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1 Introduction and Motivations

Similarly to many areas of Artificial Intelligence, Logic as well has approached the definition of
inferential systems that take into account elements from real-life situations. In particular, logical
treatments have been trying to deal with the phenomena of vagueness and uncertainty. While a
degree-based computational model of vagueness has been investigated through fuzzy set theory [88]
and fuzzy logics, the study of uncertainty has been dealt with from the measure-theoretic point of
view, which has also served as a basis to define logics of uncertainty (see e.g. [57]).

Fuzzy logics rely on the idea that truth comes in degrees. The inherent vagueness in many
real-life declarative statements makes it impossible to predicate their full truth or full falsity. For
this reason, propositions are taken as statements that can be regarded as partially true.

Measures of uncertainty aim at formalizing the strength of our beliefs in the occurrence of
some events by assigning to those events a degree of belief concerning their occurrence. From
the mathematical point of view, a measure of uncertainty is a function that assigns to each event
(understood here as a formula in a specific logical language LC) a value from a given scale, usually
the real unit interval [0, 1], under some suitable constraints. A well-known example is given by
probability measures which try to capture our degree of confidence in the occurrence of events by
additive [0, 1]-valued assignments.

Both fuzzy set theory and measures of uncertainty are linked by the need of intermediate values
in their semantics, but they are essentially different. In particular, in the field of logics, a significant
difference between fuzzy and probabilistic logic regards the fact that, while intermediate degrees
of truth in fuzzy logic are compositional (i.e. the truth degree of a compound formula ϕ ◦ ψ only
depends on the truth degrees of the simpler formulas ϕ and ψ), degrees of belief are not. In fact, for
instance, the probability of a conjunction ϕ∧ψ is not always a function of the probability of ϕ and
the probability of ψ. Therefore, while fuzzy logics behave as (truth-functional) many-valued logics,
probabilistic logics can be rather regarded as a kind of modal logics (cf. [50, 51] for instance).
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acknowledge partial support from the Juan de la Cierva Program of the Spanish MICINN.
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The conclusion arising from the above mentioned differences is that the degree of truth of a
formula cannot be understood, in general, as the degree of belief of the same formula. Still, we can
interpret the degree of belief of a formula ϕ as the degree of truth of the modal formula Pϕ that
states that ϕ is plausible or likely.

This approach was first suggested by Hájek and Harmancová in [55], and later followed by
Hájek, Esteva and Godo in [54, 52, 44, 45] where reasoning under uncertainty (modelled by proba-
bilities, necessity and possibility measures, or even Dempster-Shafer belief functions) with classical
propositions was captured in the framework of t-norm based logics. Indeed, given an assertion as
“The proposition ϕ is plausible (probable, believable)”, its degree of truth can be interpreted as
the degree of uncertainty of the proposition ϕ. In fact, the higher our degree of confidence in ϕ is,
the higher the degree of truth of the above sentence will be. In a certain sense, the predicate “is
plausible (believable, probable)” can be regarded as a fuzzy modal operator over the proposition
ϕ. Then, given a class of uncertainty measures, one can define modal many-valued formulas Mϕ,
whose interpretations are given by real numbers corresponding to the degree of uncertainty assigned
to ϕ under measures µ of the given class. Furthermore, one can translate the specific postulates
governing the behavior of particular classes of uncertainty measures into axioms on the modal
formulas over a certain t-norm based logic, depending on the operations we need to represent1.

This logical approach to reason about uncertainty was also adopted to treat conditional proba-
bility in [71, 46, 47]; (generalized) conditional possibility and necessity in [67, 68]; and simple and
conditional non-standard probability in [39]. A generalized treatment for both simple and condi-
tional measures of uncertainty over Boolean events that covers most of the above ones was given
by Marchioni in [69, 70].

Our aim, in this overview paper, is to give a comprehensive logical treatment of several general-
izations of main classes of measures of uncertainty over fuzzy events. In particular, we will show how
it is possible to represent and logically formalize reasoning about classes of measures such as prob-
abilities, plausibility, possibilities and necessities over several classes of many-valued events. Fuzzy
logics provide a powerful framework to handle and combine fuzziness and uncertainty. Indeed, in
such logics the operations associated to the evaluation of the connectives are functions defined over
the real unit interval [0, 1], that correspond, directly or up to some combinations, to operations
used to compute degrees of uncertainty. Then, such algebraic operations can be embedded in the
connectives of the many-valued logical framework, resulting in clear and elegant formalizations.

This article is organized as follows. In Section 2, we provide the necessary logical background
for the different fuzzy logics we will use throughout the paper. In Section 3, we introduce the basic
concepts regarding some classes of measures over non-classical events. In Section 4, we deal with
several modal expansions of particular fuzzy logics to treat classes of measures over fuzzy events.
In Section 5, we study how to expand the language of those modal fuzzy logics by adding truth
constants from the rational unit interval [0, 1]. In Section 6, we rely on those modal expansions
to characterize, in purely logical terms, the problem of extending a partial uncertainty assignment
over fuzzy events to a measure over the whole algebra they generate. We conclude with Section
7, where we discuss further and complementary readings about the topic of uncertainty measures
over non-classical many-valued events.

1Needless to say, there are logics that are better suited than others to express the axioms of specific uncertainty
measures, since some logics are not rich enough to capture the particular behavior of certain measures.
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2 Logical Background

In this section, we introduce the background notions concerning the logic MTL [29], its extensions
and expansions.

2.1 Core and ∆-core fuzzy logics

The language of MTL consists of a countable set V = {p1, p2, . . .} of propositional variables and a
set of connectives LC = (&,→,∧,⊥) of type (2, 2, 2, 0). The set FmV of formulas defined from the
variables in V and the above connectives is built with the usual inductive clauses.

MTL has the following axiomatization:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) (A2)ϕ& ψ → ϕ
(A3)ϕ& ψ → ψ & ϕ (A4)ϕ ∧ ψ → ϕ
(A5)ϕ ∧ ψ → ψ ∧ ϕ (A6)ϕ& (ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ) (A7b) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) (A9)⊥ → ϕ.

The only inference rule of MTL is modus ponens: from ϕ and ϕ → ψ, infer ψ. A proof in MTL
is a sequence ϕ1, . . . , ϕn of formulas such that each ϕi either is an axiom of MTL, or follows from
some preceding ϕj , ϕk (j, k < i) by modus ponens. As usual, a set of formulas is called a theory.
We say that a formula ϕ can be derived from a theory Γ, denoted as Γ `MTL ϕ, if there is a proof
of ϕ from a set Γ′ ⊆ Γ. A theory Γ is said to be consistent if Γ 6`MTL ⊥.

Other definable connectives are the following:

ϕ ∨ ψ is ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ),
ϕ↔ ψ is (ϕ→ ψ) & (ψ → ϕ),
¬ϕ is ϕ→ ⊥,
> is ¬⊥.

We also use the following abbreviation: for all n ∈ N, and for every ϕ ∈ FmV , ϕn stands for
ϕ& . . .& ϕ (n-times).

Definition 1 (1) Let ϕ(p1, . . . , pk) be a formula in FmV . Then the axiom schema defined by ϕ is
the set of all those formulas in FmV that can be defined from ϕ by substituting every propositional
variable pi occurring in ϕ, by a formula ψi ∈ FmV .

(2) A logic in the language LC is said to be a schematic extension of MTL if its axioms are
those of MTL plus additional axiom schemas, with modus ponens as the unique inference rule.

(3) Consider a language LC′ ⊃ LC. A logic axiomatized in the language LC′ containing all the
axioms and rules of MTL is said to be an expansion of MTL.

An important expansion of MTL is the one obtained by expanding the language LC with the
unary connective ∆ (known in the literature as Baaz’s delta, [6]), and adding the following axiom
schemas:

(∆1) ∆ϕ ∨ ¬∆ϕ (∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)
(∆3) ∆ϕ→ ϕ (∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

along with the deduction rule of ∆-necessitation: from ϕ, deduce ∆ϕ. The above logical system is
called MTL∆.
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Theorem 2 Let L ∈ {MTL,MTL∆}. Consider the following properties for every set of formulas
Γ ∪ {ϕ,ψ, χ} in the language of L:

(ldt) Γ, ϕ `L ψ iff there is an n ∈ N such that Γ `L ϕn → ψ.

(∆dt) Γ, ϕ `L ψ iff Γ `L ∆ϕ→ ψ.

(cong) ϕ↔ ψ `L χ(ϕ)↔ χ(ψ)

Then, MTL satisfies (ldt) and (cong) while MTL∆ satisfies (∆dt) and (cong).

Following [14], we say that a logic L is a core fuzzy logic if L expands MTL and satisfies (ldt) and
(cong). A logic L is a ∆-core fuzzy logic if L expands MTL∆ and satisfies (∆dt) and (cong).

An MTL-algebra is a structure A = (A,�,⇒,∧,∨, 0A, 1A) of type (2, 2, 2, 2, 0, 0) such that:

(1) The reduct (A,∧,∨, 0A, 1A) is a bounded lattice,

(2) The reduct (A,�, 1A) is a commutative monoid,

(3) The operations � and ⇒ form an adjoint pair:

for all x, y, z ∈ A, x� y ≤ z iff x ≤ y ⇒ z.

(4) The prelinearity condition is satisfied:

for all x, y ∈ A, (x⇒ y) ∨ (y ⇒ x) = 1A.

Since MTL and all (∆-)core fuzzy logics are algebraizable in the sense of Blok and Pigozzi [7], we
simply say that for any (∆-)core fuzzy logic L, the class (variety) of L-algebras coincides with the
equivalent algebraic semantics for L. We refer to [14] for a more complete treatment.

Basic examples of MTL-algebras are obtained by equipping the real unit interval [0, 1] with a
left continuos t-norm ∗ : [0, 1]× [0, 1] → [0, 1] (cf. [52, 59]), its residuum ⇒∗: [0, 1]× [0, 1] → [0, 1]
and the usual lattice order of the reals. The main three examples of continuous t-norms are the  Lu-
kasiewicz t-norm (x∗y = max(x+y−1, 0)), the product t-norm (x∗y = x ·y) and the Gödel t-norm
(x ∗ y = min(x, y)). These structures ([0, 1], ∗,⇒∗,min,max, 0, 1) are called real MTL-chains2, and
they will play a crucial role in the rest of this paper. Of course, whenever we deal with particular
expansions of MTL, we must take care of the standard interpretation of the symbols that expand
the MTL-language. Recall that the standard interpretation of Baaz’s delta is the following: for all
x ∈ [0, 1], ∆(x) = 1 if x = 1, and ∆(x) = 0 otherwise.

An evaluation of FmV into a real MTL-chain is a map e from the propositional variables in V
into [0, 1] that extends to formulas by truth-functionality. An evaluation e is a model for a formula
ϕ if e(ϕ) = 1. An evaluation e is a model for a theory Γ, if e(ψ) = 1, for every ψ ∈ Γ.

Let now L denote any (∆-)core fuzzy logic. Then we say that L enjoys:

• Real chain completeness (RC) if for every formula ϕ, `L ϕ iff for every evaluation e into a
real L-chain, e(ϕ) = 1.

