ?-argumentA = (Φ1, Γ1; `, α) attacks another ?-argument B = (Φ2, Γ2; p : β)
at a literal h if there is a ?-subargument B′ = (Φ′2, Γ

′
2; h : γ) of B such that ` : α and

h : γ disagree.

5 Standing for factual or conditioned arguments.



Using only the probabilities to determine when an attack can be deemed as effective
may be counterintuitive in some cases (see e.g. argumentsA2 andA3), thus we combine
them with the use of specificity criterion (gaining inspiration in [7,1,2])

Definition 7 (Activation sets and Specificity). Given a knowledge base KB, an acti-
vation set of an argument A = (Φ,Γ; `, α) is a set of literals H ⊆ lit(KB) such that
H ∪ ΠD ∪ Γ

− ` `. We denote by Act(A) the set of activation sets for the argumentA.
An argument A is more specific than another argument B when Act(A) ( Act(B).

A and B are equi-specific if Act(A) = Act(B), and incomparable whenever Act(A) *
Act(B) and Act(A) + Act(B).

In our running example, we can easily check thatA3 andA4 are incomparable, and
both are more specific thanA2, which is itself more specific thanA1.

Definition 8 (Strength and Defeat). An argumentA = (Φ1, Γ1; ` : α) is stronger than
another argument B = (Φ2, Γ2; p : β) when A is more specific than B, or when A and
B are equi-specific or incomparable and α > β.

An argumentA = (Φ1, Γ1; ` : α) defeats another argument B = (Φ2, Γ2; p : β) when
A attacks B on a subargument B′ = (Φ′2, Γ

′
2; h : γ) andA is stronger than B′.

Following with the running example, we have that A2 defeats A1, and A3 defeats
A2 based on the specificity criterion. On the other hand A4 defeats A3 on the basis of
probability degree criterion, while it defeatsA2 due to specificity.

The proposed setting serves to define an argumentation semantics by considering an
argumentation theory and substituting the notions of argument, attack and defeat from
the original theory by the ones we propose here. In this fashion, it is natural how to pro-
duce argumentation systems with different high-level semantics: from Dung’s abstract
argumentation systems [4], or other relevant weighted argumentation systems based on
it (eg. [10]), to the rule-based DeLP argumentation framework and its dialectical-tree
based semantics [7], or other systems like ASPIC+ [16] or ABA [24]. The definition of
the systems is rather immediate and we do not detail them here due to a lack of space.
However, the exploration of the resulting systems and the differences with the original
ones will involve more work, and we leave it for future work.

4 Future work

Plenty of issues could be worked out and studied in future works. First, it seems likely
that in certain situations, a richer language of conditionals would be useful, eg. consid-
ering conditional logics in the style of Kern-Isberner’s three-valued conditionals [14]
or the logic of Boolean conditionals [6]. Secondly, other interpretations of the proba-
bility entailment can be explored: for instance, to allow for interpreting the weights in
valued formulas not only as a lower bound but with other constraints like an equality or
a strict lower bound, or to compute the probability of the conclusion of an argument by
means of the Maximum Entropy distribution underlying the premises [26,22]. Lastly, a
finer gradual notion of attack could be introduced so to allow an attacker argument to
debilitate the attacked argument, instead of an all-or-nothing attack.
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