2In the literature of mathematical fuzzy logic, algebras over the real unit interval [0, 1] are also called standard.
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• Finite strong real chain completeness (FSRC) if for every finite theory Γ∪{ϕ}, Γ `L ϕ iff for
every evaluation e into a real L-chain that is a model for Γ, e(ϕ) = 1.

• Strong real chain completeness (SRC) if for every theory Γ∪{ϕ}, Γ `L ϕ iff for every evaluation
e into a real L-chain that is a model for Γ, e(ϕ) = 1.

• Strong hyperreal chain completeness (SR∗C) if for every theory Γ ∪ {ϕ}, Γ `L ϕ iff for every
evaluation e into a ultraproduct of real L-chains that is a model for Γ, e(ϕ) = 1.

Jenei and Montagna proved in [58] that MTL enjoys SRC. We refer to [14] for a complete and
in-depth study of such different notions of completeness for all the most prominent (∆-)core fuzzy
logics.

We end this section by introducing a definition that will be useful in the rest of this work.

Definition 3 A (∆-)core fuzzy logic L is said to be locally finite iff for every finite set V0 of
propositional variables, the Lindenbaum-Tarski algebra3 FmV0 of L generated by the variables in
V0 is a finite algebra.

2.2 Expansions with an involutive negation

As we pointed out above, in any (∆-)core fuzzy logic, we can define a negation connective ¬, as
¬ϕ := ϕ → ⊥. This negation, in its standard interpretation, behaves quite differently depending
on the chosen left-continuos t-norm and, in general, is not an involution, i.e. it does not satisfy the
equation ¬¬x = x.

A relevant expansion of a (∆-)core fuzzy logic L is obtained by adding an involutive negation
∼ that does not depend on the chosen left-continuous t-norm [15, 30, 38]. In particular, we recall
that MTL∼ is the logic obtained by expanding MTL∆ with the unary symbol ∼, together with the
following axioms:

(∼1) ∼∼ϕ↔ ϕ
(∼2) ∆(ϕ→ ψ)→ (∼ψ → ∼ϕ),

MTL∼-algebras, the algebraic counterpart of MTL∼, are structures (A,�,⇒,∧,∨,∼,∆, 0A, 1A)
of type (2, 2, 2, 2, 1, 1, 0, 0) and are obviously defined. It is worth noticing that, as proved in [38],
extensions of MTL∼ preserve (finite) strong standard completeness.

MTL∼ extensions are particularly interesting because, in each of their standard algebras, any
operation ⊕ defined as: x⊕ y := ∼(∼x�∼y) is interpreted as a t-conorm, thus making the system
(�,⊕,∼) a De Morgan triple [40]. We will see later that these structures allow to define a basic
representation of possibility and necessity measures of fuzzy events (see Section 3.2.1).

2.3 Expansions with rational truth constants

Other notable expansions of a ∆-core fuzzy logic L are obtained by expanding its language with a
set C of truth constants from [0, 1]. More precisely, let ∗ : [0, 1]×[0, 1]→ [0, 1] be any left continuous
t-norm, let [0, 1]∗ be the corresponding real algebra ([0, 1], ∗,⇒∗,min,max, 0, 1). Denote by L∗ the

3We remind the reader that, whenever we fix a language LC, a set of variables V , and a logic L together with
its consequence relation `L, the Lindenbaum-Tarski algebra FmV is the quotient algebra of formulas modulo the
equi-derivability relation. We invite the reader to consult [12] for further details.
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algebraizable (in the sense of [7]) core fuzzy logic whose equivalent algebraic semantics is constituted
by the variety HSP ([0, 1]∗), i.e. the variety generated by the standard algebra [0, 1]∗. The logic
L∗,∆ denotes as usual the expansion of L∗ by the Baaz connective ∆.

Let C be a countable subset of [0, 1]∗. Then the logic L∗,∆(C) is the expansion of L∗,∆ obtained
by adding to its language the elements of C as constants and the following book-keeping axioms,
where, for every c ∈ C, we denote its associated constant by c (notice that we still denote the top
and bottom elements as 0 and 1):

(R1) c1 & c2 ↔ c1 ∗ c2,
(R2) c1 → c2 ↔ c1 ⇒∗ c2,

(R3) ∆c↔ ∆c.

For the logic L∗,∆(C), a different version of completeness has been introduced to interpret
canonically the constant symbols [28]. In particular, we say that L∗,∆(C) has the canonical (finite)
strong real-chain completeness iff L∗,∆(C) is (finitely) strong complete w.r.t. the real algebra
([0, 1], ∗,⇒∗,min,max, {c}c∈C), so that evaluations interpret every symbol c by the real number c
(for all c ∈ C). Then, we have:

Theorem 4 ([28, 31]) Let ∗ ∈ CONT-fin4∪WNM-fin5, and let C ⊂ [0, 1]∗ be a suitable count-
able subalgebra. Then:

(1) L∗,∆(C) has the canonical finite strong real completeness.

(2) L∗,∆(C) has the canonical strong real completeness iff ∗ ∈WNM-fin.

For a given left-continuous t-norm ∗ and an involutive negation n : [0, 1]→ [0, 1] closed over the
rational unit interval [0, 1]Q, let L∗,n([0, 1]Q) be the axiomatic extension of MTL∼ that is complete
with respect to the variety of MTL∼-algebras generated by the real algebra ([0, 1], ∗,⇒∗, n,∆, 0, 1).
Then, L∗,n([0, 1]Q) is the expansion of L∗,n with truth-constants from the rational unit interval,
together with the book-keeping axioms (R1)-(R3) plus the following one for the involutive negation:

(R4) ∼ c↔ n(c).

Adopting the same techniques used in [38, Theorem 5.6, Theorem 5.13], it is not hard to
show that the same conclusions of Theorem 4 can also be obtained for any L∗,n([0, 1]Q), whenever
∗ ∈ CONT-fin ∪WNM-fin.

2.4  Lukasiewicz logics

 Lukasiewicz logic  L was introduced in [66], and has been widely studied by many authors both from
the syntactical and algebraic point of view (cf. [8, 13, 52]). As a core fuzzy logic,  L is obtained

4By the Mostert-Shields theorem [52, Theorem 2.1.16] every continuous t-norms ∗ : [0, 1] × [0, 1] → [0, 1] is an
ordinal sum of the three basic t-norms: Gödel, product, and  Lukasiewicz. CONT-fin denotes the class of all those
continuous t-norms that are ordinal sums with finitely many components.

5Every nilpotent minimum t-norm ∗ (cf. [29]) is uniquely characterized by its associated weak negation n∗ :
[0, 1]→ [0, 1]. The t-norm ∗ is said to have a finite partition if its associated weak negation n∗ is constant over finitely
many intervals. WNM-fin denotes the class of all those weak nilpotent minimum t-norms having a finite partition.
Notice that Gödel t-norm also belongs to this class.
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from MTL, by adding the following axioms:

(div) ϕ ∧ ψ → (ϕ& (ϕ→ ψ)),
(inv) ¬¬ϕ→ ϕ.

Due to axiom (inv), the defined negation of  Lukasiewicz logic is involutive. This allows us to
define a connective of strong disjunction as follows: ϕ⊕ ψ is ¬(¬ϕ& ¬ψ).

For each n ∈ N, the n-valued  Lukasiewicz logic  Ln is the schematic extension of  L with the
axiom schemas:

( Ln1) (n− 1)ϕ↔ nϕ, ( Ln2) (kϕk−1)n ↔ nϕk,

for each integer k = 2, . . . , n − 2 that does not divide n − 1, and where nϕ is an abbreviation for
ϕ⊕ · · · ⊕ ϕ (n times).

The algebraic counterpart for  Lukasiewicz logic is constituited by the class of MV-algebras
[11, 13]. These structures were introduced by Chang [11] using a different presentation that is
equivalent to the one given as extensions of MTL-algebras. In its original language, an MV-algebra
is a structure A = 〈A,⊕,¬, 0A〉 satisfying the following equations:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, (MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0A = x, (MV4) ¬¬x = x,
(MV5) x⊕ ¬0A = ¬0A, (MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

As we stated, MV-algebras are MTL-algebras satisfying (see [13, 52]):

x ∧ y = x� (x⇒ y); (Divisibility)
(x⇒ 0A)⇒ 0A = x. (Involution)

Indeed, in the signature 〈⊕,¬, 0A〉, the monoidal operation � can be defined as x�y := ¬(¬x⊕¬y),
while the residuum of � is definable as x⇒ y := ¬x⊕ y. The top element is defined as 1A := ¬0A,
and the order relation is obtained by defining x ≤ y iff x ⇒ y = 1A, while the lattice operations
are given by x ∧ y := x� (¬x⊕ y) and x ∨ y := (x� ¬y)⊕ y. Moreover, we define the following
useful abbreviation: for every natural n and x ∈ A, nx will denote x⊕ n. . . ⊕x, and xn will denote
x� n. . . �x.

For each n ∈ N, an MVn-algebra is an MV-algebra that satisfies the equations:

(MV7) (n− 1)x = nx (MV8) (kxk−1)n = nxk

for each integer k = 2, . . . , n− 2 not dividing n− 1.
The class of MV-algebras (MVn) forms a variety MV (MVn) that clearly is the equivalent

algebraic semantics for  L ( Ln), in the sense of Blok and Pigozzi [7]. MV is generated as a quasivariety
by the standard MV-algebra [0, 1]MV, i.e. the MV-algebra over the real unit interval [0, 1], where
x⊕y = min(x+y, 1), and ¬x = 1−x 6. Each MVn is generated by the linearly ordered MV-algebra
over the set Sn = {0, 1/n, . . . , (n− 1)/n, 1} and whose operations are those of the MV-algebra over
[0, 1], restricted to Sn.

6Notice that there exist uncountably many MV-algebras whose universe is the real unit interval [0, 1], but they
are all isomorphic to each other, and, in particular, to the standard MV-algebra.
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Interesting examples of MV-algebras are the so-called  Lukasiewicz clans of functions. Given
a non-empty set X, consider the set of functions [0, 1]X endowed with the pointwise extensions
of the operations of the standard MV-algebra [0, 1]MV. Then a ( Lukasiewicz) clan over X is any
subalgebra C ⊆ [0, 1]X , i.e. a set such that

(1) if f, g ∈ C then f ⊕ g ∈ C,

(2) if f ∈ C then ¬f ∈ C,

(3) 0 ∈ C,

where 0 denotes the function constantly equal to 0. A clan T over X is called a ( Lukasiewicz) tribe
when it is closed with respect to a countable (pointwise) application of the ⊕ operation, i.e. if the
following condition

if {fn | n ∈ N} ⊆ T then
⊕

n∈N fn ∈ T

holds. Similarly, one can define an  Ln-clan of functions over some set X to be any subalgebra
C ⊆ (Sn)X .

The fact that MV is the equivalent algebraic semantics for  Lukasiewicz logic  L and is generated
as a quasivariety by the standard MV-algebra [0, 1]MV implies that  Lukasiewicz logic enjoys FSRC.
However  L does not have SRC (cf. [14, 52]). On the other hand, for every n ∈ N, the logic  Ln is
strongly complete with respect to the MV-algebra Sn (cf. [34]).

Rational  Lukasiewicz logic R L is a conservative expansion of  Lukasiewicz logic introduced by
Gerla in [42, 43], obtained by adding the set of unary connectives δn, one for each n ∈ N, together
with the following axioms:

(D1) nδnϕ↔ ϕ, (D2) ¬δnϕ⊕ ¬(n− 1)δnϕ.

The algebraic semantics for R L is given by the variety of DMV-algebras (divisible MV-algebras),
i.e. structuresA = 〈A,⊕,¬, {δn}n∈N, 0A〉 such that 〈A,⊕,¬, 0A〉 is an MV-algebra and the following
equations hold for all x ∈ A and n ∈ N:

(δn1) n(δnx) = x, (δn2) δnx� (n− 1)(δnx) = 0A.

An evaluation e of R L formulas into the real unit interval is just a  Lukasiewicz logic evaluation
extended for the connectives δn as follows: e(δnϕ) = e(ϕ)/n.

Notice that in R L all rationals in [0, 1] are definable as truth constants in the following way:

- 1/n is definable as δn1 , and

- m/n is definable as m(δn1)

since for any evaluation e, it holds that e(δn1) = 1/n and e(m(δn1)) = (1/n)⊕ m. . . ⊕(1/n) = m/n.
As shown in [43], the variety of DMV-algebras is generated as a quasivariety by the standard

DMV-algebra [0, 1]DMV (i.e. the expansion of [0, 1]MV with the δn operations), and consequently
R L enjoys FSRC. However, since it is a conservative expansion of  L, R L does not have SRC.

We also introduce here a logic simpler than R L that we will make use of later in the paper. For
every n ∈ N, we denote by  L+

n the expansion of  Ln obtained by expanding its language with the

8



truth constant 1/n together with the axioms:

(n1) n(1/n),

(n2) ¬(1/n & (n− 1)1/n)).

It is not difficult to see that the logic  L+
n is strongly complete with respect to its related algebraic

semantics, i.e. the MV-algebra over Sn expanded with a truth constant 1/n satisfying the two
equations corresponding to axioms (n1) and (n2).

Theorem 5 ([13]) The logics  L and R L are not locally finite. For every n ∈ N, the logics  Ln and
 L+
n are locally finite.

3 Uncertainty Measures over Non-Classical Events

In this section we introduce the basic concepts regarding uncertainty measures over non-classical
events. We start by recalling the classical notion of measures over Boolean algebras that will be
used as a background to later study their generalization over weaker structures.

3.1 The classical case

Classical representations of uncertainty are based on a set of possible situations (or worlds), some-
times called a sample space or a frame of discernment, which represents all the possible outcomes.
A typical example is the toss of a die. In this case, the sample space is given by six different
situations, each of them corresponding to a certain outcome. An event can be simply regarded
as a subset of the sample space corresponding to the set of those situations in which the event is
true. In the case of the toss of a die, for instance, the event “the outcome will be an even number”
corresponds to the set given by {2, 4, 6}. Complex events can be seen as Boolean combinations of
subsets of the sample space. For instance, the event “the outcome will be an even number and
it will be strictly greater than 4” is nothing but the intersection of the sets {2, 4, 6} and {5, 6}.
Measures of uncertainty are classically defined over the Boolean algebra generated by subsets of a
given sample space.

An event can be also identified with the proposition whose meaning is the set of situations that
make it true. From a logical point of view, we can associate to a proposition the set of classical
evaluations in which the proposition is true. Each of those evaluations, in fact, corresponds to a
possible situation.

In what follows we will use the words “event” and “proposition” with the same meaning, and
they will refer to a set of situations, or equivalently to a set of classical evaluations. Given that
measures are defined over the Boolean algebra of subsets of a sample space, we can consider measures
as defined over the Boolean algebra of provably equivalent classical propositions.

In general, measures of uncertainty aim at formalizing our degree of confidence in the occurrence
of an event by assigning a value from a partially ordered bounded scale. In its more general
sense, this is encoded by the concept of plausibility measure introduced by Halpern (see [57])7.
Given a partially ordered set 〈L,≤, 0, 1〉, an L-valued plausibility measure on a Boolean algebra
B = (B,∧,∨,¬, 0B, 1B) of events is a mapping ρ : B → L satisfying the following properties:

7We want to warn the reader not to confuse plausibility measures in the sense of [57] with plausibility functions in
the sense of Dempster-Shafer theory, cf. [84].
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i. ρ(0B) = 0, and ρ(1B) = 1,

ii. for every x, y ∈ B with x ≤ y, ρ(x) ≤ ρ(y), where x ≤ y denotes the order relation between
elements of B.

The first two conditions mean that the certain event 1B and the impossible event 0B have measure
1 and 0, respectively8. Indeed, the certain event is satisfied in every possible situation, while
the impossible event never occurs. The third condition corresponds to monotonicity, i.e. if the
situations in which an event can occur are included in those that support another event, then the
degree of uncertainty of the former is smaller than the degree of uncertainty of the latter.

Uncertainty measures are usually defined as real valued functions where the partially ordered
scale is identified with the real unit interval [0, 1]. Plausibility measures of this kind are also known
as fuzzy measures, and were first introduced by Sugeno in [87]. Thus, (classical) fuzzy measures
are in fact plausibility measures assigning values from [0, 1] to elements of the Boolean algebra of
events.

Besides such common properties, each class of fuzzy measures basically differs from the others in
how the measure of compound propositions or events is related to the measure of their components.
In other words, what specifies the behavior of a fuzzy measure is how from assessments of uncer-
tainty concerning different events we can determine the measure of (some of) their combinations.
In a certain sense, we can say that classes of fuzzy measures are characterized by the satisfaction
of some compositional properties. However, it is well-known that a proper fuzzy measure µ cannot
be fully compositional.9

Theorem 6 ([25]) Let µ : B → L be any L-valued fuzzy measure. If µ is fully compositional then
it collapses into a two-valued function, i.e. for all x ∈ B, µ(x) ∈ {0, 1}.

Typical examples of classes of fuzzy measures are probability measures, and possibility and
necessity measures.10

(Finitely additive) probability measures, first introduced from a measure-theoretic perspective
by Kolmogorov in [60], are fuzzy measures defined over a Boolean algebra B that satisfy the law of
finite additivity:

for every x, y ∈ B such that x ∧ y = 0B, µ(x ∨ y) = µ(x) + µ(y).

Any probability measure µ over a finite Boolean algebra B is uniquely determined by a corre-
sponding probability distribution p on the (finite) set of atoms {ai}i∈I of B: by defining p(ai) =
µ({ai}), so that

∑
i∈I p(ai) = 1, it holds that, for any x ∈ B, µ(x) =

∑
aj≤x p(aj).

Possibility measures (first introduced by Zadeh in [90], and deeply studied by Dubois and
Prade [22, 24]) are a class of fuzzy measures satisfying the following law of composition w.r.t. the
maximum t-conorm:

µ(x ∨ y) = max(µ(x), µ(y)).

8From now on, when no danger of confusion is possible, we will omit the subscripts of the bottom and top elements
of the Boolean algebra 0B and 1B respectively, and we will simply write 0 and 1.

9In the sense that there do not exist functions f∧, f∨ : B ×B → L and f¬ : B → L such that, for every x, y ∈ B,
µ(x ∧ y) = f∧(µ(x), µ(y)), µ(x ∨ y) = f∨(µ(x), µ(y)), µ(¬x) = f¬(µ(x)).

10Notice that we do not discuss here the appropriateness of a class of measures w.r.t. uncertainty phenomena and
we do not compare them to each other. For such an analysis the reader is referred e.g. to papers by Smets [85, 86],
Halpern’s book [57] and the references therein.
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Similarly, necessity measures [22] are fuzzy measures satisfying the following law of composition
w.r.t. the minimum t-norm:

µ(x ∧ y) = min(µ(x), µ(y)).

Possibility and necessity measures are dual in the sense that, given a possibility measure Π (a
necessity measure N), one can derive its dual necessity measure as follows:

N(x) = 1−Π(¬x) [Π(x) = 1−N(¬x)] .

Similarly to probability measures, any possibility measure Π over a finite Boolean algebra B is
uniquely determined by a possibility distribution π on the set of atoms {ai}i∈I of B. Indeed, by
defining π(ai) = Π({ai}), one has supi∈I π(ai) = 1, and Π(u) = supaj≤u π(aj) for any u ∈ B. As
for the dual necessity measure, we have N(u) = infai 6≤u 1− π(ai).

3.2 Non-Classical Events

In the literature, there seems not to be a general definition of the notion of a fuzzy measure defined
over structures weaker than Boolean algebras. Generalized treatments have just covered specific
cases, as we will see below, such as probability and necessity / possibility measures. Since those
treatments study measures over particular subclasses of MTL-algebras, it seems natural to give a
definition for those kinds of structures.

Definition 7 Given an MTL-algebra A, a generalized fuzzy measure on A is a mapping µ : A→
[0, 1] such that µ(0A) = 0, µ(1A) = 1, and for x, y ∈ A, µ(x) ≤ µ(y) whenever x ≤ y.

In what follows, we are going to study particular classes of generalized fuzzy measures that are
extensions of those introduced for the Boolean case.

3.2.1 Possibility and Necessity Measures

In this section we give a definition of generalized possibility and necessity measures over MTL-
algebras (although we only make use of the underlying lattice structure). Notice that, even if the
real unit interval [0, 1] is the most usual scale for all kinds of uncertainty measures, any bounded
totally ordered set can be actually used (possibly equipped with suitable operations), especially
in the case of non-additive measures of a more qualitative nature like possibility and necessity
measures.

Definition 8 Let A be an MTL-algebra and let µ : A→ [0, 1] be a generalized fuzzy measure over
A. Then:

• µ is called a basic possibility measure when for all x, y ∈ A

µ(x ∨ y) = max(µ(x), µ(y)),

• µ is called a basic necessity measure when for all x, y ∈ A

µ(x ∧ y) = min(µ(x), µ(y)).
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For the case of A being a lattice of [0, 1]-valued functions on a set X (i.e. a lattice of fuzzy
sets), say A = [0, 1]X , several extensions of the notions of possibility and necessity measures for
fuzzy sets have been proposed in relation to different logical systems extending the well-known
Dubois-Lang-Prade’s Possibilistic logic to fuzzy events, see e.g. [22, 21, 48, 4, 3, 5]. Actually,
the different proposals in the literature arise from two observations. First of all, contrary to the
classical case, [0, 1]-valued basic possibility and necessity measures Π, N : [0, 1]X → [0, 1] are not
univocally determined by a possibility distribution π on the set X. The second observation is that,
in the classical case, the expressions of possibility and necessity measures of subsets of X in terms
of a possibility distribution on X can be equivalently rewritten as

Π(f) = sup
x∈X

min(π(x), f(x)), N(f) = inf
x∈X

max(1− π(x), f(x))

where f : X → {0, 1} is two-valued function, which can be obviously identified with a subset of X.
Therefore, natural generalizations of these expressions when f : X → [0, 1] is a fuzzy subset of X
are

Π(f) = sup
x∈X

π(x)� f(x), N(f) = inf
x∈X

π(x)⇒ f(x) (*)

where � is a t-norm and⇒ is some suitable fuzzy implication function11. In particular, the following
implication functions have been discussed in the literature as instantiations of the ⇒ operation in
(*):

(1) u⇒KD v = max(1− u, v) (Kleene-Dienes implication)

(2) u⇒RG v =

{
1, if u ≤ v
1− u, otherwise

(reciprocal of Gödel implication)

(3) u⇒ L v = min(1, 1− u+ v). ( Lukasiewicz implication)

All these functions actually lead to proper extensions of the above definition of necessity over
classical sets or events in the sense that if f describes a crisp subset of X, i.e. f is a function
f : X → {0, 1}, then (*) gives N(f) = infx:f(x)=0 1− π(x).

Moreover, if Π and N are required to be dual with respect to the standard negation, i.e.
Π(f) = 1−N(1−f), then one is led to consider the fuzzy implication⇒ defined as x⇒ y = (1−x)]y
where ] is the t-conorm dual of �. These kinds of fuzzy implications are commonly known as
strong implications. Notice that ⇒KD is the strong implication for � = min and ⇒ L is the strong
implication for the  Lukasiewicz t-norm.

Interestingly enough, these two notions of generalized possibilistic measures can be understood
as a special kind of fuzzy integrals, called (generalized) Sugeno integrals [87]. Indeed, given a fuzzy
measure µ : 2X → [0, 1], the Sugeno integral of a function f : X → [0, 1] with respect to µ is defined
as ∮

S
f dµ = max

i=1,...,n
min(f(xσ(i)), µ(Aσ(i)))

11The minimal properties required for a binary operation ⇒: [0, 1] × [0, 1] → [0, 1] to be considered as a fuzzy
counterpart of the classical {0, 1}-valued implication truth-function are: 0⇒ 0 = 1, 1⇒ 0 = 0, ⇒ is non-increasing
in the first variable and non-decreasing in the second variable.
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where σ is a permutation of the indices such that f(xσ(1)) ≥ f(xσ(2)) ≥ . . . ≥ f(xσ(n)), and Aσ(i) =

{xσ(1), . . . , xσ(i)}. When µ is a (classical) possibility measure on 2X induced by a (normalized)
possibility distribution π : X → [0, 1], i.e. when µ(A) = max{π(x) | x ∈ A} for every A ⊆ X, then
the above expression of the Sugeno integral becomes (see e.g. [10])∮

S
f dπ = max

x∈X
min(π(x), f(x)).

When the above minimum operation is replaced by an arbitrary t-norm �, we obtain the so-called
generalized Sugeno integral [87]∮

S,�
f dµ = max

i=1,...,n
f(xσ(i))� µ(Aσ(i)),

which, in the case of µ being the possibility measure on 2X defined by a possibility distribution π,
becomes ∮

S,�
f dπ = max

x∈X
π(x)� f(x).

The next theorem offers an axiomatic characterization of those measures for which there exists
a possibility distribution that allows a representation in terms of a generalized Sugeno integral.
The formulation we provide here is very general and makes only use of the structure of De Morgan
triples12 over the real unit interval.

Theorem 9 Let X be a finite set, let (�,], 1− x) be a De Morgan triple, and let N,Π : [0, 1]X →
[0, 1] be a pair of dual basic necessity and possibility measures. Then, N satisfies the following
property for all r ∈ [0, 1]

N(r ]f) = r ]N(f)

(or equivalently, Π(r � f) = r �Π(f))

if, and only if, there exists π : X → [0, 1] such that Π(f) = maxx∈X π(x) � f(x) and N(f) =
1−Π(1− f) = minx∈X(1− π(x)) ] f(x).

Proof: Suppose N is such that N(r ] f) = r ]L N(f) for every f ∈ [0, 1]X and r ∈ [0, 1]. It is easy
to check that every f ∈ [0, 1]X can be written as

f =
∧
x∈X

xc ] f(x),

where xc : X → [0, 1] is the characteristic function of the complement of the singleton {x}, i.e.
xc(y) = 1 if y 6= x and xc(x) = 0, and f(x) stands for the constant function of value f(x).

Now, by applying the axioms of a basic necessity measure and the assumption that N(r ] f) =
r ]N(f), we obtain that

N(f) = N

(∧
x∈X

xc ] f(x)

)
= min

x∈X
N
(
xc ] f(x)

)
= min

x∈X
N (xc) ] f(x).

12A De Morgan triple (see e.g. [40]) is a structure on the real unit interval (�,],¬) where � is a t-norm, ] a
t-conorm, ¬ a strong negation function such that x ] y = ¬(¬x� ¬y) for all x, y ∈ [0, 1].
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Finally, by putting π(x) = 1−N(xc), we finally get

N(f) = min
x∈X

(1− π(x)) ] f(x),

which, of course, by duality implies that

Π(f) = max
x∈X

π(x)� f(x)

The converse is easy. 2

This type of integral representation can be easily generalized when we replace the real unit
interval [0, 1] as the scale for the measures by more general algebraic structures, for instance by
residuated lattices with involution. The details are out of the scope of this paper.

3.2.2 Finitely additive Measures

The classical notion of (finitely additive) probability measure on Boolean algebras was generalized
in [74] by the notion of state on MV-algebras.

Definition 10 ([74]) By a state on an MV-algebra A = 〈A,⊕,¬, 0A〉 we mean a function s : A→
[0, 1] satisfying:

(i) s(1A) = 1,

(ii) if u� v = 0A, then s(u⊕ v) = s(u) + s(v).

The following proposition collects some properties that states enjoy.

Proposition 11 ([74]) Let s be a state on an MV-algebra A. Then the following hold properties
hold:

(iii) s(¬u) = 1− s(u),

(iv) if u ≤ v, then s(u) ≤ s(v),

(v) s(u⊕ v) = s(u) + s(v)− s(u� v).

Moreover, a map s : A→ [0, 1] is a state iff (i) and (v) hold.

In [89], Zadeh introduced the following notion of probability on fuzzy sets. A fuzzy subset of a
(finite) set X can be considered just as a function f ∈ [0, 1]X . Then, given a probability distribution
p : X → [0, 1] on X, the probability of f is defined as

p∗(f) =
∑
x∈X

f(x) · p(x),

where we have written p(x) for p({x}). Indeed, p∗ is an example of state over the tribe [0, 1]X . The
restriction of p∗ over the Sn-valued fuzzy sets is also an example of state over (Sn)X .
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The notion of state on a clan can be applied to define what a state on formulas is. Let W
and Wn be the set of [0, 1]MV-evaluations and Sn-evaluations respectively over the set of formulas
Fm(V ) in the language of Lukasiewicz logic built from a set of propositional variables V . For each
X ⊆W , and each ϕ ∈ Fm(V ), let

ϕ∗X : X → [0, 1]

be defined by ϕ∗X(w) = w(ϕ), where w is any [0, 1]MV-evaluation in X. Analogously, for any
Y ⊆Wn, define

ϕ∗Y,n : Y → Sn.

Then, both FmX = {ϕ∗X | ϕ ∈ Fm(V )} and FmY = {ϕ∗Y,n | ϕ ∈ Fm(V )} are clans over W
and Wn respectively. Then any state s on FmX (resp. on FmY ) induces a state on formulas
s′ : Fm(V ) → [0, 1] by putting s′(ϕ) = s(ϕ∗X) (resp. = s′(ϕ∗Y )). Notice that s′(ϕ) = s′(ψ)
whenever ϕ↔ ψ is provable in  L or in  Ln respectively.

Paris proved in [79, Appendix 2] that every state s on a finitely generated FmY can be repre-
sented as an integral:

Theorem 12 (Paris, [79]) Let V0 be a finite set of propositional variable, and let Y be the subset
of Wn of all the evaluations of V0 into Sn. Then for every state s on FmY , there is a probability
distribution p on Y such that, for every ϕ∗Y,n ∈ FmY ,

s(ϕ∗Y,n) =
∑
w∈Y

p(w) · w(ϕ).

More general and sophisticated integral representation for states on MV-algebras were indepen-
dently proved by Kroupa [63], and Panti [77]: for every MV-algebra A, the set of all states on A
is in one-to-one correspondence with the class of regular Borel probability measure on a compact
Hausdorff space X. In particular for every state s on A there is a regular Borel probability measure
p on X such that s is the integral with respect to p. A discussion about this topic is beyond the
scope of this paper (see [63, 77] for a detailed treatment).

4 Fuzzy modal logics for some classes of generalized plausibility
measures

As seen in the previous section, generalized fuzzy measures assign to non-classical events values
from the real unit interval [0, 1]. As also mentioned in the introduction, the underlying idea of the
fuzzy logic-based treatment of uncertainty is to introduce in a given fuzzy logic a modal operator
M, so that Mϕ denotes that ϕ is likely, (plausible, probable, possible, etc.), where ϕ is a proposition
denoting an event (classical or non-classical). Then, taking advantage of the real semantics of (∆-
)core fuzzy logics over the unit real interval [0, 1], particular truth-functions over [0, 1] can be used
to express specific compositional properties of different classes of measures.

For instance, consider the class of generalized plausibility measures over an L-algebra of events,
for some (∆-)core fuzzy logic L. Recall that this class is characterized by the normalization axioms,
ρ(1) = 1 and ρ(0) = 0, and monotonicity: whenever x ≤ y, ρ(x) ≤ ρ(y). These properties can be
easily captured within L itself over a language expanded by a modal operator Pl by considering the
axioms Pl> and ¬Pl⊥, together with the inference rule: from ϕ→ ψ infer Pl ϕ→ Pl ψ. Indeed,
for any evaluation e over any real L-algebra, e(Pl ϕ→ Pl ψ) = 1 iff e(Pl ϕ) ≤ e(Pl ψ). Therefore,
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we can say that any (∆-)core fuzzy logic L is adequate for the class of generalized fuzzy measures
over L-algebras of events.

However, if we then want to rely on a certain logic to represent a particular subclass of fuzzy
measures, we need to take into account whether the operations needed in the definition of the
subclass can be defined in that logic.

To be more specific, consider a (∆-)core fuzzy logic L which is complete with respect to a class
C of real L-algebras. Then any formula ϕ(p1, . . . , pn) over propositional variables p1, . . . , pn in the
language of L defines a function tAϕ : [0, 1]n → [0, 1] for every real algebra A ∈ C, by stipulating

tAϕ (a1, . . . , an) = e(ϕ), where e is the L-interpretation such that e(p1) = a1, . . . , e(pn) = an. Then
we say that a certain function f : [0, 1]n → [0, 1] is definable in a (∆-)core fuzzy logic L if:

(1) there exists a class C of real algebras for which L is complete, and

(2) there exists an L-formula ϕ(p1, . . . , pn) such that, for all A ∈ C, tAϕ (a1, . . . , an) = f(a1, . . . , an)
for all a1, . . . , an ∈ A.

For instance, the formulas p1 ∧ p2 and p1 ∨ p2 define over any class of real MTL-chains the min and
max functions respectively.

Informally speaking, we say that a (∆-)core fuzzy logic L is compatible with a given subclass of
fuzzy measures if the algebraic operations or relations playing a role in the axiomatic postulates of
the given class of measures can be expressed by means of functions definable in L.

We give an example to clarify this notion of compatibility.

Example 13 Consider the class of (finitely additive) probability measures on, say, classical events.
In this case not every (∆-)core fuzzy logic L is suitable to axiomatize a logic to reason about proba-
bilities. In fact, the operation of (bounded) sum is necessary to express the law of finite additivity,
and this operation is not present in all real algebras of all logics, but it is present, for instance,
in the standard algebra [0, 1]MV of  Lukasiewicz logic  L, and in the standard algebra of some of its
expansions like Rational  Lukasiewicz logic R L. These logics, therefore, allow to axiomatize a modal
logic to reason about probability (also remember that  L has an involutive negation), by allowing to
express the additivity with the connective ⊕, whose standard interpretation is the truncated sum
(recall Section 2.4, and see Section 4.4): P (ϕ ∨ ψ)↔ Pϕ⊕ Pψ, in case ` ¬(ϕ ∧ ψ) over Classical
Logic. In contrast, it is easy to observe that, for instance, a probability logic cannot be axioma-
tized over Gödel logic since the (truncated) addition cannot be expressed by means of Gödel logic
truth-functions.

In the rest of this section, we consider different fuzzy modal logics (in a restricted sense that
will be clarified in the following definitions) axiomatizing reasoning about several classes of fuzzy
measures. We introduce the fundamental syntactical and semantical frameworks that we will
specifically enrich in the following subsections to deal with the distinguished classes of measures
we have already recalled.

Unless stated otherwise, for the rest of this section we always consider L1 to be a (∆-)core fuzzy
logic used to represent events, and L2 to be a (∆-)core fuzzy logic compatible with the specific class
of measures we are going to reason about. As a matter of notation, let us denote by M any class
of fuzzy measures as those we axiomatized in the first part of this section. We introduce the basic
framework to formalize reasoning about fuzzy measures in M. The syntactical apparatus built over
L1 and L2 is denoted by FM(L1,L2).
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Syntax. The syntax of FM(L1,L2) comprises a countable set of propositional variables V =
{x1, x2, . . .}, connectives from L1 and L2

13 and the unary modality M. Formulas belong to two
classes:

EF: The class of formulas from L1. They are inductively defined as in Section 2, and will be used
to denote events. The class of those formulas will be denoted by E .

MF: The class of modal formulas is inductively defined as follows: for every formula ϕ ∈ E , Mϕ
is an atomic modal formula, all truth-constants of L2 are also atomic modal formulas, and,
moreover, compound formulas are defined from the atomic ones and using the connectives of
L2. We will denote by MF the class of modal formulas.

Note that connectives appearing in the scope of the modal operator M are from L1, while those
outside are from L2.

Semantics.14 Let C1 be a class of L1-chains over a same universe U1 for which L1 is complete,
and let A2 be real L2-chain and such that it is compatible with M. A semantics with respect to
C1 and A2 for the language FM(L1,L2) is defined as follows: a real {C1,A2}-M model is a triple
〈W, e, ρ〉 where:

- W is a non-empty set whose elements are called nodes or possible words.

- e : E ×W → U1, where U1 is the common universe of the chains in C1, is a map such that,
for every fixed w ∈W , the map e(·, w) : E → U1 is an evaluation of non-modal formulas over
a particular algebra Aw ∈ C1

- ρ : FmW (V )→ [0, 1] is an M-fuzzy measure, where FmW (V ) is defined as follows. For every
formula ϕ ∈ E , define the map fϕ : W → U1 such that, for every w ∈ W , fϕ(w) = e(ϕ,w).
Then FmW (V ) is the L1-algebra of all the functions defined in this way, with the pointwise
application of the operations in the Aw’s.

Let M = 〈W, e, ρ〉 be a {C1,A2}-M model, let w be a fixed node in W , and let φ be a formula
of FM(L1,L2). Then, the truth value of φ in M at the node w (we will denote this value by
‖φ‖M,w ∈ [0, 1]) is inductively defined as follows:

- If φ is a formula in E , then ‖φ‖M,w = e(φ,w).

- If φ is an atomic modal formula of the form Mψ, then ‖Mψ‖M,w = ρ(fψ).

- If φ is a compound modal formula, then ‖φ‖M,w is computed by truth functionality and using
the operations of A2.

Notice that when φ is modal, its truth value ‖φ‖M,w does not depend on the chosen world w, hence
in these cases we will simplify the notation by dropping the subscript w, and we will write ‖φ‖M .
M will be called a model for φ when ‖φ‖M = 1, and will be called a model for a modal theory Γ
(i.e. Γ ⊆MF) when it is a model for each formula in Γ.

13Actually we will not distinguish the connective symbols of both logics since it will become clear form the context.
14The semantical framework we adopt here is inspired by the approach of [82] in the general setting of two-layered

fuzzy modal logics. We thank Petr Cintula for bringing this work to our knowledge.
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In the remaining part of this section, it will be useful to consider {C1,A2}-M models 〈W, e, ρ〉,
where the measure ρ takes values in an L2-chain A2 whose domain coincides with a non trivial
ultrapower ∗[0, 1] of [0, 1]. Those models will be called hyperreal. Evaluations into a hyperreal
{C1,A2}-M model are defined accordingly.

Remark 14 (1) To simplify the reading, and without danger of confusion, we will henceforth avoid
mentioning the class of chains C1 and the algebra A2 when referring to the models introduced above.
We will simply say that a triple 〈W, e, ρ〉 is a (real or hyperreal) M-model. The class C1 and the
algebra A2 will be always clear by the context.

(2) In the following subsections, we will axiomatize particular classes of fuzzy measures. Case
by case we will adopt a notation consistent with the class of measures we will deal with. Therefore,
we will denote by PL the class of generalized plausibility measures, by Π the class of possibility
measures, and so forth. For example, we will denote by FPL(L1,L2) the logic for generalized
plausibility and, also referring to what we stressed in (1), we will call its models the plausibilistic
models. Clearly the same notation (mutatis mutandis) will be also adopted for all the particular
classes of fuzzy measures we are going to treat.

4.1 A modal logic for generalized plausibility measures

In this section we take M to be the class of generalized plausibility measures, denoted as PL, and
let L1,L2 be two core fuzzy logics. Recall that any core fuzzy logic is compatible with PL. The
logic that allows to reason about generalized plausibility measures of over L1-events over the logic
L2 will be called FPL(L1,L2), and its axioms and rules are the following:

Ax1. All axioms and rules of L1 restricted to formulas in E .

Ax2. All axioms and rules of L2 restricted to modal formulas.

Ax3. Axiom for the modality Pl:

Pl: ¬Pl(⊥),

M: The rule of monotonicity for Pl: from ϕ→ ψ, deduce Pl(ϕ)→ Pl(ψ) (where ϕ,ψ ∈ E).

N: The rule of necessitation for Pl: from ϕ, deduce Pl(ϕ) (where of course ϕ ∈ E).

Notice that nested modalities are not allowed, nor are formulas which contain modal formulas but
also non-modal formulas that are not under the scope of any modality. That is to say that, for
example, if ϕ,ψ ∈ E , then neither Pl(Pl(ϕ)) nor ψ → Pl(ϕ) is a well-founded formula in our
language.

The notion of proof in FPL(L1,L2) is defined as usual, and we denote by `FPL the relation of
logical consequence. A theory is a set of formulas, and a modal theory is a set of modal formulas.
For any theory Γ, and for every formula φ, we write Γ `FPL φ to denote that φ follows from Γ in
FPL(L1,L2).

Proposition 15 The logic FPL(L1,L2) proves the following:

(1) The modality Pl is normalized, that is `FPL Pl(⊥) ↔ ⊥, and `FPL Pl(>) ↔ > (where, as
usual, > = ¬⊥).
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(2) The rule of substitution of equivalents: τ ↔ γ `FPL Pl(τ)↔ Pl(γ)

Proof: (1) Since in L2 the negation can be defined as ¬φ = φ→ ⊥, the axiom Pl actually states
that Pl(⊥) → ⊥. Moreover, ⊥ → Pl(⊥) trivially holds, hence `FPL Pl(⊥) ↔ ⊥. Finally,
since `FPL Pl(>), then `FPL Pl(>)↔ >.

(2) As usual τ ↔ γ can be split in τ → γ and γ → τ . Now, from τ → γ, and using (1),
τ → γ `FPL Pl(τ)→ Pl(γ). Similarly γ → τ `FPL Pl(γ)→ Pl(τ), and we are done.

2

As for the semantics, given a class C1 of real L1-algebras for which L1 is complete and a real
L2-algebra A2 compatible with a generalized plausibility measure ρ, a {C1,A2}-PL model, for short
a plausibilistic model, will be a triple M = 〈W, e, ρ〉 with the same definition and notation used
above for the general case (see Remark 14).

Remark 16 The compatibility assumption of the algebra A2 with respect to the measure ρ is what
guarantees that the logic FPL(L1,L2), and in particular its genuine modal axiom(s) and rule(s), is
sound with respect to the class of plausibilistic models. The same observation applies to the other
modal logics we will consider in the next subsections.

Definition 17 Let Γ∪{Φ} be a modal theory of FPL(L1,L2). Then we say that the logic FPL(L1,L2)
is:

- Finitely strongly complete with respect to real plausibilistic models (real-FSC) if whenever Γ
is finite, and Γ 6`FPL Φ, there is a real plausibilistic model M for Γ such that ‖Φ‖M < 1.

- Strongly complete with respect to real plausibilistic models (real-SC) if for every Γ such that
Γ 6`FPL Φ, there is a real plausibilistic model M for Γ such that ‖Φ‖M < 1.

- Strongly complete with respect to hyperreal plausibilistic models (hyperreal-SC) if for every Γ
such that Γ 6`FPL Φ, there is a hyperreal plausibilistic model M for Γ such that ‖Φ‖M < 1.

Now we introduce a general way to prove (finite, strong) completeness for FPL(L1,L2) with respect
to the class of real and hyperreal plausibility models. The same methods will be then applied in
the following sections when we will study those extensions of FPL(L1,L2) that allow to deal with
more specific uncertainty measures.

First of all, we define a translation mapping from the modal language of FPL(L1,L2) into the
propositional language of L2. This translation works as follows: for every atomic modal formula
Pl(ϕ), we introduce a new variable pϕ in the language of L2. Then, we inductively define the
translation • as follows:

- (Pl(ϕ))• = pϕ.

- ⊥• = ⊥.

- (?(Φ1, . . . ,Φn))• = ?((Φ1)•, . . . , (Φn)•) for every n-ary connective ? of L2.
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For any modal theory Γ of FPL(L1,L2), in accordance with •, we define

Γ• = {Ψ• : Ψ ∈ Γ}

and

FPL• = {Θ• : Θ is an instance of Pl} ∪ {pϕ : `L1 ϕ} ∪ {pϕ → pψ : `L1 ϕ→ ψ}.

Lemma 18 Let Γ ∪ {Φ} be a modal theory of FPL(L1,L2). Then

Γ `FPL Φ iff Γ• ∪ FPL• `L2 Φ•.

Proof: (⇒) An FPL(L1,L2)-proof Ψ1, . . . ,Ψn of Φ in Γ is made into an L2-proof of Φ• in Γ•∪FP •
by deleting all L1-formulas and taking, for each modal formula Ψi, the L2 formula Ψ•i .

(⇐) Conversely, each L2-proof of Φ• has the form Ψ•1, . . . ,Ψ
•
n, where Ψi are modal formulas.

Therefore the previous proof is converted into an FPL(L1,L2)-proof of Φ in Γ, by adding for each Ψi

of the form pϕ (ϕ being an L1-theorem) a proof in L1 of ϕ, and then applying a step of necessitation
(N) in order to get Pl(ϕ), and for each Ψj of the form pϕ → pψ a proof in L1 of ϕ→ ψ, and then
applying a step of the monotonicity rule (M) in order to get Pl(ϕ)→ Pl(ψ). 2

Now, assume Γ∪{Φ} to be a finite modal theory over FPL(L1,L2), and let V0 be the following set
of propositional variables:

V0 = {vi | vi occurs in some ϕ, P (ϕ) is a subformula of Ψ,Ψ ∈ Γ ∪ {Φ}},

i.e. V0 is the set of all the propositional variables occurring in all the L1-formulas occurring in some
modal formula of Γ ∪ {Φ}. Clearly V0 is finite.

We can identify FL1(V0) with the Lindenbaum-Tarski algebra of L1 of formulas generated in
the restricted language having V0 as set of variables. Therefore, for every [ϕ] ∈ FL1(V0) we choose
a representative of the class [ϕ], that we will denote by ϕ2. Then, consider the following further
translation map:

- For every modal formula Φ, let Φ2 be the formula resulting from the substitution of each
propositional variable pϕ occurring in Φ• by pϕ2 ,

- (?(Φ1, . . . ,Φn))2 = ?((Φ1)2, . . . , (Φn)2) for every n-ary connective ? of L2.

In accordance with that translation, we define Γ2 and FPL2 as:

Γ2 = {Ψ2 : Ψ• ∈ Γ•}

and

FPL2 = {Υ2 : Υ• ∈ FPL•}.

Lemma 19 Γ• ∪ FPL• `L2 Φ• iff Γ2 ∪ FPL2 `L2 Φ2.

Proof: (⇐) Let Γ2 ∪ FPL2 `L2 Φ2. Then, in order to prove the claim we have to show that
Γ• ∪ FPL• `L2 Φ• for each Φ such that its 2-translation is Φ2. For instance, if Φ = Pl(ψ)
then Φ2 = pψ2 = pγ2 for each γ ∈ [ψ], therefore, if Γ2 ∪ FPL2 `L2 pϕ2 we have to show that
Γ• ∪ FPL• `L2 pγ for each γ ∈ [ϕ].

First of all notice that the following fact immediately follows from Proposition 15(2):
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Claim 1 Let ϕ,ψ be L1-formulas. Then, if `L1 ϕ↔ ψ, then FPL(L1,L2) ` Pl(ϕ)↔ Pl(ψ) (and
in particular FPL• `L2 pϕ ↔ pψ).

Let us now turn back to the proof of Lemma 19. Let Φ be a modal formula of FPL(L1,L2) and
let Pl(ϕ1), . . . , P l(ϕk) be all the atomic modal formulas occurring in Φ. If Γ2∪FPL2 `L2 Φ2, then,
it easily follows from the above claim that Γ• ∪FPL• `L2 Φ• where Φ• is any L2-formula obtained
by replacing each occurrence of a propositional variable pϕi with another pψi

such that ψi ∈ [ϕi].
In fact, if ψi ∈ [ϕi], then `L1 ψi ↔ ϕi and therefore, from Claim 1, FPL• `L2 pψi

↔ pϕi . Thus
pϕi can be substituted with pψi

without loss of generality in the proof. Therefore, in particular
Γ• ∪ FPL• `L2 Φ• and this direction is complete.

(⇒) In order to prove the other direction let us assume Γ•∪FPL• `L2 Φ• and let Ψ•1, . . . ,Ψ
•
k be

an L2-proof of Φ• in Γ• ∪ FPL•. For each 1 ≤ j ≤ k replace Ψ•j with Ψ2
j , the representative of its

equivalence class in FL1(V0). Clearly Ψ2
1 , . . . ,Ψ

2
k is an L2-proof of (a formula logically equivalent

to) Φ2. In fact, if Ψ•k = Φ•, then Ψ2
k ↔ Φ2. Moreover, for each 1 ≤ i < k one of the following

holds:

(i) Ψ2
i is (logically equivalent to) an axiom of L2,

(ii) Ψ2
i ∈ Γ2 ∪ FPL2,

(iii) If Ψ•t is obtained by modus ponens from Ψ•s → Ψ•t and Ψ•s, then we claim that Ψ2
t is obtained

by modus ponens from Ψ2
s → Ψ2

t and Ψ2
s . In fact we have just to note that (Ψs → Ψt)

2 =
Ψ2
s → Ψ2

t and thus the claim easily follows.

Moreover, since modus ponens is the only inference rule of L2 we have nothing to add, and our
claim is settled. 2

Now, we are ready to state and prove our completeness theorem.

Theorem 20 Let L1 be a logic for events, and let L2 be a logic compatible with plausibility mea-
sures. Then the following hold:

(1) If L1 is locally finite, and L2 enjoys FSRC, then FPL(L1,L2) is real-FSC.

(2) If L2 has SRC, then FPL(L1,L2) is real-SC.

(3) If L2 has FSRC, then FPL(L1,L2) is hyperreal-SC.

Proof: (1) Assume L1 to be locally finite and complete with respect to a class C1 = {Li}i∈I of
L1-chains over a same universe U1. Let Γ∪ {Φ} be a modal theory of FPL(L1,L2) such that
Γ 6`FPL Φ. Then, by Definition 3, and by definition of 2, it follows that Γ2 ∪FPL2 is a finite
theory of L2. Moreover, by Lemma 19, Γ 6`FPL Φ iff Γ2 ∪ FPL2 6`L2 Φ2. Since L2 enjoys
FSRC, there is an evaluation v into a real L2-algebra A2 which is a model for Γ2 ∪ FPL2,
but v(Φ2) < 1.

Now consider the model M = 〈W, e, ρ〉 (cf. [82]), where:

- W = ∪i∈IWi where Wi is the set of all evaluations on the algebra Li.
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- e : V ×W → U1 is defined as follows: for every w ∈Wi, and every p ∈ V ,

e(p, w) =

{
w(p) if p ∈ V0,
0 otherwise.

- ρ : FmW (V0)→ [0, 1] is defined as: for all fϕ ∈ FmW (V0),

(1) ρ(fϕ) = v(Pl(ϕ)2).

Claim 2 The model M = 〈W, e, ρ〉 is a plausibilistic model.

Proof: (of the Claim) We only need to prove that ρ is a plausibility measure. Then, recalling
that ⊥2 = ⊥, we have >2 = >, and so ρ(f⊥) = v(⊥2) = v(⊥) = 0. Analogously ρ(f>) = 1.
To prove monotonicity, assume that fϕ ≤ fψ in FmW (V0). Now, fϕ ≤ fψ means that for
every chain Li and every evaluation w on Li, w(ϕ) ≤ w(ψ), and by completeness of L1

with respect to C1, `L1 ϕ → ψ. By the monotonicity rule M, `FPL Pl ϕ → Pl ψ. Hence
> = (Pl ϕ → Pl ψ)2 = (Pl ϕ)2 → (Pl ψ)2 ∈ FPL2. Since v is a model of FPL2, we have
v(Pl(ϕ)2 → Pl(ψ)2) = 1. But v(Pl(ϕ)2 → Pl(ψ)2) = 1 iff v(Pl(ϕ)2) ≤ v(Pl(ψ)2) iff
ρ(fϕ) ≤ ρ(fψ). Therefore M is a plausibilistic model as required. 2

Let Ψ be any modal formula of FPL(L1,L2). By induction on Ψ, it is now easy to show that
‖Ψ‖M = v(Ψ2), hence M is a plausibilistic model that satisfies every formula of Γ, and such
that ‖Φ‖M < 1 as required.

(2) Let now Γ ∪ {Φ} be any arbitrary modal theory of FPL(L1,L2), and in particular assume
Γ to be infinite. Therefore, independently from the fact that L1 is locally finite or not,
the L2 propositional theory Γ2 ∪ FPL2 is infinite. Assume Γ 6`FPL Φ: from Lemma 19,
Γ2 ∪ FPL2 6`L2 Φ2. Since L2, by hypothesis, has strong real completeness, there exists,
again, an evaluation v into a real L2-algebra such that v is a model of Γ2 ∪ FPL2, and
v(Φ2) < 1.

Then, the same plausibilistic model M we defined in the proof of (1) is appropriate for our
purposes. Then, (2) is proved as well.15

(3) Assume now Γ to be any arbitrary modal theory of FPL(L1,L2). Assume that Γ 6`FPL Φ:
so Γ2 ∪ FPL2 6`L2 Φ2 by Lemma 19. By Definiton 3, Γ2 ∪ FPL2 is not a finite theory of
L2, but since L2 has FSRC, then by [34, Theorem 3.2], L2 has SR∗C. Consequently, there is
an evaluation v into a non-trivial ultraproduct of real L2-chains satisfying all the formulas in
Γ2 ∪ FPL2, and v(Φ2) < 1.

Again, the same strategy used in the proof of the claims (1) and (2) shows that the model
M = 〈W, e, ρ〉, defined as in the proof of (1), evaluates into 1 all the modal formulas of Γ, and
‖Φ‖M < 1. Notice that in this peculiar case, for every fϕ ∈ FmW (V0), ρ(fϕ) = v(Pl(ϕ)2) ∈
∗[0, 1], and M is in fact a hyperreal plausibilistic model.

2

15In fact, in this case where L2 is assumed to have SRC, the same result could have been obtained directly from
the first translation •, i.e. without the further second translation 2.
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4.2 Logics for generalized possibility and necessity

As we discussed in Section 3.2.1, possibility and necessity measures can be generalized to be defined
on any lattice-ordered structure. Now, we show the logical counterpart of these measure-theoretical
approaches introducing schematic extensions of FPL(L1,L2) so as to capture these more peculiar
mappings.

Since the formalisms we introduce are intended to deal with necessity and possibility measures,
we are going to consider as L1, and L2 only those ∆-core fuzzy logics that are extensions of MTL∼.
This will allow us to treat not only necessity but possibility measures as well, since they are definable
as Π(ϕ) := ∼N(∼ϕ). With an abuse of notation, we denote by N (necessity) the modal operator
of FPL(L1,L2).

The logic FN(L1,L2) is the schematic extension of FPL(L1,L2) given by the basic axiom schema

FN: N(ϕ ∧ ψ)↔ N(ϕ) ∧N(ψ).

Necessity models for FN(L1,L2) are particular plausibilistic models. Indeed, they are triples of
the form 〈W, e,N〉, where W and e are defined as in the case of plausibilistic models, and where
N : Fm(L1)W → [0, 1] is a necessity measure. Whenever N ranges over a non-trivial ultrapower
∗[0, 1] of the unit interval [0, 1] we speak about hyperreal necessity model.

Theorem 21 Let L1 be a logic for events, and let L2 be a logic compatible with necessity measures.
Then the following hold:

(1) If L1 is locally finite, and L2 has FSRC, then FN(L1,L2) is real-FSC.

(2) If L2 has SRC, then FN(L1,L2) is real-SC.

(3) If L2 has FSRC, then FN(L1,L2) is hyperreal-SC.

Proof: The claims can be easily proved by following the same lines of Lemmas 18 and 19, and
Theorem 20. Indeed, using easy adaptations of Lemmas 18 and 19, one has to show that, given a
modal theory Γ and a modal formula Φ, Γ `FN Φ iff Γ•∪FN• `L2 Φ• iff Γ2∪FN2 `L2 Φ2. The only
point here is that when building the theory FN• one has to additionally consider countably many
instances of the axiom FN. Then one has to show that the plausibilistic model M = 〈W, e,N〉
arising from the adaptation of the proof of Theorem 20, is indeed a necessity model. Adopting the
same notation of the proof of Theorem 20, call v the L2-model of Γ2∪FN2, and call M = 〈W, e,N〉
the plausibilistic model, where for every fϕ ∈ FmW (V0), we define N(fϕ) = v(N(ϕ)2). Then,
since FN(L1,L2) is the basic schematic extension of FPL(L1,L2) by the schema FN, for every
fϕ, fψ ∈ FmW (V0),

N(fϕ ∧ fψ) = N(fϕ∧ψ) = v(N(ϕ ∧ ψ)2),

and

v((N(ϕ)2 ∧N(ψ)2)↔ N(ϕ ∧ ψ)2) = 1

because (N(ϕ)2 ∧ N(ψ)2) ↔ N(ϕ ∧ ψ)2 ∈ FN2 and v is a model of FN2, hence N(fϕ ∧ fψ) =
N(fϕ) ∧N(fψ). Therefore N is a necessity and the claim is settled. 2
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4.3 Logics for representable generalized possibility and necessity

For every t-norm ∗ ∈ CONT-fin∪WNM-fin, let L1 = L2 = L∗([0, 1]Q), as defined in Section 2.2.
Then, the logic FNQ(L1,L2) is the basic schematic extension of FN(L1,L2) given by the axiom
schema

QN: N(r ] ϕ)↔ r ]N(ϕ) for every r ∈ [0, 1] ∩Q,

and where ϕ ] ψ stands for ∼(∼ϕ&∼ψ) in L∗([0, 1]Q).
Notice that the logic FΠQ(L1,L2), where necessity measures are replaced by possibility mea-

sures, is in fact the same as FNQ(L1,L2), since the involutive negations of L1 and L2 allow the
definition of possibility from necessity by duality. Therefore, we only focus on FNQ(L1,L2).

Homogeneous necessity models are necessity models 〈W, e,NQ〉 where

NQ : FmW (V )→ [0, 1]

further satisfies: NQ(r]ϕ) = r]NQ(ϕ). Whenever the homogeneous necessity measure takes values
in a non-trivial ultrapower ∗[0, 1] of the real unit interval, we speak, as usual, of hyperreal homo-
geneous necessity models. Unlike all the previously studied cases, it is now possible to introduce a
stronger class of models. This is the class of strong necessity models of the form MQ = 〈W, e, π〉
where W and e are defined as above, and where π : W → [0, 1] is a normalized possibility distribu-
tion, i.e. supw∈W π(w) = 1. Evaluations in a strong necessity model are defined as usual, except
for atomic modal formulas N(ψ) that are now evaluated as follows:

‖N(ψ)‖MQ = inf
w∈W

(
‖ψ‖MQ,w ] π(w)

)
.

Theorem 22 For every t-norm ∗ ∈ CONT-fin∪WNM-fin, let L1 = L2 = L∗([0, 1]Q). Then the
following hold:

(1) If L1 is locally finite and L2 has FSRC, then the logic FNQ(L1,L2) is real-FSC with respect
to the class of homogeneous necessity models, and the class of strong necessity models.

(2) If L2 has FSRC, then the logic FNQ(L1,L2) is hyperreal-SC with respect to the class of
homogeneous necessity models.

Proof: An inspection of the proof of Theorem 20 and a similar technique used in the proof of
Theorem 21, applied to QN, shows the first part of (1) and (2).

Take, now, a finite modal theory Γ ∪ {Φ} such that Γ 6`FNQ Φ, and let M = 〈W, e,NQ〉 be the
homogeneous necessity model satisfying all the formulas in Γ, and ‖Φ‖M < 1.

NQ is a homogeneous necessity measure on FmW (V0) and W coincides with the class of all
L1-evaluations. Moreover, both 〈W, ∗,],∼〉 and 〈[0, 1], ∗,],∼〉 are De Morgan triples, and, being
M a model for QN, we have that NQ(r ] f) ↔ r ] NQ(f) for every r ∈ [0, 1] ∩ Q and every
f ∈ FmW (V0). Then, Theorem 9(1) ensures the existence of a normalized possibility distribution
π on W such that, for every fϕ ∈ FmW (V0),

NQ(fϕ) =
∧
w∈W

∼π(w) ] e(w,ϕ).

Therefore MQ = 〈W, e, π〉 is a strong necessity model that satisfies Γ, but ‖Φ‖MQ < 1. 2
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Remark 23 An alternative modal-style treatment of (representable) necessity and possibility mea-
sure on many-valued events can be found in [20], where the authors rely on G∆(Q) (i.e. Gödel
logic with ∆ and truth constants from the rationals in [0, 1]) as a logic for modal formulas. In fact,
the only necessary ingredients to correctly axiomatize representable necessity and possibility modal
formulas are the rational truth constants and the lattice operations. These requirements are fulfilled
by G∆(Q) (i.e. in the present notation G∆(Q) is compatible with necessity and possibility over
many-valued events).

4.4 Logics for generalized probability

Now, we describe a logical treatment of probability measures. To keep the notation uniform, we
denote by P the modal operator that interprets probability measures on fuzzy-events.

In what follows L1 stands for either  Lk, or  L, and L2 is any expansion of  Lukasiewicz logic  L.
The logic FP(L1,L2) is the schematic extension of FPL(L1,L2) obtained by the following axioms:

P1: P (¬ϕ)↔ ¬P (ϕ).

P2: P (ϕ⊕ ψ)↔ [(P (ϕ)→ P (ϕ& ψ))→ P (ψ)].

The notion of proof in FP(L1,L2) will be denoted by `FP. Obviously the properties of normal-
ization, and monotonicity we proved in Proposition 15, still hold for FP(L1,L2). In addition
FP(L1,L2) satisfies the following:

Proposition 24 The modality P is finitely additive, that is, for every τ, γ ∈ E, τ & γ → ⊥ `FP

P (τ ⊕ γ)↔ (P (τ)⊕ P (γ)).

Proof: Recall from Proposition 15, that P (⊥) ↔ ⊥ holds in FP(L1,L2). Now, since τ & γ →
⊥, we have τ & γ ↔ ⊥, and by the rule of substitution of the equivalents (Proposition 15(2)),
P (τ & γ) ↔ ⊥. Therefore by P2, we get τ & γ → ⊥ `FP P (τ ⊕ γ) ↔ [(P (τ) → ⊥) → P (ψ)], and
so τ & γ → ⊥ `FP P (τ ⊕ γ)↔ (¬P (τ)→ P (ψ)). 2

Models for FP(L1,L2) are special cases of plausibilistic models: a (weak) probabilistic model is
a triple M = 〈W, e, s〉, where W and e are defined as in the case of plausibilistic models, and
s : Fm(L)W → [0, 1] is a state. The evaluation of a formulas into a model M is defined as in the
previous cases.

A probabilistic model is a hyperreal probabilistic model, whenever the measure s takes values
from a non-trivial ultrapower ∗[0, 1] of the unit interval [0, 1].

In analogy to the case of representable necessity and possibility measures, also for the case of
probability, we can introduce the notion of strong probabilistic model. Indeed, strong probabilistic
models are a triples 〈W, e, p〉 where W and e are as in the case of weak probabilistic models, and
p : W → [0, 1] is such that W0 = {w ∈ W : p(w) > 0} is countable, and

∑
w∈W0

p(w) = 1.
Evaluations of (modal) formulas are defined as usual, with the exception of atomic modal formulas
that are defined as follows: for every P (ψ) ∈MF ,

‖P (ψ)‖M =
∑
w∈W

p(w) · ‖ψ‖M,w.

The following is, again, a direct consequence of Theorem 20.
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Theorem 25 For every k ∈ N, the logic FP( Lk,  L) is real-FSC with respect to both the class of
probabilistic models and the class of strong probabilistic models. Moreover, the logic FP( L,  L) is
hyperreal-SC.

Proof: Again, one starts by adapting Lemmas 18 and 19, by showing that, given a modal theory
Γ and a modal formula Φ, Γ `FP Φ iff Γ• ∪ FP• ` L Φ• iff Γ2 ∪ FP2 ` L Φ2, taking into account
now that when building the theory FP• one has to additionally consider instances of the axiom P1
and P2. Then, the only necessary modification with respect to the proof of Theorem 20 regards
the fact that we have to ensure that the measure s : FmW (V0) → [0, 1] of M = 〈W, e, s〉, defined
as s(fϕ) = v(P (ϕ)2) = v(pϕ2), is a state. Following similar proofs in [52, Th. 8.4.9] and [35, Th.
4.2], it is easy to check that

s(fϕ ⊕ fψ) = s(fϕ) + s(fψ)− s(fϕ & fψ).

Therefore s is a state from Proposition 11.
To conclude our proof consider a finite modal theory Γ∪ {Φ} and assume Γ 6`FP Φ. From what

we proved above, there is a probabilistic model M = 〈W, e, s〉 that is a model for Γ, and ‖Φ‖M < 1.
Adopting the same notation of Theorem 12, call Y the (finite) set of all the evaluations from V0

into Sk. Then the state s is defined on the MV-algebra FmY , hence, from Theorem 12, there exists
a probability distribution p on Y such that for every fϕ ∈ FmY , s(fϕ) =

∑
w∈Y p(w) · w(ϕ).

Now, we define M ′ = 〈Wk, e, p̂〉 where Wk is the set of all the evaluations of variables in V into
Sk, for every w ∈Wn and every variable q, e(q, w) = w(q) and p̂ : Wn → [0, 1] satisfies:

p̂(w) =

{
p(w) if w ∈ Y,
0 otherwise.

Then M ′ is a strong probabilistic  Lukasiewicz model, and it can be easily proved that for every
modal formula Ψ of FP( Lk,  L), ‖Ψ‖M ′ = ‖Ψ‖M . Therefore M ′ is a model of Γ, and ‖Φ‖M ′ < 1 as
required. 2

5 Expansions with Rational Truth Constants

In this section, we rely on basic schematic extensions of FPL(L1,R L). Notice that the class MF
of modal formulas of FPL(L1,R L) is taken as closed under the operators δn, for every n ∈ N,
and therefore, for every modal formula Φ, δnΦ is modal as well. We stress this fact because we
adopt now the same notation we introduced in Section 2.4, and therefore, for every rational number
r = m/n ∈ [0, 1] with n,m being natural numbers, we write r or even m/n instead of mδn(>).

We are going to study here plausibility measures from the general point of view, and so we
consider only the modality Pl. The other cases involving (representable) necessity and possibility,
and probability measures are similar and hence omitted. A complete treatment for those classes of
measures can be found in [36, 35].

The logic FPL(L1,R L) is significantly more expressive than a logic FPL(L1,L2) where L2 does
not allow to define rational values. In fact it is now possible to deal with formulas like, for instance,

Pl(ϕ)↔ 1
2 and Pl(ψ)→ 1

3 whose intended interpretation is that the plausibility of ϕ is 1
2 and the

plausibility of ψ is at most 1
3 , respectively.

From Theorem 20, it is not difficult to prove that FPL(L1,R L) is sound and (finitely) strongly
complete with respect to the class of plausibilistic models. In fact R L has finite strong real com-
pleteness (see [43]). On the other hand, when we expand a logic by means of rational truth values,
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it is possible to define the notions of provability degree and truth degree of a formula ψ over an
arbitrary theory Γ. For FPL(L1,R L) they are defined as follows:

Definition 26 Let Γ be an FPL(L1,R L) modal theory and let Φ be a modal formula. Then, the
provability degree of Φ over Γ is defined as

|Φ|Γ = sup{r ∈ [0, 1] ∩Q : Γ `FPL r → Φ},

and the truth degree of Φ over Γ is defined as

‖Φ‖Γ = inf{‖Φ‖M : M is a plausibilistic model of Γ}.

We say that FPL(L1,R L) is Pavelka-style complete, or that FPL(L1,R L) enjoys the Pavelka-style
completeness theorem iff for every modal theory Γ ∪ {Φ},

|Φ|Γ = ‖Φ‖Γ.

Now we are going to show that FPL(L1,R L) is Pavelka-style complete. Just as a remark notice
that, with respect to this kind of completeness, we are allowed to relax the hypothesis about
the cardinality of the modal theory we are working with. In fact Γ is assumed to be an arbitrary
(countable) theory, not necessarily finite. This is due to the fact that R L is indeed strongly Pavelka-
style complete (cf. [43, Theorem 5.2.10]).

Theorem 27 Let Γ be a modal theory of FPL(L,R L), and let φ be a modal formula of FPL(L,R L).
Then, the truth degree of φ in Γ equals the provability degree of φ in Γ:

‖φ‖Γ = |φ|Γ.

Proof: We are simply going to sketch the proof of Pavelka-style completeness for FPL(L,R L). The
argument used is, in fact, routine, and more details can be found in [52, Theorem 8.4.9] for the
case of Boolean events, and probability measure (but the same argument easily holds for our more
general case).

Let Γ ∪ {Φ} be an arbitrary modal theory of FPL(L,R L). Adopting the same notation of the
above section, from Lemma 18, and Lemma 19, Γ `FPL Φ iff Γ2 ∪ FPL2 `R L Φ2. Moreover, since
the connectives of R L are all continuous, it is easy to show that

(2) |Φ|Γ = |Φ2|Γ2∪FPL2 .

We know from [43, Theorem 5.2.10], that R L is Pavelka-style complete, hence

(3) |Φ2|Γ2∪FPL2 = ‖Φ2‖Γ2∪FPL2 .

A routine verification (see for instance the proof of Theorem 20) shows that from the map ‖ ·
‖Γ2∪FPL2 evaluating the truth degree of formulas of the form ϕ2 into [0, 1], one can easily define a
plausibilistic model capturing the same truth values of ‖ · ‖Γ2∪FPL2 . Therefore

(4) ‖Φ2‖Γ2∪FPL2 = ‖Φ‖Γ.

Consequently, from (2), (3), and (4), we obtain |Φ|Γ = ‖Φ‖Γ. 2
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6 On the coherence problem

Take a finite set of events φ1, . . . , φk ∈ E , and a map a : φi 7→ αi ∈ [0, 1].

Can the map a be extended to an uncertainly measure on the algebra generated by the
formulas φ1, . . . , φk?

This problem is a generalization of a well-known and deeply-studied classical one. In fact, if we ask
the above question in terms of classical events, and probability measures, then the above problem
is known in the literature as de Finetti coherence problem [17, 18, 19].

We are now going to introduce a way to treat and characterize the above coherence criterion
to deal with many-valued (and in general non-Boolean) events, and measures different from the
additive ones16.

Definition 28 Let φ1, . . . , φk be formulas in the language of L and let M be a class of generalized
plausibility measures. Then a map a : {φ1, . . . , φk} → [0, 1] is said to be:

(i) A rational assignment, provided that for every i = 1, . . . , k, a(φi) is a rational number.

(ii) M-Coherent if there is an uncertainty measure µ ∈ M on the Lindenbaum-Tarski algebra
FmV generated by the variables occurring in φ1, . . . , φk, such that, for all i = 1, . . . , n, a(φi) =
µ([φi]).

Consider a finite set of L-formulas φ1, . . . , φk, and a rational assignment

a : φ 7→ ni
mi

, (for i = 1, . . . , k),

where ni and mi are co-prime positive integers and such that ni ≤ mi. Then, e.g. the following
formulas are definable in the language of FM(L,R L):

(5) M(φi)↔ ni/mi.

The following theorem characterizes M-coherent rational assignments in terms of consistency of
the formulas defined in (5). Since the proof of the following theorem is similar for every class M

of measures, we will concentrate on generalized plausibility measures, and we will omit the other
cases (like necessity and probability).

Theorem 29 Let φ1, . . . , φk be formulas in L, and let

a : φi 7→
ni
mi

be a rational assignment. Then the following are equivalent:

(i) a is PL-coherent,

(ii) The modal theory Γ = {Pl(φi) ↔ ni/mi | i = 1, . . . , k} is consistent in FPL(L1,R L) (i.e.
Γ 6`FPL ⊥).

16De Finetti’s coherence criterion has been recently studied for the case of states and MV-algebras in [65, 75].

28



Proof: (i) ⇒ (ii). Let a be PL-coherent, and let ρ : FL1(V0) → [0, 1] be a plausibility measure on
the Lindenbaum-Tarski algebra of L1 defined from the set of variables V0 occurring in φ1, . . . , φk,
extending a. Then, let W be defined as in the proof of Theorem 20 and consider the model
M = 〈W, e, ρ̂〉 where for every variable p and every w ∈ W , e(p, w) = w(p), and where ρ̂ :
FmW (V )→ [0, 1] is the plausibility measure such that for all fϕ ∈ FmW (V ), ρ̂(fϕ) = ρ([ϕ]). Then
M is a plausibilistic model for Γ. In fact, for every i = 1, . . . , k,

‖Pl(φi)↔ ni/mi‖M = 1 iff

‖Pl(φi)‖M ↔ ‖ni/mi‖M = 1 iff
‖Pl(φi)‖M = ni/mi iff

ρ̂(fφi) = ρ([φi]) = ni/mi.

Therefore Γ has a model, and so Γ 6`FPL ⊥.

(ii) ⇒ (i). Assume, conversely, that Γ 6`FPL ⊥. Then, there exists a plausibilistic model M =
〈W, e, ρ〉 such that ‖φ‖M = 1 for each φ ∈ Γ. Consider the map ρ̂ : FmW (V ) → [0, 1] defined as
follows: for every [ψ] ∈ FL1(V ),

ρ̂([ψ]) = ‖Pl(ψ)‖M = ρ(fψ).

Then ρ̂ is a generalized plausibility measure. In fact:

(i) ρ̂([>]) = ‖Pl(>)‖M = ‖>‖M = 1, and analogously ρ̂([⊥]) = 0.

(ii) Assume that [ϕ] ≤ [ψ]. Then [ϕ → ψ] = [>], and hence, by the monotonicity rule one
has ‖Pl(ϕ) → Pl(ψ)‖M = 1 as well. But, this is equivalent to ‖Pl(ϕ)‖M ≤ ‖Pl(ψ)‖M , i.e.
ρ̂([ϕ]) ≤ ρ̂([ψ]). Then ρ̂ is monotone.

Moreover, for every i = 1, . . . , k, ρ̂([φi]) = ‖Pl(φi)‖M = ni/mi. In fact, by definition of Γ,
Pl(φi) ↔ ni/mi ∈ Γ, hence ‖Pl(φi) ↔ ni/mi‖M = 1, i.e. ‖Pl(φi)‖M = ni/mi. Consequently, ρ̂ is
a plausibility measure on FL1(V ) that extends a. Therefore, the claim is proved. 2

7 Conclusions and further readings

The monographs [57, 78] are standard references for a wide overview on classical uncertainty mea-
sures and reasoning under uncertainty. It is also worth mentioning the book [76] (consisting of
two volumes) that offers a survey on measure theory with its many different branches, from the
classical one to additive and non-additive measures on many-valued and quantum structures, along
with many other related topics.

Normalized and additive maps on MV-algebras have been introduced by Kôpka and Chovanec
in [61], and then by Mundici under the name of MV-algebraic states (or simply states) in [74].
More specifically, the notion of a state on MV-algebras is intimately connected with that of a state
on an Abelian `-group that can be found in Goodearl [49]. We also refer to the paper [26] for a
comprehensive survey on the topic of states on MV-algebras and applications.

States have been also studied in a different framework than that of MV-algebras. The literature
about this general approach includes several papers. In particular, we mention the work by Aguz-
zoli, Gerla and Marra [2] where they studied states on Gödel algebras, the paper [1] by Aguzzoli
and Gerla where states were studied in the more general setting of Nilpotent Minimum algebras
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(cf. [29]). Dvurečenskij and Rachunek studied in [27] probabilistic-style measures in bounded
commutative and residuated `-monoids. We also mention the work by Riečan on probability on
BL-algebras, and IF-events [80, 81], and the paper by Mertanen and Turunen [72] dealing with
states on semi-divisible residuated lattices.

Extensions of de Finetti’s coherence criterion to deal with states on MV-algebras are studied
in [79] for the case of events being (equivalence classes of) formulas of finitely valued  Lukasiewicz
logic. A first approach to the case of infinite valued  Lukasiewicz logic was made by Gerla in [41],
and subsequently characterized completely by Mundici [75]. In [65], Kühr and Mundici solved the
problem of extending de Finetti’s criterion to deal with formulas of any [0, 1]-valued algebraic logic
having connectives whose interpretation is given by continuous functions.

The problem of checking the coherence (in the sense of de Finetti) of a partial probabilistic
assignment was shown to be NP-complete in [78]. This result was applied in [56] by Hájek and
Tulipani to show that the satisfiability problem for a modal probabilistic logic for classical events is
still NP-complete. The computational complexity of de Finetti’s criterion for  Lukasiewicz finitely
valued events was studied by Hájek in [53], and a final NP-completeness result for the coherence
problem of infinitely-valued  Lukasiewicz events was proved by Bova and Flaminio in [9].

To conclude, we recall some fundamental papers on the topic of generalized measure on fuzzy
events. In [73], Montagna studied de Finetti coherence criterion for conditional events in the sense
of conditional states introduced by Kroupa in [62]. In [32], Fedel, Kreimel, Montagna and Roth
characterized a coherent rationality criterion for non-reversible games on (divisible) MV-algebras
by means of upper and lower probabilities. A multimodal based logical approach to upper and
lower probability on MV-algebras was introduced in [33]. In [64, 37], the authors have begun a
study of belief measures on particular classes of semisimple MV-algebras.
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[18] B. de Finetti. La Prévision: ses Lois Logiques, ses Sources Subjectives, Annales de l’Institut
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